Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.303
Filter
1.
Cell Death Dis ; 15(8): 552, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090107

ABSTRACT

Despite advances in therapies, glioblastoma (GBM) recurrence is almost inevitable due to the aggressive growth behavior of GBM cells and drug resistance. Temozolomide (TMZ) is the preferred drug for GBM chemotherapy, however, development of TMZ resistance is over 50% cases in GBM patients. To investigate the mechanism of TMZ resistance and invasive characteristics of GBM, analysis of combined RNA-seq and ChIP-seq was performed in GBM cells in response to TMZ treatment. We found that the PERK/eIF2α/ATF4 signaling was significantly upregulated in the GBM cells with TMZ treatment, while blockage of ATF4 effectively inhibited cell migration and invasion. SPHK1 expression was transcriptionally upregulated by ATF4 in GBM cells in response to TMZ treatment. Blockage of ATF4-SPHK1 signaling attenuated the cellular and molecular events in terms of invasive characteristics and TMZ resistance. In conclusion, GBM cells acquired chemoresistance in response to TMZ treatment via constant ER stress. ATF4 transcriptionally upregulated SPHK1 expression to promote GBM cell aggression and TMZ resistance. The ATF4-SPHK1 signaling in the regulation of the transcription factors of EMT-related genes could be the underlying mechanism contributing to the invasion ability of GBM cells and TMZ resistance. ATF4-SPHK1-targeted therapy could be a potential strategy against TMZ resistance in GBM patients.


Subject(s)
Activating Transcription Factor 4 , Cell Movement , Drug Resistance, Neoplasm , Endoplasmic Reticulum Stress , Glioblastoma , Neoplasm Invasiveness , Phosphotransferases (Alcohol Group Acceptor) , Signal Transduction , Temozolomide , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/drug therapy , Humans , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Endoplasmic Reticulum Stress/drug effects , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Signal Transduction/drug effects , Cell Line, Tumor , Temozolomide/pharmacology , Temozolomide/therapeutic use , Cell Movement/drug effects , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Animals , Mice, Nude
2.
Ecotoxicol Environ Saf ; 281: 116639, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964069

ABSTRACT

Hexavalent chromium [Cr(VI)] exists widely in occupational environments. The mechanistic target of rapamycin (mTOR) has been well-documented to regulate autophagy negatively. However, we found that low concentration of Cr(VI) (0.2 µM) elevated both mTOR and autophagy and promote cell survival. Conversely, high concentration of Cr(VI) (6 µM) caused cell death by inhibiting mTOR and subsequently inducing autophagy. Tunicamycin (Tm), as an Endoplasmic reticulum (ER) stress activator was used to induce mild ER stress at 0.1 µg/ml and it activated both autophagy and mTOR, which also caused cell migration in a similar manner to that observed with low concentration of Cr(VI). Severe ER stress caused by Tm (2 µg/ml) decreased mTOR, increased autophagy and then inhibited cell migration, which was the same as 6 µM Cr(VI) treatment, although Cr(VI) in high concentration inhibited ER stress. Activating transcription factor 4 (ATF4), a downstream target of ER stress, only increased under mild ER stress but decreased under severe ER stress and 6 µM Cr(VI) treatment. Chromatin immunoprecipitation (ChIP) experiment indicated that ATF4 could bind to the promoter of ATG4B and AKT1. To sum up, our data revealed that mild ER stress induced by low concentration of Cr(VI) could enhance transcriptional regulation of ATG4B and AKT1 by ATF4, which induced both autophagy and mTOR to promote cell viability.


Subject(s)
Activating Transcription Factor 4 , Autophagy , Chromium , Endoplasmic Reticulum Stress , TOR Serine-Threonine Kinases , Endoplasmic Reticulum Stress/drug effects , Chromium/toxicity , Autophagy/drug effects , TOR Serine-Threonine Kinases/metabolism , Activating Transcription Factor 4/metabolism , Humans , Cell Movement/drug effects , Cell Survival/drug effects , Tunicamycin/pharmacology , Tunicamycin/toxicity
3.
Cell Biol Toxicol ; 40(1): 60, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073694

ABSTRACT

Triptolide (TP) is a major active and toxic composition of the Chinese medicine Tripterygium wilfordii Hook. F. (TWHF), exhibiting various therapeutic bioactivities. Among the toxic effects, the hepatotoxicity of TP deserves serious attention. Previously, our research group proposed a new view of TP-related hepatotoxicity: hepatic hypersensitivity under lipopolysaccharide (LPS) stimulation. However, the mechanism of TP/LPS-induced hepatic hypersensitivity remains unclear. In this study, we investigated the mechanism underlying TP/LPS-induced hypersensitivity from the perspective of the inhibition of proteasome activity, activated endoplasmic reticulum stress (ERS)-related apoptosis, and the accumulation of reactive oxygen species (ROS). Our results showed that N-acetylcysteine (NAC), a common ROS inhibitor, decreased the expression of cleaved caspase-3 and cleaved PARP, which are associated with FLIP enhancement. Moreover, 4-phenylbutyric acid (4-PBA), an ERS inhibitor, was able to alleviate TP/LPS-induced hepatotoxicity by reducing ERS-related apoptosis protein expression (GRP78, p-eIF2α/eIF2α, ATF4, CHOP, cleaved caspase-3 and cleaved PARP) and ROS levels, with ATF4 being an indispensable mediator. In addition, the proteasome activity inhibitor MG-132 further aggravated ERS-related apoptosis, which indicated that the inhibition of proteasome activity also plays an important role in TP/LPS-related liver injuries. In summary, we propose that TP/LPS may upregulate the activation of ERS-associated apoptosis by inhibiting proteasome activity and enhancing ROS production through ATF4.


Subject(s)
Acetylcysteine , Apoptosis , Diterpenes , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Epoxy Compounds , Lipopolysaccharides , Phenanthrenes , Proteasome Endopeptidase Complex , Proteasome Inhibitors , Reactive Oxygen Species , Phenanthrenes/pharmacology , Phenanthrenes/toxicity , Diterpenes/pharmacology , Diterpenes/toxicity , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Lipopolysaccharides/toxicity , Epoxy Compounds/toxicity , Epoxy Compounds/pharmacology , Animals , Reactive Oxygen Species/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Acetylcysteine/pharmacology , Activating Transcription Factor 4/metabolism , Phenylbutyrates/pharmacology , Mice , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Liver/drug effects , Liver/pathology , Liver/metabolism , Caspase 3/metabolism , Male , Leupeptins
4.
Pharm Biol ; 62(1): 607-620, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39034914

ABSTRACT

CONTEXT: Ulcerative colitis has been clinically treated with Qing Hua Chang Yin (QHCY), a traditional Chinese medicine formula. However, its precise mechanisms in mitigating chronic colitis are largely uncharted. OBJECTIVE: To elucidate the therapeutic efficiency of QHCY on chronic colitis and explore its underlying molecular mechanisms. MATERIALS AND METHODS: A total ion chromatogram fingerprint of QHCY was analysed. Chronic colitis was induced in male C57BL/6 mice using 2% dextran sodium sulphate (DSS) over 49 days. Mice were divided into control, DSS, DSS + QHCY (0.8, 1.6 and 3.2 g/kg/d dose, respectively) and DSS + mesalazine (0.2 g/kg/d) groups (n = 6). Mice were intragastrically administered QHCY or mesalazine for 49 days. The changes of disease activity index (DAI), colon length, colon histomorphology and serum pro-inflammatory factors in mice were observed. RNA sequencing was utilized to identify the differentially expressed transcripts (DETs) in colonic tissues and the associated signalling pathways. The expression of endoplasmic reticulum (ER) stress-related protein and NF-κB signalling pathway-related proteins in colonic tissues was detected by immunohistochemistry staining. RESULTS: Forty-seven compounds were identified in QHCY. Compared with the DSS group, QHCY significantly improved symptoms of chronic colitis like DAI increase, weight loss, colon shortening and histological damage. It notably reduced serum levels of IL-6, IL-1ß and TNF-α. QHCY suppressed the activation of PERK-ATF4-CHOP pathway of ER stress and NF-κB signalling pathways in colonic tissues. DISCUSSION AND CONCLUSIONS: The findings in this study provide novel insights into the potential of QHCY in treating chronic colitis patients.


Subject(s)
Activating Transcription Factor 4 , Dextran Sulfate , Drugs, Chinese Herbal , Endoplasmic Reticulum Stress , Mice, Inbred C57BL , NF-kappa B , Signal Transduction , Transcription Factor CHOP , eIF-2 Kinase , Animals , Male , Signal Transduction/drug effects , Endoplasmic Reticulum Stress/drug effects , Mice , Drugs, Chinese Herbal/pharmacology , NF-kappa B/metabolism , eIF-2 Kinase/metabolism , Activating Transcription Factor 4/metabolism , Transcription Factor CHOP/metabolism , Chronic Disease , Colitis/drug therapy , Colitis/chemically induced , Colitis/pathology , Disease Models, Animal , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Dose-Response Relationship, Drug
5.
Dokl Biochem Biophys ; 517(1): 264-268, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002013

ABSTRACT

Translation inhibition can activate two cell death pathways. The first pathway is activated by translational aberrations, the second by endoplasmic reticulum (ER) stress. In this work, the effect of ribosome-inactivating protein type II (RIP-II) viscumin on M1 macrophages derived from the THP-1 cell line was investigated. The number of modified ribosomes was evaluated by real-time PCR. Transcriptome analysis revealed that viscumin induces the ER stress activated by the PERK sensor.


Subject(s)
Activating Transcription Factor 4 , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2 , Macrophages , Signal Transduction , eIF-2 Kinase , Endoplasmic Reticulum Stress/drug effects , Eukaryotic Initiation Factor-2/metabolism , Humans , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Macrophages/metabolism , Macrophages/drug effects , THP-1 Cells
6.
Proc Natl Acad Sci U S A ; 121(31): e2407472121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39047038

ABSTRACT

The integrated stress response (ISR), a pivotal protein homeostasis network, plays a critical role in the formation of long-term memory (LTM). The precise mechanism by which the ISR controls LTM is not well understood. Here, we report insights into how the ISR modulates the mnemonic process by using targeted deletion of the activating transcription factor 4 (ATF4), a key downstream effector of the ISR, in various neuronal and non-neuronal cell types. We found that the removal of ATF4 from forebrain excitatory neurons (but not from inhibitory neurons, cholinergic neurons, or astrocytes) enhances LTM formation. Furthermore, the deletion of ATF4 in excitatory neurons lowers the threshold for the induction of long-term potentiation, a cellular model for LTM. Transcriptomic and proteomic analyses revealed that ATF4 deletion in excitatory neurons leads to upregulation of components of oxidative phosphorylation pathways, which are critical for ATP production. Thus, we conclude that ATF4 functions as a memory repressor selectively within excitatory neurons.


Subject(s)
Activating Transcription Factor 4 , Memory, Long-Term , Neurons , Animals , Mice , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Astrocytes/metabolism , Long-Term Potentiation , Memory, Long-Term/physiology , Mice, Knockout , Neurons/metabolism , Prosencephalon/metabolism , Male
7.
Sci Rep ; 14(1): 13042, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844625

ABSTRACT

Colon cancer (CC) is a highly malignant tumor with a high incidence and poor prognosis. This study aimed to explore the function and molecular mechanisms of activating transcription factor 4 (ATF4) in CC. The expression levels of ATF4, GCN2, and ASNS in CC tissues were measured using immunohistochemistry (IHC) and reverse transcription quantitative PCR (RT-qPCR). Cell counting kit-8 (CCK-8), clone formation, transwell, and flow cytometry assays were conducted to assess cell viability, clonogenicity, migration, invasion, cell cycle, and apoptosis, respectively, in the ATF4 knockdown and overexpression SW480 cell lines. The effect of ATF4 on the expression of GCN2 and ASNS was detected using RT-qPCR, Chip-qPCR, and western blotting. ATF4, GCN2, and ASNS were expressed at low levels in CC tissues, and all had a significant negative correlation with tumor diameter. ATF4 knockdown promoted cell proliferation, invasion, and S-phase cell cycle and inhibited apoptosis in SW480 cells. In contrast, ATF4 overexpression had the opposite effect. Furthermore, ATF4 overexpression enhanced ATF4 binding to the ASNS promoter region. ATF4 knockdown significantly inhibited the expression of p-GCN2 and ASNS, whereas ATF4 overexpression significantly upregulated their expression. ATF4 inhibited CC cell viability, clone formation ability, migration, and invasion and promoted apoptosis, possibly by regulating the expression of p-GCN2 and ASNS. Our study provides a novel potential therapeutic target for the treatment of CC.


Subject(s)
Activating Transcription Factor 4 , Apoptosis , Cell Movement , Cell Proliferation , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Protein Serine-Threonine Kinases , Up-Regulation , Humans , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Apoptosis/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Movement/genetics , Male , Female , Middle Aged
8.
PLoS One ; 19(6): e0303742, 2024.
Article in English | MEDLINE | ID: mdl-38900734

ABSTRACT

Unravelling how energy metabolism and stress responses are regulated in human scalp hair follicles could reveal novel insights into the controls of hair growth and provide new targets to manage hair loss disorders. The Mitochondrial Pyruvate Carrier (MPC) imports pyruvate, produced via glycolysis, into the mitochondria, fuelling the TCA cycle. Previous work has shown that MPC inhibition promotes lactate generation, which activates murine epithelial hair follicle stem cells (eHFSCs). However, by pharmacologically targeting the MPC in short-term human hair follicle ex vivo organ culture experiments using UK-5099, we induced metabolic stress-responsive proliferative arrest throughout the human hair follicle epithelium, including within Keratin 15+ eHFSCs. Through transcriptomics, MPC inhibition was shown to promote a gene expression signature indicative of disrupted FGF, IGF, TGFß and WNT signalling, mitochondrial dysfunction, and activation of the integrated stress response (ISR), which can arrest cell cycle progression. The ISR, mediated by the transcription factor ATF4, is activated by stressors including amino acid deprivation and ER stress, consistent with MPC inhibition within our model. Using RNAScope, we confirmed the upregulation of both ATF4 and the highly upregulated ATF4-target gene ADM2 on human hair follicle tissue sections in situ. Moreover, treatment with the ISR inhibitor ISRIB attenuated both the upregulation of ADM2 and the proliferative block imposed via MPC inhibition. Together, this work reveals how the human hair follicle, as a complex and metabolically active human tissue system, can dynamically adapt to metabolic stress.


Subject(s)
Hair Follicle , Humans , Hair Follicle/metabolism , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Stress, Physiological , Cell Proliferation , Mitochondria/metabolism
9.
J Toxicol Sci ; 49(7): 313-319, 2024.
Article in English | MEDLINE | ID: mdl-38945842

ABSTRACT

Dihydropyrazines (DHPs) are formed by non-enzymatic glycation reactions in vivo and in food. We recently reported that 3-hydro-2,2,5,6-tetramethylpyrazine (DHP-3), which is a methyl-substituted DHP, caused severe oxidative stress and cytotoxicity. However, the molecular mechanisms underlying the cytotoxic pathways of the DHP response remain elusive. Because oxidative stress induces endoplasmic reticulum (ER) stress and autophagy, we investigated the ability of DHP-3 to modulate the ER stress and autophagy pathways. DHP-3 activated the ER stress pathway by increasing inositol-requiring enzyme 1 (IRE1) and PKR-like ER kinase (PERK) phosphorylation and transcription factor 6 (ATF6) expression. Moreover, DHP-3 increased the expression of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), which are downstream targets of PERK. In addition, DHP-3 inhibited the autophagy pathway by increasing the accumulation of microtubule-associated protein 1 light chain 3 alpha-phosphatidylethanolamine conjugate (LC3-II) and p62/sequestosome 1 (p62), while decreasing autophagic flux. Taken together, these results indicate that DHP-3 activates the ER stress pathway and inhibits the autophagy pathway, suggesting that the resulting removal of damaged organelles is inadequate.


Subject(s)
Activating Transcription Factor 4 , Activating Transcription Factor 6 , Autophagy , Endoplasmic Reticulum Stress , Protein Serine-Threonine Kinases , Pyrazines , eIF-2 Kinase , Humans , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Pyrazines/pharmacology , Hep G2 Cells , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , eIF-2 Kinase/metabolism , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Phosphorylation , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Oxidative Stress/drug effects , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Signal Transduction/drug effects , Microtubule-Associated Proteins/metabolism
10.
BMC Musculoskelet Disord ; 25(1): 467, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879481

ABSTRACT

BACKGROUND: The present study evaluated whether the lack of histone deacetylase 4 (HDAC4) increases endoplasmic reticulum stress-induced chondrocyte apoptosis by releasing activating transcription factor 4 (ATF4) in human osteoarthritis (OA) cartilage degeneration. METHODS: Articular cartilage from the tibial plateau was obtained from patients with OA during total knee replacement. Cartilage extracted from severely damaged regions was classified as degraded cartilage, and cartilage extracted from a relatively smooth region was classified as preserved cartilage. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to detect chondrocyte apoptosis. HDAC4, ATF4, and C/EBP homologous protein (CHOP) expression levels were measured using immunohistochemistry staining and real-time quantitative PCR. Chondrocytes were transfected with HDAC4 or HDAC4 siRNA for 24 h and stimulated with 300 µM H2O2 for 12 h. The chondrocyte apoptosis was measured using flow cytometry. ATF4, CHOP, and caspase 12 expression levels were measured using real-time quantitative PCR and western blotting. Male Sprague-Dawley rats (n = 15) were randomly divided into three groups and transduced with different vectors: ACLT + Ad-GFP, ACLT + Ad-HDAC4-GFP, and sham + Ad-GFP. All rats received intra-articular injections 48 h after the operation and every three weeks thereafter. Cartilage damage was assessed using Safranin O staining and quantified using the Osteoarthritis Research Society International score. ATF4, CHOP, and collagen II expression were detected using immunohistochemistry, and chondrocyte apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. RESULTS: The chondrocyte apoptosis was higher in degraded cartilage than in preserved cartilage. HDAC4 expression was lower in degraded cartilage than in preserved cartilage. ATF4 and CHOP expression was increased in degraded cartilage. Upregulation of HDAC4 in chondrocytes decreased the expression of ATF4, while the expression of ATF4 was increased after downregulation of HDAC4. Upregulation of HDAC4 decreased the chondrocyte apoptosis under endoplasmic reticulum stress, and chondrocyte apoptosis was increased after downregulation of HDAC4. In a rat anterior cruciate ligament transection OA model, adenovirus-mediated transduction of HDAC4 was administered by intra-articular injection. We detected a stronger Safranin O staining with lower Osteoarthritis Research Society International scores, lower ATF4 and CHOP production, stronger collagen II expression, and lower chondrocyte apoptosis in rats treated with Ad-HDAC4. CONCLUSION: The lack of HDAC4 expression partially contributes to increased ATF4, CHOP, and endoplasmic reticulum stress-induced chondrocyte apoptosis in OA pathogenesis. HDAC4 attenuates cartilage damage by repressing ATF4-CHOP signaling-induced chondrocyte apoptosis in a rat model of OA.


Subject(s)
Activating Transcription Factor 4 , Apoptosis , Cartilage, Articular , Chondrocytes , Disease Models, Animal , Endoplasmic Reticulum Stress , Histone Deacetylases , Rats, Sprague-Dawley , Animals , Apoptosis/physiology , Apoptosis/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Male , Rats , Endoplasmic Reticulum Stress/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Humans , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/metabolism , Female , Middle Aged , Aged , Transcription Factor CHOP/metabolism , Cells, Cultured , Osteoarthritis/pathology , Osteoarthritis/metabolism , Repressor Proteins
11.
Phytomedicine ; 130: 155399, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38850632

ABSTRACT

BACKGROUND: Cerebral ischemia/reperfusion injury (CIRI) is a sequence of pathophysiological processes after blood recanalization in the patients with ischemic stroke, and has become the hinder for the rehabilitation. Naotaifang formula (NTF) has exhibited the clinical effectiveness for this disease. However, its action effects and molecular mechanisms against CIRI are not fully elucidated. PURPOSE: The research was to clarify the crosstalk between ferroptosis and necroptosis in CIRI, and uncover the mechanism underlying the neuroprotection of NTF. METHODS: This study established MCAO/R rat models with various reperfusion times. Western blot, transmission electron microscope, laser speckle imaging, immunofluorescence, immunohistochemistry and pathological staining were conducted to detect and analyze the obtained results. Subsequently, various NTF doses were used to intervene in MCAO/R rats, and biology experiments, such as western blot, Evans blue, immunofluorescence and immunohistochemistry, were used to analyze the efficacy of NTF doses. The effect of NTF was further clarified through in vitro experiments. Eventually, HT22 cells that suffered OGD/R were subjected to pre-treatment with plasmids overexpressing HSP90, MLKL, and GPX4 to indicate the interaction among ferroptosis and necroptosis. RESULTS: There was a gradual increase in the Zea Longa score and cerebral infarction volume following CIRI with prolonged reperfusion. Furthermore, the expression of factors associated with pro-ferroptosis and pro-necroptosis was upregulated in the cortex and hippocampus. NTF alleviated ferroptosis and necroptosis in a dose-dependent manner, downregulated HSP90 levels, reduced blood-brain barrier permeability, and thus protected nerve cells from CIRI. The results in vitro research aligned with those of the in vivo research. HSP90 and MLKL overexpression promoted necroptosis and ferroptosis while activating the GCN2-ATF4 pathway. GPX4 overexpression had no effect on necroptosis or the associated signaling pathway. The administration of NTF alone, as well as its combination with the overexpression of HSP90, MLKL, or GPX4 plasmids, decreased the expression levels of factors associated with pro-ferroptosis and pro-necroptosis and reduced the protein levels of the HSP90-GCN2-ATF4 pathway. Moreover, the regulatory effects of the NTF alone group on GSH, ferrous iron, and GCN2 were more significant compared with those of the HSP90 overexpression combination group. CONCLUSION: Ferroptosis and necroptosis were gradually aggravated following CIRI with prolonged reperfusion. MLKL overexpression may promote ferroptosis and necroptosis, while GPX4 overexpression may have little effect on necroptosis. HSP90 overexpression accelerated both forms of cell death via the HSP90-GCN2-ATF4 pathway. NTF alleviated ferroptosis and necroptosis to attenuate CIRI by regulating the HSP90-GCN2-ATF4 pathway. Our research provided evidence for the potential of drug development by targeting HSP90, MLKL, and GPX4 to protect against ischemic stroke.


Subject(s)
Activating Transcription Factor 4 , Ferroptosis , HSP90 Heat-Shock Proteins , Necroptosis , Neuroprotective Agents , Reperfusion Injury , Animals , Male , Mice , Rats , Activating Transcription Factor 4/metabolism , Brain Ischemia/drug therapy , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Ferroptosis/drug effects , HSP90 Heat-Shock Proteins/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Necroptosis/drug effects , Neuroprotective Agents/pharmacology , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Signal Transduction/drug effects
12.
ACS Appl Mater Interfaces ; 16(27): 34524-34537, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38926154

ABSTRACT

In recent years, the study of microplastics (MPs) and nanoplastics (NPs) and their effects on human health has gained significant attention. The impacts of NPs on lipid metabolism and the specific mechanisms involved remain poorly understood. To address this, we utilized high-throughput sequencing and molecular biology techniques to investigate how endoplasmic reticulum (ER) stress might affect hepatic lipid metabolism in the presence of polystyrene nanoplastics (PS-NPs). Our findings suggest that PS-NPs activate the PERK-ATF4 signaling pathway, which in turn upregulates the expression of genes related to lipid synthesis via the ATF4-PPARγ/SREBP-1 pathway. This activation leads to an abnormal accumulation of lipid droplets in the liver. 4-PBA, a known ER stress inhibitor, was found to mitigate the PS-NPs-induced lipid metabolism disorder. These results demonstrate the hepatotoxic effects of PS-NPs and clarify the mechanisms of abnormal lipid metabolism induced by PS-NPs.


Subject(s)
Activating Transcription Factor 4 , Polystyrenes , Signal Transduction , eIF-2 Kinase , Polystyrenes/chemistry , Polystyrenes/toxicity , Polystyrenes/pharmacology , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Animals , Mice , Signal Transduction/drug effects , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/chemically induced , Lipid Metabolism Disorders/drug therapy , Nanoparticles/chemistry , Nanoparticles/toxicity , Microplastics/toxicity , Endoplasmic Reticulum Stress/drug effects , Lipid Metabolism/drug effects , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL
13.
Aging Cell ; 23(7): e14165, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757355

ABSTRACT

Impaired mitochondrial function is a hallmark of aging and a major contributor to neurodegenerative diseases. We have shown that disrupted mitochondrial dynamics typically found in aging alters the fate of neural stem cells (NSCs) leading to impairments in learning and memory. At present, little is known regarding the mechanisms by which neural stem and progenitor cells survive and adapt to mitochondrial dysfunction. Using Opa1-inducible knockout as a model of aging and neurodegeneration, we identify a decline in neurogenesis due to impaired stem cell activation and progenitor proliferation, which can be rescued by the mitigation of oxidative stress through hypoxia. Through sc-RNA-seq, we identify the ATF4 pathway as a critical mechanism underlying cellular adaptation to metabolic stress. ATF4 knockdown in Opa1-deficient NSCs accelerates cell death, while the increased expression of ATF4 enhances proliferation and survival. Using a Slc7a11 mutant, an ATF4 target, we show that ATF4-mediated glutathione production plays a critical role in maintaining NSC survival and function under stress conditions. Together, we show that the activation of the integrated stress response (ISR) pathway enables NSCs to adapt to metabolic stress due to mitochondrial dysfunction and metabolic stress and may serve as a therapeutic target to enhance NSC survival and function in aging and neurodegeneration.


Subject(s)
Cell Survival , Mitochondria , Neural Stem Cells , Neural Stem Cells/metabolism , Mitochondria/metabolism , Animals , Mice , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/genetics , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Stress, Physiological , Oxidative Stress
14.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38803225

ABSTRACT

IGHMBP2 is a nonessential, superfamily 1 DNA/RNA helicase that is mutated in patients with rare neuromuscular diseases SMARD1 and CMT2S. IGHMBP2 is implicated in translational and transcriptional regulation via biochemical association with ribosomal proteins, pre-rRNA processing factors, and tRNA-related species. To uncover the cellular consequences of perturbing IGHMBP2, we generated full and partial IGHMBP2 deletion K562 cell lines. Using polysome profiling and a nascent protein synthesis assay, we found that IGHMBP2 deletion modestly reduces global translation. We performed Ribo-seq and RNA-seq and identified diverse gene expression changes due to IGHMBP2 deletion, including ATF4 up-regulation. With recent studies showing the integrated stress response (ISR) can contribute to tRNA metabolism-linked neuropathies, we asked whether perturbing IGHMBP2 promotes ISR activation. We generated ATF4 reporter cell lines and found IGHMBP2 knockout cells demonstrate basal, chronic ISR activation. Our work expands upon the impact of IGHMBP2 in translation and elucidates molecular mechanisms that may link mutant IGHMBP2 to severe clinical phenotypes.


Subject(s)
DNA-Binding Proteins , Protein Biosynthesis , Stress, Physiological , Transcription Factors , Humans , Protein Biosynthesis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , K562 Cells , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Gene Deletion , Gene Expression Regulation , RNA, Transfer/genetics , RNA, Transfer/metabolism
15.
Phytomedicine ; 129: 155670, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704915

ABSTRACT

BACKGROUND: Anaplastic thyroid carcinoma (ATC) is recognized as the most aggressive and malignant form of thyroid cancer, underscoring the critical need for effective therapeutic strategies to curb its progression and improve patient prognosis. Halofuginone (HF), a derivative of febrifugine, has displayed antitumor properties across various cancer types. However, there is a paucity of published research focused on the potential of HF to enhance the clinical efficacy of treating ATC. OBJECTIVE: In this study, we thoroughly investigated the antitumor effects and mechanisms of HF in ATC, aiming to discover lead compounds for treating ATC and reveal novel therapeutic targets for ATC tumors. METHODS: A series of assays, including CCK8, colony formation, tumor xenograft models, and ATC tumor organoid experiments, were conducted to evaluate the anticancer properties of HF both in vitro and in vivo. Techniques such as drug affinity responsive target stability (DARTS), western blot, immunofluorescence, and immunohistochemistry were employed to pinpoint HF target proteins within ATC. Furthermore, we harnessed the GEPIA and GEO databases and performed immunohistochemistry to validate the therapeutic potential of the glutamyl-prolyl-tRNA-synthetase (EPRS)- activating transcription factor 4 (ATF4)- type I collagen (COLI) pathway axis in the context of ATC. The study also incorporated RNA sequencing analysis, confocal imaging, and flow cytometry to delve into the molecular mechanisms of HF in ATC. RESULTS: HF exhibited a substantial inhibitory impact on cell proliferation in vitro and on tumor growth in vivo. The DARTS results highlighted HF's influence on EPRS within ATC cells, triggering an amino acid starvation response (AASR) by suppressing EPRS expression, consequently leading to a reduction in COLI expression in ATC cells. The introduction of proline mitigated the effect of HF on ATF4 and COLI expression, indicating that the EPRS-ATF4-COLI pathway axis was a focal target of HF in ATC. Analysis of the expression levels of the EPRS, ATF4, and COLI proteins in thyroid tumors, along with an examination of the relationship between COLI expression and thyroid tumor stage, revealed that HF significantly inhibited the growth of ATC tumor organoids, demonstrating the therapeutic potential of targeting the EPRS-ATF4-COLI pathway axis in ATC. RNA sequencing analysis revealed significant differences in the pathways associated with metastasis and apoptosis between control and HF-treated cells. Transwell assays and flow cytometry experiments provided evidence of the capacity of HF to impede cell migration and induce apoptosis in ATC cells. Furthermore, HF hindered cell metastasis by suppressing the epithelial-mesenchymal transition (EMT) pathway, acting through the inhibition of FAK-AKT-NF-κB/Wnt-ß-catenin signaling and restraining angiogenesis via the VEGF pathway. HF also promoted apoptosis through the mitochondrial apoptotic pathway. CONCLUSION: This study provided inaugural evidence suggesting that HF could emerge as a promising therapeutic agent for the treatment of ATC. The EPRS-ATF4-COLI pathway axis stood out as a prospective biomarker and therapeutic target for ATC.


Subject(s)
Activating Transcription Factor 4 , Piperidines , Quinazolinones , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Thyroid Carcinoma, Anaplastic/drug therapy , Activating Transcription Factor 4/metabolism , Humans , Animals , Cell Line, Tumor , Thyroid Neoplasms/drug therapy , Piperidines/pharmacology , Quinazolinones/pharmacology , Mice , Mice, Nude , Xenograft Model Antitumor Assays , Signal Transduction/drug effects , Cell Proliferation/drug effects , Mice, Inbred BALB C
16.
Environ Pollut ; 352: 124145, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38735462

ABSTRACT

Copper is an essential trace element, and excessive exposure could result in hepatoxicity, however, the underlying molecular mechanisms remain incompletely understood. The present study is aimed to investigate the molecular mechanisms of copper sulfate (CuSO4) exposure-induced hepatoxicity both in vivo and in vitro. In vitro, HepG2 and L02 cells were exposed to various doses of CuSO4 for 24 h. Cell viability, ROS production, oxidative stress biomarkers, mitochondrial functions, ultrastructure, intracellular calcium (Ca2+) concentration, and the expression of proteins related to mitochondrial apoptosis and endoplasmic reticulum (ER) stress were assessed. In vivo, C57BL/6 mice were treated with CuSO4 at doses of 10 and 30 mg/kg BW/day and co-treated with 4-PBA at 100 mg/kg BW/day for 35 days. Subsequently, liver function, histopathological features, and protein expression were evaluated. Results found that exposure to CuSO4 at concentrations of 100-400 µM for 24 h significantly decreased the viabilities of HepG2 and L02 cells and it was in a dose-dependent manner. Additionally, CuSO4 exposure induced significant oxidative stress and mitochondrial dysfunction in HepG2 cells, which were partially ameliorated by the antioxidant N-acetylcysteine (NAC). Furthermore, CuSO4 exposure prominently triggered ER stress, as evidenced by the upregulation of GRP94, GRP78, phosphorylated forms of PERK and eIF2α, and CHOP proteins in livers of mice and HepG2 cells. NAC treatment significantly inhibited CuSO4 exposure -induced ER stress in HepG2 cells. Pharmacological inhibition of ER stress through co-treatment with 4-PBA and the PERK inhibitor GSK2606414, as well as genetic knockdown of ATF4, partially mitigated CuSO4-induced cytotoxicity in HepG2 cells by reducing mitochondrial dysfunction and inhibiting the mitochondrial apoptotic pathway. Moreover, 4-PBA treatment significantly attenuated CuSO4-induced caspase activation and hepatoxicity in mice. In conclusion, these results reveal that CuSO4-induced hepatotoxicity involves mitochondrial dysfunction and ER stress by activating oxidative stress induction and PERK/ATF4 pathway.


Subject(s)
Activating Transcription Factor 4 , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Mice, Inbred C57BL , Mitochondria , Oxidative Stress , eIF-2 Kinase , Endoplasmic Reticulum Stress/drug effects , Animals , Oxidative Stress/drug effects , Humans , Mice , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Hep G2 Cells , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Copper/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Copper Sulfate/toxicity , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Male , Liver/drug effects , Liver/metabolism , Cell Survival/drug effects
17.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732072

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease. Despite new methods of diagnostics and treatment as well as extensive biological and immunosuppressive treatment, the etiology of RA is not fully understood. Moreover, the problem of diagnosis and treatment of RA patients is still current and affects a large group of patients. It is suggested that endoplasmic reticulum (ER)-related features may impair adaptation to chronic stress, inferring the risk of rheumatoid arthritis. The main goal in this study was evaluation of changes in mRNA translation to determine chronic ER stress conditions in rheumatoid arthritis patients. The study group consist of 86 individuals including a total of 56 rheumatoid arthritis patients and 30 healthy controls. The expression level of mRNA form blood samples of RA patients as well as controls of the unfolded protein response (UPR)-associated genes (p-eIF2, BCL-2, PERK, ATF4, and BAX) were investigated using real-time qPCR. GAPDH expression was used as a standard control. Considering the median, the expression levels of PERK, BCL-2, p-eIF2, ATF4, and BAX were found to be significantly increased in the blood of RA patients compared with the control group. The p-value for the PERK gene was 0.0000000036, the p-value for the BCL-2 gene was 0.000000014, the p-value for the p-eIF2 gene was 0.006948, the p-value for the ATF4 gene was 0.0000056, and the p-value for the BAX gene was 0.00019, respectively. Thus, it can be concluded that the targeting of the components of the PERK-dependent UPR signaling pathway via small-molecule PERK inhibitors may contribute to the development of novel, innovative treatment strategies against rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Endoplasmic Reticulum Stress , Gene Expression Profiling , Unfolded Protein Response , eIF-2 Kinase , Humans , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/blood , Unfolded Protein Response/genetics , Female , Male , Middle Aged , Endoplasmic Reticulum Stress/genetics , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Adult , Aged , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Case-Control Studies , RNA, Messenger/genetics , RNA, Messenger/metabolism , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics
18.
J Biol Chem ; 300(6): 107398, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777145

ABSTRACT

The unfolded protein response pathways (UPR), autophagy, and compartmentalization of misfolded proteins into inclusion bodies are critical components of the protein quality control network. Among inclusion bodies, aggresomes are particularly intriguing due to their association with cellular survival, drug resistance, and aggresive cancer behavior. Aggresomes are molecular condensates formed when collapsed vimentin cages encircle misfolded proteins before final removal by autophagy. Yet significant gaps persist in the mechanisms governing aggresome formation and elimination in cancer cells. Understanding these mechanisms is crucial, especially considering the involvement of LC3A, a member of the MAP1LC3 family, which plays a unique role in autophagy regulation and has been reported to be epigenetically silenced in many cancers. Herein, we utilized the tetracycline-inducible expression of LC3A to investigate its role in choroid plexus carcinoma cells, which inherently exhibit the presence of aggresomes. Live cell imaging was employed to demonstrate the effect of LC3A expression on aggresome-positive cells, while SILAC-based proteomics identified LC3A-induced protein and pathway alterations. Our findings demonstrated that extended expression of LC3A is associated with cellular senescence. However, the obstruction of lysosomal degradation in this context has a deleterious effect on cellular viability. In response to LC3A-induced autophagy, we observed significant alterations in mitochondrial morphology, reflected by mitochondrial dysfunction and increased ROS production. Furthermore, LC3A expression elicited the activation of the PERK-eIF2α-ATF4 axis of the UPR, underscoring a significant change in the protein quality control network. In conclusion, our results elucidate that LC3A-mediated autophagy alters the protein quality control network, exposing a vulnerability in aggresome-positive cancer cells.


Subject(s)
Activating Transcription Factor 4 , Autophagy , Eukaryotic Initiation Factor-2 , Microtubule-Associated Proteins , Mitochondria , eIF-2 Kinase , Humans , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Mitochondria/metabolism , Mitochondria/pathology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Cell Line, Tumor , Unfolded Protein Response , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics
19.
Biomed Pharmacother ; 176: 116811, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795641

ABSTRACT

Central nervous system (CNS) disorders exhibit exceedingly intricate pathogenic mechanisms. Pragmatic and effective solutions remain elusive, significantly compromising human life and health. Activating transcription factor 4 (ATF4) participates in the regulation of multiple pathophysiological processes, including CNS disorders. Considering the widespread involvement of ATF4 in the pathological process of CNS disorders, the targeted regulation of ATF4 by plant-derived bioactive compounds (PDBCs) may become a viable strategy for the treatment of CNS disorders. However, the regulatory relationship between PDBCs and ATF4 remains incompletely understood. Here, we aimed to comprehensively review the studies on PDBCs targeting ATF4 to ameliorate CNS disorders, thereby offering novel directions and insights for the treatment of CNS disorders. A computerized search was conducted on PubMed, Embase, Web of Science, and Google Scholar databases to identify preclinical experiments related to PDBCs targeting ATF4 for the treatment of CNS disorders. The search timeframe was from the inception of the databases to December 2023. Two assessors conducted searches using the keywords "ATF4," "Central Nervous System," "Neurological," "Alzheimer's disease," "Parkinson's Disease," "Stroke," "Spinal Cord Injury," "Glioblastoma," "Traumatic Brain Injury," and "Spinal Cord Injury." Overall, 31 studies were included, encompassing assessments of 27 PDBCs. Combining results from in vivo and in vitro studies, we observed that these PDBCs, via ATF4 modulation, prevent the deposition of amyloid-like fibers such as Aß, tau, and α-synuclein. They regulate ERS, reduce the release of inflammatory factors, restore mitochondrial membrane integrity to prevent oxidative stress, regulate synaptic plasticity, modulate autophagy, and engage anti-apoptotic mechanisms. Consequently, they exert neuroprotective effects in CNS disorders. Numerous PDBCs targeting ATF4 have shown potential in facilitating the restoration of CNS functionality, thereby presenting expansive prospects for the treatment of such disorders. However, future endeavors necessitate high-quality, large-scale, and comprehensive preclinical and clinical studies to further validate this therapeutic potential.


Subject(s)
Activating Transcription Factor 4 , Central Nervous System Diseases , Activating Transcription Factor 4/metabolism , Humans , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/metabolism , Animals , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
20.
J Biol Chem ; 300(6): 107340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705390

ABSTRACT

Triclosan (TCS) is an antimicrobial toxicant found in a myriad of consumer products and has been detected in human tissues, including breastmilk. We have evaluated the impact of lactational TCS on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) neonatal mice. In hUGT1 mice, expression of the hepatic UGT1A1 gene is developmentally delayed resulting in elevated total serum bilirubin (TSB) levels. We found that newborn hUGT1 mice breastfed or orally treated with TCS presented lower TSB levels along with induction of hepatic UGT1A1. Lactational and oral treatment by gavage with TCS leads to the activation of hepatic nuclear receptors constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor alpha (PPARα), and stress sensor, activating transcription factor 4 (ATF4). When CAR-deficient hUGT1 mice (hUGT1/Car-/-) were treated with TCS, TSB levels were reduced with a robust induction of hepatic UGT1A1, leaving us to conclude that CAR is not tied to UGT1A1 induction. Alternatively, when PPARα-deficient hUGT1 mice (hUGT1/Pparα-/-) were treated with TCS, hepatic UGT1A1 was not induced. Additionally, we had previously demonstrated that TCS is a potent inducer of ATF4, a transcriptional factor linked to the integrated stress response. When ATF4 was deleted in liver of hUGT1 mice (hUGT1/Atf4ΔHep) and these mice treated with TCS, we observed superinduction of hepatic UGT1A1. Oxidative stress genes in livers of hUGT1/Atf4ΔHep treated with TCS were increased, suggesting that ATF4 protects liver from excessive oxidative stress. The increase oxidative stress may be associated with superinduction of UGT1A1. The expression of ATF4 in neonatal hUGT1 hepatic tissue may play a role in the developmental repression of UGT1A1.


Subject(s)
Activating Transcription Factor 4 , Animals, Newborn , Bilirubin , Glucuronosyltransferase , Liver , PPAR alpha , Triclosan , Animals , Glucuronosyltransferase/metabolism , Glucuronosyltransferase/genetics , PPAR alpha/metabolism , PPAR alpha/genetics , Mice , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Triclosan/pharmacology , Humans , Bilirubin/pharmacology , Bilirubin/metabolism , Liver/metabolism , Liver/drug effects , Mice, Knockout , Female , Constitutive Androstane Receptor , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics
SELECTION OF CITATIONS
SEARCH DETAIL