Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.003
Filter
1.
Physiol Rep ; 12(18): e70052, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39327092

ABSTRACT

Skeletal muscle dysfunction in critical illnesses leaves survivors weak and functionally impaired. Macrophages infiltrate muscles; however, their functional role is unclear. We aim to examine muscle leukocyte composition and the effect of macrophages on muscle mass and function in the murine acute lung injury (ALI)-associated skeletal muscle wasting model. We performed flow cytometry of hindlimb muscle to identify myeloid cells pre-injury and time points up to 29 days after intratracheal lipopolysaccharide ALI. We evaluated muscle force and morphometrics after systemic and intramuscular clodronate-induced macrophage depletions between peak lung injury and recovery (day 5-6) versus vehicle control. Our results show muscle leukocytes changed over ALI course with day 3 neutrophil infiltration (130.5 ± 95.6cells/mg control to 236.3 ± 70.6cells/mg day 3) and increased day 10 monocyte abundance (5.0 ± 3.4%CD45+CD11b+ day 3 to 14.0 ± 2.6%CD45+CD11b+ day 10, p = 0.005). Although macrophage count did not significantly change, pro-inflammatory (27.0 ± 7.2% day 3 to 7.2 ± 3.8% day 10, p = 0.02) and anti-inflammatory (30.5 ± 11.1% day 3 to 52.7 ± 9.7% day 10, p = 0.09) surface marker expression changed over the course of ALI. Macrophage depletion following peak lung injury increased muscle mass and force generation. These data suggest muscle macrophages beyond peak lung injury limit or delay muscle recovery. Targeting macrophages could augment muscle recovery following lung injury.


Subject(s)
Acute Lung Injury , Macrophages , Mice, Inbred C57BL , Muscle, Skeletal , Animals , Acute Lung Injury/pathology , Acute Lung Injury/physiopathology , Acute Lung Injury/metabolism , Mice , Macrophages/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/injuries , Male , Muscular Atrophy/pathology , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Lipopolysaccharides/toxicity
3.
J Appl Physiol (1985) ; 137(2): 233-253, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38867668

ABSTRACT

Adult rats exposed to hyperoxia (>95% O2) die from respiratory failure in 60-72 h. However, rats preconditioned with >95% O2 for 48 h followed by 24 h in room air acquire tolerance of hyperoxia (H-T), whereas rats preconditioned with 60% O2 for 7 days become more susceptible (H-S). Our objective was to evaluate lung tissue mitochondrial bioenergetics in H-T and H-S rats. Bioenergetics was assessed in mitochondria isolated from lung tissue of H-T, H-S, and control rats. Expressions of complexes involved in oxidative phosphorylation (OxPhos) were measured in lung tissue homogenate. Pulmonary endothelial filtration coefficient (Kf) and tissue mitochondrial membrane potential (Δψm) were evaluated in isolated perfused lungs (IPLs). Results show that ADP-induced state 3 OxPhos capacity (Vmax) decreased in H-S mitochondria but increased in H-T. Δψm repolarization time following ADP-stimulated depolarization increased in H-S mitochondria. Complex I expression decreased in H-T (38%) and H-S (43%) lung homogenate, whereas complex V expression increased (70%) in H-T lung homogenate. Δψm is unchanged in H-S and H-T lungs, but complex II has a larger contribution to Δψm in H-S than H-T lungs. Kf increased in H-S, but not in H-T lungs. For H-T, increased complex V expression and Vmax counter the effect of the decrease in complex I expression on Δψm. A larger complex II contribution to Δψm along with decreased Vmax and increased Kf could make H-S rats more hyperoxia susceptible. Results are clinically relevant since ventilation with ≥60% O2 is often required for extended periods in patients with acute respiratory distress syndrome (ARDS).NEW & NOTEWORTHY We assessed lung tissue mitochondrial bioenergetics in rats with tolerance (H-T) or susceptibility (H-S) to hyperoxia-induced ARDS. Results from studies in isolated mitochondria, tissue homogenate, and isolated perfused lungs show that mitochondrial bioenergetics are differentially altered in H-T and H-S lungs suggesting a potential role for mitochondrial bioenergetics in hyperoxia-induced ARDS. Results are clinically relevant since hyperoxia exposure is a primary therapy for patients with ARDS, and differential sensitivity to hyperoxia surely occurs in humans.


Subject(s)
Acute Lung Injury , Hyperoxia , Lung , Mitochondria , Oxidative Phosphorylation , Rats, Sprague-Dawley , Animals , Hyperoxia/metabolism , Hyperoxia/physiopathology , Hyperoxia/complications , Lung/metabolism , Lung/physiopathology , Rats , Mitochondria/metabolism , Male , Acute Lung Injury/metabolism , Acute Lung Injury/physiopathology , Membrane Potential, Mitochondrial/physiology , Energy Metabolism
4.
Clin Chest Med ; 45(2): 357-371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816093

ABSTRACT

Organizing pneumonia, acute fibrinous and organizing pneumonia, and diffuse alveolar damage, represent multi-compartment patterns of lung injury. The initial region of injury in all remains the same and is centered on the fused basement membrane (BM) between the capillary endothelium and type I pneumocyte. Injury leads to cellular death, BM denudation, increased cellular permeability, and BM structural damage, which leads to exudation, organization, and attempts at repair. When acute lung injury does lead to fibrosis, in some instances it can lead to histologic and/or radiologic usual interstitial pneumonia or nonspecific interstital pneumonia patterns suggesting that lung injury is the primary mechanism for the development of fibrosis.


Subject(s)
Acute Lung Injury , Humans , Acute Lung Injury/diagnostic imaging , Acute Lung Injury/physiopathology , Tomography, X-Ray Computed
5.
Oxid Med Cell Longev ; 2022: 7837837, 2022.
Article in English | MEDLINE | ID: mdl-35265265

ABSTRACT

Exosomes derived from human mesenchymal stem cells (hMSCs) have the capacity to regulate various biological events associated with sepsis-induced acute respiratory distress syndrome (ARDS), including cellular immunometabolism, the production of proinflammatory cytokines, allowing them to exert therapeutic effects. However, little is known about which type of hMSC-derived exosomes (hMSC-exo) is more effective and suitable for the treatment of sepsis-induced ARDS. The purpose of this study is to compare the efficacy of hMSC-derived exosomes from human adipose tissue (hADMSC-exo), human bone marrow (hBMMSC-exo), and human umbilical cord (hUCMSC-exo) in the treatment of sepsis-induced ARDS. We cocultured lipopolysaccharide- (LPS-) stimulated RAW264.7 macrophage cells with the three kinds of hMSCs and found that all hMSCs reduced the glycolysis level and the content of lactic acid in macrophages. Accordingly, the expression of proinflammatory cytokines also decreased. Notably, the protective effects of hMSCs from adipose tissue were more obvious than those of bone marrow and umbilical cord hMSCs. However, this protective effect was eliminated when an exosome inhibitor, GW4869, was added. Subsequently, we extracted and cocultured hMSC-derived exosomes with LPS-stimulated RAW264.7 cells and found that all three kinds of exosomes exerted a similar protective effect as their parental cells, with exosomes from adipose hMSCs showing the strongest protective effect. Finally, an experimental sepsis model in mice was established, and we found that all three types of hMSCs have obvious lung-protective effects, in reducing lung injury scores, lactic acid, and proinflammatory cytokine levels in the lung tissues and decreasing the total protein content and inflammatory cell count in the bronchoalveolar lavage fluid (BALF), and also can attenuate the systemic inflammatory response and improve the survival rate of mice. Intravenous injection of three types of hMSC-exo, in particular those derived from adipose hADMSCs, also showed lung-protective effects in mice. These findings revealed that exosomes derived from different sources of hMSCs can effectively downregulate sepsis-induced glycolysis and inflammation in macrophages, ameliorate the lung pathological damage, and improve the survival rate of mice with sepsis. It is worth noting that the protective effect of hADMSC-exo is better than that of hBMMSC-exo and hUCMSC-exo.


Subject(s)
Acute Lung Injury/etiology , Adipose Tissue/pathology , Bone Marrow/pathology , Cord Blood Stem Cell Transplantation/methods , Exosomes/metabolism , Lung/pathology , Sepsis/complications , Acute Lung Injury/physiopathology , Animals , Humans , Male , Mice
6.
Mol Med ; 28(1): 27, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35240982

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome, which is a more severe form of ALI, are life-threatening clinical syndromes observed in critically ill patients. Treatment methods to alleviate the pathogenesis of ALI have improved to a great extent at present. Although the efficacy of these therapies is limited, their relevance has increased remarkably with the ongoing pandemic caused by the novel coronavirus disease 2019 (COVID-19), which causes severe respiratory distress syndrome. Several studies have demonstrated the preventive and therapeutic effects of molecular hydrogen in the various diseases. The biological effects of molecular hydrogen mainly involve anti-inflammation, antioxidation, and autophagy and cell death modulation. This review focuses on the potential therapeutic effects of molecular hydrogen on ALI and its underlying mechanisms and aims to provide a theoretical basis for the clinical treatment of ALI and COVID-19.


Subject(s)
Acute Lung Injury/drug therapy , COVID-19 Drug Treatment , Hydrogen/pharmacology , Protective Agents/pharmacology , Acute Lung Injury/physiopathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Humans , Sepsis/drug therapy , Sepsis/physiopathology
7.
Bioengineered ; 13(2): 4137-4145, 2022 02.
Article in English | MEDLINE | ID: mdl-35188451

ABSTRACT

Carvedilol possess multiple functions such as antioxidation and neuroprotection RhoA/ROCK is reported to participate in acute lung injury (ALI). The aim of the present study was to explore the role of carvedilol in LPS-induced ALI. BEAS2B cells were subjected to LPS for the construction of in vitro ALI model. After that, the protective effects of carvedilol were evaluated by Cell Counting Kit-8 (CCK-8). The activities of RhoA/ROCK were then measured to confirm its association with carvedilol by quantitative reverse transcription PCR (RT-qPCR) and Western blot. Then, the cell viability, inflammatory responses, oxidative stress and apoptosis were detected by CCK-8, enzyme linked immunosorbent assay (ELISA), oxidative stress detection kits, and TdT-mediated dUTP Nick-End Labeling (TUNEL) respectively. Inflammation- and apoptosis-related markers were also measured by Western blot. The cell viability reduced by LPS in BEAS2B cells was elevated by carvedilol. Moreover, RhoA/ROCK were found to be suppressed by carvedilol administration. The cell viability, inflammation, oxidative stress and apoptosis of LPS-induced BEAS2B cells were aggravated upon RhoA was overexpressed. Collectively, carvedilol exerts a protective effect against LPS-induced injury that could be ascribed to its anti-inflammatory and antioxidative character through modulating the RhoA/ROCK activities.


Subject(s)
Acute Lung Injury/metabolism , Carvedilol/pharmacology , Lipopolysaccharides/adverse effects , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/physiopathology , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Humans , Oxidative Stress/drug effects , Signal Transduction/drug effects , rho-Associated Kinases/genetics , rhoA GTP-Binding Protein/genetics
8.
Shock ; 57(2): 221-229, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34559743

ABSTRACT

ABSTRACT: Hemorrhagic shock/resuscitation (HS/R) is closely associated with overwhelming oxidative stress and systemic inflammation. As an effective activator of the nuclear factor-erythroid factor 2 related factor 2 (Nrf2) pathway, sulforaphane (SFN) exerts antioxidant and anti-inflammatory effects. We explored SFN's effects on alveolar macrophages (AMs), systemic inflammation, and pulmonary damage in an isolated murine HS/R model. Male C57/BL6 wild type and transgenic antioxidant response element (ARE)-luciferase (luc) mice (both n = 6 per group) were exposed to either pressure-controlled HS/R (mean arterial pressure 35-45 mm Hg for 90 min) or sham procedure (surgery without HS/R) or were sacrificed without intervention (control group). Fluid resuscitation was performed via the reinfusion of withdrawn blood and 0.9% saline. Sulforaphane or 0.9% saline (vehicle) was administrated intraperitoneally. Mice were sacrificed 6, 24, or 72 h after resuscitation. Bioluminescence imaging of ARE-luc mice was conducted to measure pulmonary Nrf2 activity. Plasma was collected to determine systemic cytokine levels. Alveolar macrophages were isolated before measuring cytokines in the supernatant and performing immunofluorescence staining, as well as Western blot for intracellular Nrf2. Histological damage was assessed via the acute lung injury score and wet/dry ratio.Hemorrhagic shock/resuscitation was associated with pulmonary Nrf2 activation. Sulforaphane enhanced pulmonary Nrf2 activity and the Nrf2 activation of AM, while it decreased lung damage. Sulforaphane exerted down-regulatory effects on AM-generated and systemic pro-inflammatory mediators, while it did not have such effects on IL-10.In conclusion, SFN beneficially enhances pulmonary Nrf2 activity and promotes Nrf2 accumulation in AMs' nuclei. This may exert not only local protective effects but also systemic effects via the down-regulation of pro-inflammatory cytokines. The administration of Nrf2 activator post-HS/R may represent an innovative treatment strategy.


Subject(s)
Acute Lung Injury/physiopathology , Isothiocyanates/pharmacology , Macrophages/drug effects , NF-E2-Related Factor 2/physiology , Sulfoxides/pharmacology , Systemic Inflammatory Response Syndrome/physiopathology , Up-Regulation/drug effects , Acute Lung Injury/etiology , Animals , Male , Mice , Mice, Inbred C57BL , Resuscitation , Shock, Hemorrhagic/complications , Systemic Inflammatory Response Syndrome/etiology
9.
Biomed Pharmacother ; 145: 112408, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34801855

ABSTRACT

Acute lung injury (ALI) and its serious form, the acute respiratory distress syndrome (ARDS) are devastating diseases without effective chemotherapy. Exuberant or uncontrolled proinflammation responses in the lung, also known as "cytokine storms", is one of the main culprits in the pathogenesis of organ failure, and anti-inflammatory therapy is essential to alleviate ALI/ARDS-associated injuries. Emerging evidence suggests that baicalein has potent anti-inflammatory and antioxidant properties. However, the underlined mechanism of baicalein to mitigate inflammation in ALI remains unclear. Herein, we demonstrated a critical role for baicalein in suppressing the inflammatory response of LPS-activated macrophages. We found that mitochondria function was restored in the condition of baicalein. Interestingly, results showed that mitochondrial dysfunction positively correlates with inflammatory cytokine generation at each corresponding baicalein concentration. Further mRNA analysis revealed that baicalein mitigates mitochondrial defects via attenuation of dynamin-related protein 1 (Drp1) expression. These reprogrammed mitochondria prevent their function shift from the ATP synthesis to reactive oxygen species (ROS) production after the LPS challenge, thereby dampening NF-κB-dependent inflammatory cytokine transcription. Baicalein reduces the production of inflammatory mediators TNF-α, MIP-1, IL-6, and diminishes neutrophil influx and severity of endotoxin-mediated ALI. Taken together, our results show that baicalein may serve as a new clinical therapeutic strategy in ALI by modulating Drp1-induced mitochondrial impairment, restraining inflammatory responses, and reducing the severity of lung injury.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Dynamins/genetics , Flavanones/pharmacology , Acute Lung Injury/physiopathology , Animals , Cytokines/metabolism , Disease Models, Animal , Inflammation/drug therapy , Inflammation/pathology , Inflammation Mediators/metabolism , Lipopolysaccharides , Macrophages/drug effects , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mitochondrial Dynamics/drug effects , NF-kappa B/metabolism , RAW 264.7 Cells
10.
Biomed Res Int ; 2021: 6831770, 2021.
Article in English | MEDLINE | ID: mdl-34722769

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a fatal syndrome frequently induced by lipopolysaccharide (LPS) released from the bacterial cell wall. LPS could also trigger autophagy of lung bronchial epithelial cell to relieve the inflammation, while the overwhelming LPS would impair the balance of autophagy consequently inducing serious lung injury. METHODS: We observed the autophagy variation of 16HBE, human bronchial epithelial cell, under exposure to different concentrations of LPS through western blot, immunofluorescence staining, and electron microscopy. Eight strands of 16HBE were divided into two groups upon 1000 ng/ml LPS stimulation or not, which were sent to be sequenced at whole transcriptome. Subsequently, we analyzed the sequencing data in functional enrichment, pathway analysis, and candidate gene selection and constructed a hsa-miR-663b-related competing endogenous RNA (ceRNA) network. RESULTS: We set a series of concentrations of LPS to stimulate 16HBE and observed the variation of autophagy in related protein expression and autophagosome count. We found that the effective concentration of LPS was 1000 ng/ml at 12 hours of exposure and sequenced the 1000 ng/ml LPS-stimulated 16HBE. As a result, a total of 750 differentially expressed genes (DEGs), 449 differentially expressed lncRNAs (DElncRNAs), 76 differentially expressed circRNAs (DEcircRNAs), and 127 differentially expressed miRNAs (DEmiRNAs) were identified. We constructed the protein-protein interaction (PPI) network to visualize the interaction between DEGs and located 36 genes to comprehend the core discrepancy between LPS-stimulated 16HBE and the negative control group. In combined analysis of differentially expressed RNAs (DERNAs), we analyzed all the targeted relationships of ceRNA in DERNAs and figured hsa-miR-663b as a central mediator in the ceRNA network to play when LPS induced the variation of autophagy in 16HBE. CONCLUSION: Our research indicated that the hsa-miR-663b-related ceRNA network may contribute to the key regulatory mechanism in LPS-induced changes of autophagy and ALI.


Subject(s)
Acute Lung Injury/genetics , Autophagy/genetics , RNA, Circular/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/physiopathology , Autophagy/drug effects , Autophagy/physiology , Biomarkers, Tumor/genetics , Cell Line , China , Computational Biology/methods , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Humans , Lipopolysaccharides/pharmacology , MicroRNAs/genetics , Prognosis , Protein Interaction Maps/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Transcriptome/genetics
11.
Heart Surg Forum ; 24(4): E764-E768, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34473045

ABSTRACT

BACKGROUND: Hypoxia induced injury of pulmonary microvascular endothelial barrier is closely related to the pathogenesis of acute lung injury after lung transplantation. VE-cadherin is an important structural molecule for pulmonary microvascular endothelial barrier. In this study, we aim to investigate the roles of VE-cadherin in hypoxia induced injury of pulmonary microvascular endothelial barrier. METHODS: Rat model of hypoxia and cultured pulmonary microvascular endothelial cells (PMVECs) were utilized. Determination of PMVECs apoptosis, skeleton combination was conducted to verify the effects of hypoxia on injury of pulmonary microvascular endothelial barrier. In addition, VE-cadherin expression was modulated by administration of siRNA in order to investigate the roles of VE-cadherin in hypoxia induced PMVECs apoptosis and skeleton recombination. RESULTS: Our data indicated that expression of VE-cadherin was down-regulated in hypoxia-exposed PMVECs. Whereas, in the cells treated using siRNA, down-regulation of VE-cadherin did not trigger PMVECs apoptosis, but it increased the sensitivity of PMVECs to the hypoxia induced apoptosis. In cases of hypoxia, the expression of VE-cadherin was significantly down-regulated, together with endothelial skeleton recombination and increase of permeability, which then triggered endothelial barrier dysfunction. CONCLUSIONS: These data verify that VE-cadherin expression played an important role in hypoxia induced PMVECs apoptosis and cellular skeletal recombination.


Subject(s)
Acute Lung Injury/pathology , Acute Lung Injury/physiopathology , Antigens, CD/physiology , Cadherins/physiology , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Microcirculation , Pulmonary Circulation , Animals , Apoptosis , Cell Membrane Permeability , Cells, Cultured , Disease Models, Animal , Down-Regulation , Endothelial Cells/pathology , Hypoxia , Male , Rats, Sprague-Dawley
12.
Biomed Pharmacother ; 142: 112006, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34392085

ABSTRACT

P2X7 receptor promotes inflammatory response and neuropathic pain. New drugs capable of impairing inflammation and pain-reducing adverse effects extracted from plant extracts have been studied. Physalis angulate L. possesses traditional uses and exhibits antiparasitic, anti-inflammatory, antimicrobial, antinociceptive, antimalarial, antileishmanial, immunosuppressive, antiasthmatic. diuretic, and antitumor activities. The most representative phytochemical constituents identified with medicinal importance are the physalins and withanolides. However, the mechanism of anti-inflammatory action is scarce. Although some physalins and withanolides subtypes have anti-inflammatory activity, only four physalins subtypes (B, D, F, and G) have further studies. Therefore, we evaluated the crude ethanolic extract enriched with physalins B, D, F, and G from P. angulata leaves, a pool containing the physalins B, D, F, G, and the physalins individually, as P2X7 receptor antagonists. For this purpose, we evaluated ATP-induced dye uptake, macroscopic currents, and interleukin 1-ß (IL-1ß) in vitro. The crude extract and pool dose-dependently inhibited P2X7 receptor function. Thus, physalin B, D, F, and G individually evaluated for 5'-triphosphate (ATP)-induced dye uptake assay, whole-cell patch-clamp, and cytokine release showed distinct antagonist levels. Physalin D displayed higher potency and efficacy than physalin B, F, and G for all these parameters. In vivo mice model as ATP-induced paw edema was potently inhibited for physalin D, in contrast to physalin B, F, and G. ATP and lipopolysaccharide (LPS)-induced pleurisy in mice were reversed for physalin D treatment. Molecular modeling and computational simulation predicted the intermolecular interactions between the P2X7 receptor and physalin derivatives. In silico results indicated physalin D and F as a potent allosteric P2X7 receptor antagonist. These data confirm physalin D as a promisor source for developing a new P2X7 receptor antagonist with anti-inflammatory action.


Subject(s)
Acute Lung Injury/drug therapy , Physalis/chemistry , Plant Extracts/pharmacology , Secosteroids/pharmacology , Acute Lung Injury/physiopathology , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Computer Simulation , Disease Models, Animal , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Male , Mice , Models, Molecular , Plant Extracts/administration & dosage , Plant Leaves , Purinergic P2X Receptor Antagonists/administration & dosage , Purinergic P2X Receptor Antagonists/isolation & purification , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/drug effects , Secosteroids/isolation & purification
13.
Am J Respir Crit Care Med ; 204(9): 1060-1074, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34346860

ABSTRACT

Rationale: Primary graft dysfunction (PGD) is a severe form of acute lung injury, leading to increased early morbidity and mortality after lung transplant. Obesity is a major health problem, and recipient obesity is one of the most significant risk factors for developing PGD. Objectives: We hypothesized that T-regulatory cells (Tregs) are able to dampen early ischemia-reperfusion events and thereby decrease the risk of PGD, whereas that action is impaired in obese recipients. Methods: We evaluated Tregs, T cells, and inflammatory markers, plus clinical data, in 79 lung transplant recipients and 41 liver or kidney transplant recipients and studied two groups of mice on a high-fat diet (HFD), which did ("inflammatory" HFD) or did not ("healthy" HFD) develop low-grade inflammation with decreased Treg function. Measurements and Main Results: We identified increased levels of IL-18 as a previously unrecognized mechanism that impairs Tregs' suppressive function in obese individuals. IL-18 decreases levels of FOXP3, the key Treg transcription factor, decreases FOXP3 di- and oligomerization, and increases the ubiquitination and proteasomal degradation of FOXP3. IL-18-treated Tregs or Tregs from obese mice fail to control PGD, whereas IL-18 inhibition ameliorates lung inflammation. The IL-18-driven impairment in Tregs' suppressive function before transplant was associated with an increased risk and severity of PGD in clinical lung transplant recipients. Conclusions: Obesity-related IL-18 induces Treg dysfunction that may contribute to the pathogenesis of PGD. Evaluation of Tregs' suppressive function together with evaluation of IL-18 levels may serve as a screening tool to identify obese individuals with an increased risk of PGD before transplant.


Subject(s)
Acute Lung Injury/etiology , Interleukin-18/metabolism , Lung Transplantation/adverse effects , Obesity/complications , Primary Graft Dysfunction/etiology , Reperfusion Injury/etiology , T-Lymphocytes, Regulatory/metabolism , Acute Lung Injury/physiopathology , Adult , Aged , Aged, 80 and over , Animals , Female , Humans , Male , Mice , Mice, Obese , Middle Aged , Primary Graft Dysfunction/physiopathology , Reperfusion Injury/physiopathology
14.
Toxicol Lett ; 350: 62-70, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34252507

ABSTRACT

The impact of fine particulate matter (PM2.5) on public health has received increasing attention. Through various biochemical mechanisms, PM2.5 alters the normal structure and function of the airway epithelium, causing epithelial barrier dysfunction. Src homology domain 2-containing protein tyrosine phosphatase 2 (Shp2) has been implicated in various respiratory diseases; however, its role in PM2.5-induced epithelial barrier dysfunction remains unclear. Herein, we assessed the regulatory effects of Shp2 on PM2.5-mediated epithelial barrier function and tight junction (TJ) protein expression in both mice and human pulmonary epithelial (16HBE) cells. We observed that Shp2 levels were upregulated and claudin-4 levels were downregulated after PM2.5 stimulation in vivo and in vitro. Mice were exposed to PM2.5 to induce acute lung injury, and disrupted epithelial barrier function, with decreased transepithelial electrical resistance (TER) and increased paracellular flux that was observed in 16HBE cells. In contrast, the selective inhibition or knockdown of Shp2 retained airway epithelial barrier function and reversed claudin-4 downregulation that triggered by PM2.5, and these effects may occur through the ERK1/2 MAPK signaling pathway. These data highlight an important role of Shp2 in PM2.5-induced airway epithelial barrier dysfunction and suggest a possible new course of therapy for PM2.5-induced respiratory diseases.


Subject(s)
Acute Lung Injury/metabolism , Acute Lung Injury/physiopathology , Epithelial Cells/metabolism , MAP Kinase Signaling System , Particulate Matter/toxicity , Tight Junction Proteins/metabolism , src Homology Domains/drug effects , Animals , Epithelial Cells/drug effects , Humans , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred ICR , Models, Animal , Tight Junction Proteins/drug effects
15.
Oxid Med Cell Longev ; 2021: 9985701, 2021.
Article in English | MEDLINE | ID: mdl-34188755

ABSTRACT

Intestinal ischemia-reperfusion (II/R) injury is a common type of tissue and organ injury, secondary to intestinal and mesenteric vascular diseases. II/R is characterized by a high incidence rate and mortality. In the II/R process, intestinal barrier function is impaired and bacterial translocation leads to excessive reactive oxygen species, inflammatory cytokine release, and even apoptosis. A large number of inflammatory mediators and oxidative factors are released into the circulation, leading to severe systemic inflammation and multiple organ failure of the lung, liver, and kidney. Acute lung injury (ALI) is the most common complication, which gradually develops into acute respiratory distress syndrome and is the main cause of its high mortality. This review summarizes the signal transduction pathways and key molecules in the pathophysiological process of ALI induced by II/R injury and provides a new therapeutic basis for further exploration of the molecular mechanisms of ALI induced by II/R injury. In particular, this article will focus on the biomarkers involved in II/R-induced ALI.


Subject(s)
Acute Lung Injury/etiology , Intestines/pathology , Reperfusion Injury/complications , Signal Transduction/genetics , Acute Lung Injury/physiopathology , Animals , Male
16.
Toxicol Lett ; 349: 51-60, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34118312

ABSTRACT

Exposure to high concentrations of ammonia (NH3) can cause life-threatening lung damages. The objective of this study was to establish a translational in vitro model for NH3-induced lung injury. Precision-cut lung slices (PCLS) from rats were exposed to NH3 and toxicological responses and cell viability were quantified by analysis of LDH, WST-1, inflammatory mediators (IL-1ß, IL-6, CINC-1, MMP-9, RAGE and IL-18), and by microscopic evaluation of bronchoconstriction induced by electric-field-stimulation (EFS) or methacholine (MCh). Different treatment strategies were assessed to prevent or reverse the damages caused by NH3 using anti-inflammatory, anti-oxidant or neurologically active drugs. Exposure to NH3 caused a concentration-dependent increase in cytotoxicity (LDH/WST-1) and IL-1ß release in PCLS medium. None of the treatments reduced cytotoxicity. Deposition of NH3 (24-59 mM) on untreated PCLS elicited an immediate concentration-dependent bronchoconstriction. Unlike MCh, the EFS method did not constrict the airways in PCLS at 5 h after NH3-exposure (47-59 mM). Atropine and TRP-channel antagonists blocked EFS-induced bronchoconstriction but these inhibitors could not block the immediate NH3-induced bronchoconstriction. In conclusion, NH3 exposure caused cytotoxic effects and lung damages in a concentration-dependent manner and this PCLS method offers a way to identify and test new concepts of medical treatments and biomarkers that may be of prognostic value.


Subject(s)
Acute Lung Injury/chemically induced , Ammonia/toxicity , Bronchoconstriction/drug effects , Lung/drug effects , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/physiopathology , Animals , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , In Vitro Techniques , Inflammation Mediators/metabolism , Lung/metabolism , Lung/pathology , Lung/physiopathology , Rats, Sprague-Dawley
17.
Cell Rep ; 35(6): 109092, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979629

ABSTRACT

Alveolar epithelial type 2 (AT2) cells integrate signals from multiple molecular pathways to proliferate and differentiate to drive regeneration of the lung alveolus. Utilizing in vivo genetic and ex vivo organoid models, we investigated the role of Fgfr2 signaling in AT2 cells across the lifespan and during adult regeneration after influenza infection. We show that, although dispensable for adult homeostasis, Fgfr2 restricts AT2 cell fate during postnatal lung development. Using an unbiased computational imaging approach, we demonstrate that Fgfr2 promotes AT2 cell proliferation and restrains differentiation in actively regenerating areas after injury. Organoid assays reveal that Fgfr2-deficient AT2 cells remain competent to respond to multiple parallel proliferative inputs. Moreover, genetic blockade of AT2 cell cytokinesis demonstrates that cell division and differentiation are uncoupled during alveolar regeneration. These data reveal that Fgfr2 maintains AT2 cell fate, balancing proliferation and differentiation during lung alveolar regeneration.


Subject(s)
Acute Lung Injury/physiopathology , Alveolar Epithelial Cells/metabolism , Lung/pathology , Animals , Cell Proliferation , Humans , Mice
18.
Am J Physiol Heart Circ Physiol ; 320(6): H2385-H2400, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33989079

ABSTRACT

Cell-free hemoglobin (CFH) levels are elevated in septic shock and are higher in nonsurvivors. Whether CFH is only a marker of sepsis severity or is involved in pathogenesis is unknown. This study aimed to investigate whether CFH worsens sepsis-associated injuries and to determine potential mechanisms of harm. Fifty-one, 10-12 kg purpose-bred beagles were randomized to receive Staphylococcus aureus intrapulmonary challenges or saline followed by CFH infusions (oxyhemoglobin >80%) or placebo. Animals received antibiotics and intensive care support for 96 h. CFH significantly increased mean pulmonary arterial pressures and right ventricular afterload in both septic and nonseptic animals, effects that were significantly greater in nonsurvivors. These findings are consistent with CFH-associated nitric oxide (NO) scavenging and were associated with significantly depressed cardiac function, and worsened shock, lactate levels, metabolic acidosis, and multiorgan failure. In septic animals only, CFH administration significantly increased mean alveolar-arterial oxygenation gradients, also to a significantly greater degree in nonsurvivors. CFH-associated iron levels were significantly suppressed in infected animals, suggesting that bacterial iron uptake worsened pneumonia. Notably, cytokine levels were similar in survivors and nonsurvivors and were not predictive of outcome. In the absence and presence of infection, CFH infusions resulted in pulmonary hypertension, cardiogenic shock, and multiorgan failure, likely through NO scavenging. In the presence of infection alone, CFH infusions worsened oxygen exchange and lung injury, presumably by supplying iron that promoted bacterial growth. CFH elevation, a known consequence of clinical septic shock, adversely impacts sepsis outcomes through more than one mechanism, and is a biologically plausible, nonantibiotic, noncytokine target for therapeutic intervention.NEW & NOTEWORTHY Cell-free hemoglobin (CFH) elevations are a known consequence of clinical sepsis. Using a two-by-two factorial design and extensive physiological and biochemical evidence, we found a direct mechanism of injury related to nitric oxide scavenging leading to pulmonary hypertension increasing right heart afterload, depressed cardiac function, worsening circulatory failure, and death, as well as an indirect mechanism related to iron toxicity. These discoveries alter conventional thinking about septic shock pathogenesis and provide novel therapeutic approaches.


Subject(s)
Hemoglobins/metabolism , Pneumonia/metabolism , Pulmonary Artery/physiopathology , Shock, Septic/metabolism , Staphylococcal Infections/metabolism , Acidosis/metabolism , Acidosis/physiopathology , Acute Lung Injury/metabolism , Acute Lung Injury/physiopathology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Dogs , Heart Ventricles/drug effects , Heart Ventricles/physiopathology , Hemoglobins/pharmacology , Iron/metabolism , Lactic Acid/metabolism , Multiple Organ Failure/metabolism , Multiple Organ Failure/physiopathology , Nitric Oxide/metabolism , Pneumonia/physiopathology , Pulmonary Gas Exchange , Random Allocation , Shock, Septic/physiopathology , Staphylococcus aureus/growth & development
19.
Biomed Res Int ; 2021: 5598869, 2021.
Article in English | MEDLINE | ID: mdl-33954183

ABSTRACT

OBJECTIVE: Acute kidney injury (AKI) is a common and severe complication in critically ill patients, often caused by renal ischemia-reperfusion (RIR). Previous studies have confirmed that lung injury, rather than renal injury, is one of the leading causes of AKI-induced death. The pathophysiological mechanisms of acute lung injury (ALI) resulting from AKI are very complex and remain unclear. In the present study, we aimed to explore the protective effects and potential mechanism of sodium hydrosulfide (NaHS) on lung injury in RIR mice. METHODS: The RIR model was established in wild-type and Nrf2-/- mice. Different groups of mice were treated with NaHS and MCC950. Lung tissues were harvested to detect lung injury, mitochondrial function, cell apoptosis, the NLRP3 inflammasome, and Nrf2 pathway-related molecules. RESULTS: RIR led to a deterioration in lung histology, the wet/dry weight ratio, PaO2/FiO2, and mitochondrial function, in addition to stimulating the activation of the NLRP3 and Nrf2 pathways. MCC950 alleviated mitochondrial dysfunction, lung apoptosis, and histology injury in the lungs after RIR. NaHS treatment markedly improved the lung histological scores, the wet/dry weight ratio, bronchoalveolar lavage fluid (BALF) cell counts, BALF neutrophil counts, BALF neutrophil elastase activity, BALF protein concentration, PaO2/FiO2, mitochondrial morphology, the red/green fluorescence intensity that indicates changes in mitochondrial membrane potential, respiratory control rate (RCR), ATP, reactive oxygen species (ROS) release, and cell apoptosis via Nrf2-mediated NLRP3 pathway inhibition. CONCLUSION: NaHS protected against RIR-induced lung injury, mitochondrial dysfunction, and inflammation, which is associated with Nrf2 activation-mediated NLRP3 pathway inhibition.


Subject(s)
Acute Kidney Injury , Acute Lung Injury , Reperfusion Injury , Signal Transduction/drug effects , Sulfides/pharmacology , Acute Kidney Injury/complications , Acute Kidney Injury/metabolism , Acute Kidney Injury/physiopathology , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Acute Lung Injury/physiopathology , Animals , Apoptosis/drug effects , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Cells, Cultured , Disease Models, Animal , Furans , Heterocyclic Compounds, 4 or More Rings/pharmacology , Indenes , Inflammasomes/drug effects , Kidney/chemistry , Kidney/drug effects , Lung/chemistry , Lung/drug effects , Mice , Mitochondria/drug effects , Mitochondria/pathology , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology , Sulfonamides , Sulfones/pharmacology
20.
Oxid Med Cell Longev ; 2021: 9034376, 2021.
Article in English | MEDLINE | ID: mdl-33927798

ABSTRACT

Various pharmacological agents and protective methods have been shown to reverse pneumoperitoneum-related lung injury, but identifying the best strategy is challenging. Herein, we employed lung tissues and blood samples from C57BL/6 mice with pneumoperitoneum-induced lung injury and blood samples from patients who received laparoscopic gynecological surgery to investigate the therapeutic role of hydromorphone in pneumoperitoneum-induced lung injury along with the underlying mechanism. We found that pretreatment with hydromorphone alleviated lung injury in mice that underwent CO2 insufflation, decreased the levels of myeloperoxidase (MPO), total oxidant status (TOS), and oxidative stress index (OSI), and increased total antioxidant status (TAS). In addition, after pretreatment with hydromorphone, upregulated HO-1 protein expression, reduced mitochondrial DNA content, and improved mitochondrial morphology and dynamics were observed in mice subjected to pneumoperitoneum. Immunohistochemical staining also verified that hydromorphone could increase the expression of HO-1 in lung tissues in mice subjected to CO2 pneumoperitoneum. Notably, in mice treated with HO-1-siRNA, the protective effects of hydromorphone against pneumoperitoneum-induced lung injury were abolished, and hydromorphone did not have additional protective effects on mitochondria. Additionally, in clinical patients who received laparoscopic gynecological surgery, pretreatment with hydromorphone resulted in lower serum levels of club cell secretory protein-16 (CC-16) and intercellular adhesion molecule-1 (ICAM-1), a lower prooxidant-antioxidant balance (PAB), and higher heme oxygenase-1 (HO-1) activity than morphine pretreatment. Collectively, our results suggest that hydromorphone protects against CO2 pneumoperitoneum-induced lung injury via HO-1-regulated mitochondrial dynamics and may be a promising strategy to treat CO2 pneumoperitoneum-induced lung injury.


Subject(s)
Acute Lung Injury/etiology , Carbon Dioxide/adverse effects , Heme Oxygenase-1/metabolism , Hydromorphone/therapeutic use , Mitochondrial Dynamics/genetics , Pneumoperitoneum/complications , Acute Lung Injury/physiopathology , Animals , Hydromorphone/pharmacology , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL