Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.201
1.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822367

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neuroinflammatory Diseases/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects
2.
Mol Biol Rep ; 51(1): 701, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822973

BACKGROUND: Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS: We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION: This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.


Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Neoplasms , Signal Transduction , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Animals , Epithelial-Mesenchymal Transition/genetics , Disease Progression , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Apoptosis/genetics
3.
J Transl Med ; 22(1): 537, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844969

Accumulating evidence indicated that HHEX participated in the initiation and development of several cancers, but the potential roles and mechanisms of HHEX in hepatocellular carcinoma (HCC) were largely unclear. Cancer stem cells (CSCs) are responsible for cancer progression owing to their stemness characteristics. We reported that HHEX was a novel CSCs target for HCC. We found that HHEX was overexpressed in HCC tissues and high expression of HHEX was associated with poor survival. Subsequently, we found that HHEX promoted HCC cell proliferation, migration, and invasion. Moreover, bioinformatics analysis and experiments verified that HHEX promoted stem cell-like properties in HCC. Mechanistically, ABI2 serving as a co-activator of transcriptional factor HHEX upregulated SLC17A9 to promote HCC cancer stem cell-like properties and tumorigenesis. Collectively, the HHEX-mediated ABI2/SLC17A9 axis contributes to HCC growth and metastasis by maintaining the CSC population, suggesting that HHEX serves as a promising therapeutic target for HCC treatment.


Carcinogenesis , Carcinoma, Hepatocellular , Cell Proliferation , Liver Neoplasms , Neoplastic Stem Cells , Humans , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Carcinogenesis/pathology , Animals , Cell Line, Tumor , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Cell Movement , Male , Neoplasm Invasiveness , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice, Nude , Female , Neoplasm Metastasis
4.
J Clin Invest ; 134(11)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38828726

Trisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD). We resolved cell lineages that misexpressed T21 transcripts by cardiac single-nucleus RNA sequencing and RNA in situ hybridization. Compared with eCHD samples, T21 samples had increased chr21 gene expression; 11-fold-greater levels (P = 1.2 × 10-8) of SOST (chr17), encoding the Wnt inhibitor sclerostin; and 1.4-fold-higher levels (P = 8.7 × 10-8) of the SOST transcriptional activator ZNF467 (chr7). Euploid and T21 cardiac endothelial cells coexpressed SOST and ZNF467; however, T21 endothelial cells expressed 6.9-fold more SOST than euploid endothelial cells (P = 2.7 × 10-27). Wnt pathway genes were downregulated in T21 endothelial cells. Expression of DSCAM, residing within the chr21 CHD critical region, correlated with SOST (P = 1.9 × 10-5) and ZNF467 (P = 2.9 × 10-4). Deletion of DSCAM from T21 endothelial cells derived from human induced pluripotent stem cells diminished sclerostin secretion. As Wnt signaling is critical for atrioventricular canal formation, bone health, and pulmonary vascular homeostasis, we concluded that T21-mediated increased sclerostin levels would inappropriately inhibit Wnt activities and promote Down syndrome phenotypes. These findings imply therapeutic potential for anti-sclerostin antibodies in T21.


Adaptor Proteins, Signal Transducing , Down Syndrome , Endothelial Cells , Humans , Down Syndrome/genetics , Down Syndrome/metabolism , Down Syndrome/pathology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Male , Female , Endothelial Cells/metabolism , Endothelial Cells/pathology , Phenotype , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Genetic Markers , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Wnt Signaling Pathway
5.
Cell Death Dis ; 15(6): 391, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830870

Tissue injury causes activation of mesenchymal lineage cells into wound-repairing myofibroblasts (MFs), whose uncontrolled activity ultimately leads to fibrosis. Although this process is triggered by deep metabolic and transcriptional reprogramming, functional links between these two key events are not yet understood. Here, we report that the metabolic sensor post-translational modification O-linked ß-D-N-acetylglucosaminylation (O-GlcNAcylation) is increased and required for myofibroblastic activation. Inhibition of protein O-GlcNAcylation impairs archetypal myofibloblast cellular activities including extracellular matrix gene expression and collagen secretion/deposition as defined in vitro and using ex vivo and in vivo murine liver injury models. Mechanistically, a multi-omics approach combining proteomic, epigenomic, and transcriptomic data mining revealed that O-GlcNAcylation controls the MF transcriptional program by targeting the transcription factors Basonuclin 2 (BNC2) and TEA domain transcription factor 4 (TEAD4) together with the Yes-associated protein 1 (YAP1) co-activator. Indeed, inhibition of protein O-GlcNAcylation impedes their stability leading to decreased functionality of the BNC2/TEAD4/YAP1 complex towards promoting activation of the MF transcriptional regulatory landscape. We found that this involves O-GlcNAcylation of BNC2 at Thr455 and Ser490 and of TEAD4 at Ser69 and Ser99. Altogether, this study unravels protein O-GlcNAcylation as a key determinant of myofibroblastic activation and identifies its inhibition as an avenue to intervene with fibrogenic processes.


Myofibroblasts , Signal Transduction , Myofibroblasts/metabolism , Animals , Mice , Humans , Fibrosis/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Mice, Inbred C57BL , TEA Domain Transcription Factors/metabolism , Male , Protein Processing, Post-Translational , Acetylglucosamine/metabolism , Transcription, Genetic , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
6.
Sci Rep ; 14(1): 12704, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830996

To explore the role of YAP, a key effector of the Hippo pathway, in temporomandibular joint (TMJ) ankylosis. The temporal and spatial expression of YAP was detected via immunohistochemistry and multiplex immunohistochemistry on postoperative Days 1, 4, 7, 9, 11, 14 and 28 in a sheep model. Isolated mesenchymal stem cells (MSCs) from samples of the Day 14. The relative mRNA expression of YAP was examined before and after the osteogenic induction of MSCs. A YAP-silenced MSC model was constructed, and the effect of YAP knockdown on MSC function was examined. YAP is expressed in the nucleus of the key sites that determine the ankylosis formation, indicating that YAP is activated in a physiological state. The expression of YAP increased gradually over time. Moreover, the number of cells coexpressing of RUNX2 and YAP-with the osteogenic active zone labelled by RUNX2-tended to increase after Day 9. After the osteogenic induction of MSCs, the expression of YAP increased. After silencing YAP, the osteogenic, proliferative and migratory abilities of the MSCs were inhibited. YAP is involved in the early development of TMJ bony ankylosis. Inhibition of YAP using shRNA might be a promising way to prevent or treat TMJ ankylosis.


Ankylosis , Mesenchymal Stem Cells , Osteogenesis , Temporomandibular Joint Disorders , Animals , Mesenchymal Stem Cells/metabolism , Temporomandibular Joint Disorders/metabolism , Temporomandibular Joint Disorders/pathology , Temporomandibular Joint Disorders/genetics , Ankylosis/metabolism , Ankylosis/pathology , Ankylosis/genetics , YAP-Signaling Proteins/metabolism , Temporomandibular Joint/metabolism , Temporomandibular Joint/pathology , Sheep , Cell Proliferation , Disease Models, Animal , Cell Differentiation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Cell Movement , Transcription Factors/metabolism , Transcription Factors/genetics
7.
Commun Biol ; 7(1): 549, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724689

Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.


Actins , Adaptor Proteins, Signal Transducing , Nerve Tissue Proteins , Pseudopodia , Tumor Suppressor Proteins , Pseudopodia/metabolism , Actins/metabolism , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cell Membrane/metabolism , Mice , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
8.
Yakugaku Zasshi ; 144(5): 497-501, 2024.
Article Ja | MEDLINE | ID: mdl-38692923

Signal-transducing adaptor protein-2 (STAP-2) is a unique scaffold protein that regulates several immunological signaling pathways, including LIF/LIF receptor and LPS/TLR4 signals. STAP-2 is required for Fas/FasL-dependent T cell apoptosis and SDF-1α-induced T cell migration. Conversely, STAP-2 modulates integrin-mediated T cell adhesion, suggesting that STAP-2 is essential for several negative and positive T cell functions. However, whether STAP-2 is involved in T cell-antigen receptor (TCR)-mediated T cell activation is unknown. STAP-2 deficiency was recently reported to suppress TCR-mediated T cell activation by inhibiting LCK-mediated CD3ζ and ZAP-70 activation. Using STAP-2 deficient mice, it was demonstrated that STAP-2 is required for the pathogenesis of Propionibacterium acnes-induced granuloma formation and experimental autoimmune encephalomyelitis. Here, detailed functions of STAP-2 in TCR-mediated T cell activation, and how STAP-2 affects the pathogenesis of T cell-mediated inflammation and immune diseases, are reviewed.


Adaptor Proteins, Signal Transducing , Lymphocyte Activation , Receptors, Antigen, T-Cell , Signal Transduction , T-Lymphocytes , ZAP-70 Protein-Tyrosine Kinase , Animals , Receptors, Antigen, T-Cell/physiology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Humans , Adaptor Proteins, Signal Transducing/physiology , Adaptor Proteins, Signal Transducing/metabolism , Mice , ZAP-70 Protein-Tyrosine Kinase/metabolism , ZAP-70 Protein-Tyrosine Kinase/physiology , Propionibacterium acnes/physiology , Propionibacterium acnes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/etiology , Inflammation/immunology , Apoptosis , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Cell Movement , Cell Adhesion , CD3 Complex , Chemokine CXCL12/physiology , Chemokine CXCL12/metabolism
9.
J Cell Biol ; 223(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38700903

Collectively migrating cells consist of leaders and followers with different features. In this issue, Kim et al. (https://doi.org/10.1083/jcb.202401057) characterize the leader and follower cells in collective glioma migration and uncover important roles of YAP1/TAZ-mediated regulation of N-cadherin in the leader cells.


Cadherins , Glioma , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Cadherins/metabolism , Cadherins/genetics , Cell Movement , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Protein Transport , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism
10.
Exp Dermatol ; 33(5): e15093, 2024 May.
Article En | MEDLINE | ID: mdl-38742821

Senile skin hyperpigmentation displays remarkable histopathological features of dermal aging. The crosstalk between melanocytes and dermal fibroblasts plays crucial roles in aging-related pigmentation. While senescent fibroblasts can upregulate pro-melanogenic factors, the role of anti-melanogenic factors, such as dickkopf1 (DKK1), and the upstream regulatory mechanism during aging remain obscure. This study investigated the roles of yes-associated protein (YAP) and DKK1 in the regulation of dermal fibroblast senescence and melanogenesis. Our findings demonstrated decreased YAP activity and DKK1 levels in intrinsic and extrinsic senescent fibroblasts. YAP depletion induced fibroblast senescence and downregulated the expression and secretion of DKK1, whereas YAP overexpression partially reversed the effect. The transcriptional regulation of DKK1 by YAP was supported by dual-luciferase reporter and chromatin immunoprecipitation assays. Moreover, YAP depletion in fibroblasts upregulated Wnt/ß-catenin in melanocytes and stimulated melanogenesis, which was partially rescued by the re-supplementation of DKK1. Conversely, overexpression of YAP in senescent fibroblasts decreased Wnt/ß-catenin levels in melanocytes and inhibited melanogenesis. Additionally, reduced levels of YAP and DKK1 were verified in the dermis of solar lentigines. These findings suggest that, during skin aging, epidermal pigmentation may be influenced by YAP in the dermal microenvironment via the paracrine effect of DKK1.


Adaptor Proteins, Signal Transducing , Cellular Senescence , Fibroblasts , Intercellular Signaling Peptides and Proteins , Melanins , Melanocytes , Paracrine Communication , Skin Aging , Transcription Factors , YAP-Signaling Proteins , Fibroblasts/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Humans , Melanocytes/metabolism , YAP-Signaling Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/metabolism , Melanins/metabolism , Melanins/biosynthesis , Wnt Signaling Pathway , Dermis/cytology , Cells, Cultured , Melanogenesis
11.
Commun Biol ; 7(1): 525, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702433

Disabled 2 (Dab2), an adaptor protein, is up regulated in the hair follicle stem cells (HFSCs); however, its role in any tissue stem cells has not been studied. In the present study, we have reported that Dab2 conditional knockout (Dab2-cKO) mice exhibited a delay in the HF cycle due to perturbed activation of HFSCs. Further, Dab2-cKO mice showed a reduction in the number of HFSCs and reduced colony forming ability of HFSCs. Dab2-cKO mice showed extended quiescence of HFSCs concomitant with an increased expression of Nfatc1. Dab2-cKO mice showed a decreased expression of anti-aging genes such as Col17a1, decorin, Sirt2 and Sirt7. Dab2-cKO mice did not show full hair coat recovery in aged mice thereby suggesting an accelerated aging process. Overall, we unveil for the first time, the role of Dab2 that regulate activation and self-renewal of HFSCs.


Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Hair Follicle , Mice, Knockout , Stem Cells , Animals , Hair Follicle/metabolism , Hair Follicle/cytology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Stem Cells/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Cell Self Renewal/genetics , Mice, Inbred C57BL , Cell Proliferation
12.
FASEB J ; 38(10): e23636, 2024 May 31.
Article En | MEDLINE | ID: mdl-38752683

Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common forms of arthritis with undefined etiology and pathogenesis. Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ), which act as sensors for cellular mechanical and inflammatory cues, have been identified as crucial players in the regulation of joint homeostasis. Current studies also reveal a significant association between YAP/TAZ and the pathogenesis of OA and RA. The objective of this review is to elucidate the impact of YAP/TAZ on different joint tissues and to provide inspiration for further studying the potential therapeutic implications of YAP/TAZ on arthritis. Databases, such as PubMed, Cochran Library, and Embase, were searched for all available studies during the past two decades, with keywords "YAP," "TAZ," "OA," and "RA."


Adaptor Proteins, Signal Transducing , Arthritis, Rheumatoid , Osteoarthritis , Transcription Factors , YAP-Signaling Proteins , Humans , Transcription Factors/metabolism , Animals , Arthritis, Rheumatoid/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , YAP-Signaling Proteins/metabolism , Osteoarthritis/metabolism , Osteoarthritis/etiology , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Joints/metabolism , Joints/pathology , Trans-Activators/metabolism , Trans-Activators/genetics
13.
Proc Natl Acad Sci U S A ; 121(20): e2402180121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38717859

Membrane tubulation coupled with fission (MTCF) is a widespread phenomenon but mechanisms for their coordination remain unclear, partly because of the lack of assays to monitor dynamics of membrane tubulation and subsequent fission. Using polymer cushioned bilayer islands, we analyze the membrane tubulator Bridging Integrator 1 (BIN1) mixed with the fission catalyst dynamin2 (Dyn2). Our results reveal this mixture to constitute a minimal two-component module that demonstrates MTCF. MTCF is an emergent property and arises because BIN1 facilitates recruitment but inhibits membrane binding of Dyn2 in a dose-dependent manner. MTCF is therefore apparent only at high Dyn2 to BIN1 ratios. Because of their mutual involvement in T-tubules biogenesis, mutations in BIN1 and Dyn2 are associated with centronuclear myopathies and our analysis links the pathology with aberrant MTCF. Together, our results establish cushioned bilayer islands as a facile template for the analysis of membrane tubulation and inform of mechanisms that coordinate MTCF.


Adaptor Proteins, Signal Transducing , Dynamin II , Tumor Suppressor Proteins , Dynamin II/metabolism , Dynamin II/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Cell Membrane/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Mitochondrial Dynamics/physiology , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism
14.
Nat Commun ; 15(1): 4083, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744825

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Acetyl-CoA Carboxylase , Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Cell Survival , Fatty Acids , Glucose , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Glucose/metabolism , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Fatty Acids/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice , NADP/metabolism , Protein Biosynthesis , Phosphoproteins/metabolism , Phosphoproteins/genetics , Oxidative Stress , Cell Line, Tumor , Eukaryotic Initiation Factors/metabolism , Eukaryotic Initiation Factors/genetics
15.
Nat Commun ; 15(1): 4052, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744820

Obesity has emerged as a prominent risk factor for the development of malignant tumors. However, the existing literature on the role of adipocytes in the tumor microenvironment (TME) to elucidate the correlation between obesity and cancer remains insufficient. Here, we aim to investigate the formation of cancer-associated adipocytes (CAAs) and their contribution to tumor growth using mouse models harboring dysfunctional adipocytes. Specifically, we employ adipocyte-specific BECN1 KO (BaKO) mice, which exhibit lipodystrophy due to dysfunctional adipocytes. Our results reveal the activation of YAP/TAZ signaling in both CAAs and BECN1-deficient adipocytes, inducing adipocyte dedifferentiation and formation of a malignant TME. The additional deletion of YAP/TAZ from BaKO mice significantly restores the lipodystrophy and inflammatory phenotypes, leading to tumor regression. Furthermore, mice fed a high-fat diet (HFD) exhibit decreased BECN1 and increased YAP/TAZ expression in their adipose tissues. Treatment with the YAP/TAZ inhibitor, verteporfin, suppresses tumor progression in BaKO and HFD-fed mice, highlighting its efficacy against mice with metabolic dysregulation. Overall, our findings provide insights into the key mediators of CAA and their significance in developing a TME, thereby suggesting a viable approach targeting adipocyte homeostasis to suppress cancer growth.


Adaptor Proteins, Signal Transducing , Adipocytes , Diet, High-Fat , Mice, Knockout , Tumor Microenvironment , YAP-Signaling Proteins , Animals , YAP-Signaling Proteins/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Diet, High-Fat/adverse effects , Transcription Factors/metabolism , Transcription Factors/genetics , Obesity/metabolism , Obesity/pathology , Humans , Verteporfin/pharmacology , Signal Transduction , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Disease Progression , Male , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Lipodystrophy/metabolism , Lipodystrophy/pathology , Lipodystrophy/genetics , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics
16.
Sci Adv ; 10(20): eadj5428, 2024 May 17.
Article En | MEDLINE | ID: mdl-38748789

High-grade serous ovarian cancer (HGSC) is a challenging disease, especially for patients with immunologically "cold" tumors devoid of tumor-infiltrating lymphocytes (TILs). We found that HGSC exhibits among the highest levels of MYCN expression and transcriptional signature across human cancers, which is strongly linked to diminished features of antitumor immunity. N-MYC repressed basal and induced IFN type I signaling in HGSC cell lines, leading to decreased chemokine expression and T cell chemoattraction. N-MYC inhibited the induction of IFN type I by suppressing tumor cell-intrinsic STING signaling via reduced STING oligomerization, and by blunting RIG-I-like receptor signaling through inhibition of MAVS aggregation and localization in the mitochondria. Single-cell RNA sequencing of human clinical HGSC samples revealed a strong negative association between cancer cell-intrinsic MYCN transcriptional program and type I IFN signaling. Thus, N-MYC inhibits tumor cell-intrinsic innate immune signaling in HGSC, making it a compelling target for immunotherapy of cold tumors.


Immunity, Innate , Interferon Type I , Ovarian Neoplasms , Signal Transduction , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Interferon Type I/metabolism , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/immunology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neoplasm Grading , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
17.
Nat Commun ; 15(1): 4153, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755212

Viral myocarditis, an inflammatory disease of the heart, causes significant morbidity and mortality. Type I interferon (IFN)-mediated antiviral responses protect against myocarditis, but the mechanisms are poorly understood. We previously identified A Disintegrin And Metalloproteinase domain 9 (ADAM9) as an important factor in viral pathogenesis. ADAM9 is implicated in a range of human diseases, including inflammatory diseases; however, its role in viral infection is unknown. Here, we demonstrate that mice lacking ADAM9 are more susceptible to encephalomyocarditis virus (EMCV)-induced death and fail to mount a characteristic type I IFN response. This defect in type I IFN induction is specific to positive-sense, single-stranded RNA (+ ssRNA) viruses and involves melanoma differentiation-associated protein 5 (MDA5)-a key receptor for +ssRNA viruses. Mechanistically, ADAM9 binds to MDA5 and promotes its oligomerization and thereby downstream mitochondrial antiviral-signaling protein (MAVS) activation in response to EMCV RNA stimulation. Our findings identify a role for ADAM9 in the innate antiviral response, specifically MDA5-mediated IFN production, which protects against virus-induced cardiac damage, and provide a potential therapeutic target for treatment of viral myocarditis.


ADAM Proteins , Cardiovirus Infections , Encephalomyocarditis virus , Immunity, Innate , Interferon Type I , Interferon-Induced Helicase, IFIH1 , Membrane Proteins , Mice, Knockout , Myocarditis , Animals , Encephalomyocarditis virus/immunology , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon Type I/metabolism , Interferon Type I/immunology , Cardiovirus Infections/immunology , Cardiovirus Infections/virology , ADAM Proteins/metabolism , ADAM Proteins/genetics , ADAM Proteins/immunology , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology , Myocarditis/immunology , Myocarditis/virology , Humans , Mice, Inbred C57BL , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Signal Transduction/immunology , Male , HEK293 Cells
18.
Cell Commun Signal ; 22(1): 277, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755629

INTRODUCTION: Bcl-2 and Bcl-xL are the most studied anti-apoptotic members of Bcl-2 family proteins. We previously characterized both of them, not only for their role in regulating apoptosis and resistance to therapy in cancer cells, but also for their non-canonical functions, mainly including promotion of cancer progression, metastatization, angiogenesis, and involvement in the crosstalk among cancer cells and components of the tumor microenvironment. Our goal was to identify transcriptional signature and novel cellular pathways specifically modulated by Bcl-2. METHODS: We performed RNAseq analysis of siRNA-mediated transient knockdown of Bcl-2 or Bcl-xL in human melanoma cells and gene ontology analysis to identify a specific Bcl-2 transcriptional signature. Expression of genes modulated by Bcl-2 and associated to Hippo pathway were validated in human melanoma, breast adenocarcinoma and non-small cell lung cancer cell lines by qRT-PCR. Western blotting analysis were performed to analyse protein expression of upstream regulators of YAP and in relation to different level of Bcl-2 protein. The effects of YAP silencing in Bcl-2 overexpressing cancer cells were evaluated in migration and cell viability assays in relation to different stiffness conditions. In vitro wound healing assays and co-cultures were used to evaluate cancer-specific Bcl-2 ability to activate fibroblasts. RESULTS: We demonstrated the Bcl-2-dependent modulation of Hippo Pathway in cancer cell lines from different tumor types by acting on upstream YAP regulators. YAP inhibition abolished the ability of Bcl-2 to increase tumor cell migration and proliferation on high stiffness condition of culture, to stimulate in vitro fibroblasts migration and to induce fibroblasts activation. CONCLUSIONS: We discovered that Bcl-2 regulates the Hippo pathway in different tumor types, promoting cell migration, adaptation to higher stiffness culture condition and fibroblast activation. Our data indicate that Bcl-2 inhibitors should be further investigated to counteract cancer-promoting mechanisms.


Cell Movement , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-bcl-2 , Humans , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Movement/genetics , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , bcl-X Protein/metabolism , bcl-X Protein/genetics , Cell Proliferation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Fibroblasts/metabolism
19.
Front Immunol ; 15: 1392933, 2024.
Article En | MEDLINE | ID: mdl-38779683

Introduction: Antigen binding to the T cell antigen receptor (TCR) leads to the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 complex, and thereby to T cell activation. The CD3ε subunit plays a unique role in TCR activation by recruiting the kinase LCK and the adaptor protein NCK prior to ITAM phosphorylation. Here, we aimed to investigate how phosphorylation of the individual CD3ε ITAM tyrosines impacts the CD3ε signalosome. Methods: We mimicked irreversible tyrosine phosphorylation by substituting glutamic acid for the tyrosine residues in the CD3ε ITAM. Results: Integrating CD3ε phospho-mimetic variants into the complete TCR-CD3 complex resulted in reduced TCR signal transduction, which was partially compensated by the involvement of the other TCR-CD3 ITAMs. By using novel CD3ε phospho-mimetic Chimeric Antigen Receptor (CAR) variants, we avoided any compensatory effects of other ITAMs in the TCR-CD3 complex. We demonstrated that irreversible CD3ε phosphorylation prevented signal transduction upon CAR engagement. Mechanistically, we demonstrated that glutamic acid substitution at the N-terminal tyrosine residue of the CD3ε ITAM (Y39E) significantly reduces NCK binding to the TCR. In contrast, mutation at the C-terminal tyrosine of the CD3ε ITAM (Y50E) abolished LCK recruitment to the TCR, while increasing NCK binding. Double mutation at the C- and N-terminal tyrosines (Y39/50E) allowed ZAP70 to bind, but reduced the interaction with LCK and NCK. Conclusions: The data demonstrate that the dynamic phosphorylation of the CD3ε ITAM tyrosines is essential for CD3ε to orchestrate optimal TCR and CAR signaling and highlights the key role of CD3ε signalosome to tune signal transduction.


CD3 Complex , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , Signal Transduction , CD3 Complex/metabolism , CD3 Complex/immunology , Phosphorylation , Humans , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Lymphocyte Activation/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Receptor-CD3 Complex, Antigen, T-Cell/metabolism , Receptor-CD3 Complex, Antigen, T-Cell/immunology , Receptor-CD3 Complex, Antigen, T-Cell/genetics , HEK293 Cells , ZAP-70 Protein-Tyrosine Kinase/metabolism , ZAP-70 Protein-Tyrosine Kinase/genetics , Immunoreceptor Tyrosine-Based Activation Motif , Protein Binding , Jurkat Cells , Oncogene Proteins
20.
PLoS One ; 19(5): e0296003, 2024.
Article En | MEDLINE | ID: mdl-38787854

Maintenance of the intestinal epithelium requires constant self-renewal and regeneration. Tight regulation of proliferation and differentiation of intestinal stem cells within the crypt region is critical to maintaining homeostasis. The transcriptional co-factors ß-catenin and YAP are required for proliferation during normal homeostasis as well as intestinal regeneration after injury: aberrant signaling activity results in over proliferation and tumorigenesis. Although both YAP and ß-catenin activity are controlled along canonical pathways, it is becoming increasingly clear that non-canonical regulation of these transcriptional regulators plays a role in fine tuning their activity. We have shown previously that MAMDC4 (Endotubin, AEGP), an integral membrane protein present in endosomes, regulates both YAP and ß-catenin activity in kidney epithelial cells and in the developing intestinal epithelium. Here we show that MAMDC4 interacts with members of the signalosome and mediates cross-talk between YAP and ß-catenin. Interestingly, this cross-talk occurs through a non-canonical pathway involving interactions between AMOT:YAP and AMOT:ß-catenin.


Adaptor Proteins, Signal Transducing , Endosomes , Transcription Factors , Wnt Signaling Pathway , beta Catenin , Humans , beta Catenin/metabolism , Endosomes/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , YAP-Signaling Proteins/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , HEK293 Cells , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Protein Binding
...