Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.360
Filter
1.
Drug Res (Stuttg) ; 74(6): 290-295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968952

ABSTRACT

BACKGROUND: There have been reports of serious side effects of Remdesivir, including cardiovascular complications. The present study aimed to determine the adverse cardiovascular effects of Remdesivir and the factors affecting them in COVID-19 patients. METHODS: The patients were classified into two groups: those receiving Remdesivir without cardiac complications and those receiving Remdesivir with cardiovascular complications. After reviewing the patient's medical records, the relationship of some factors with the incidence of adverse cardiovascular effects was measured. RESULTS: Chi-square test showed that the distribution of complications in men was significantly higher than in women (P=0.001). The independent t-test revealed that the mean age in the group with complications was significantly higher than the group without complications (P=0.013). Fisher's exact test demonstrated a significant relationship between smoking and cardiovascular complications (P=0.05). According to the Mann-Whitney test, a significant difference was found in the mean changes of Bilirubin (P=0.02) and ALKP (P=0.01) before and after treatment in the groups with and without heart complications. CONCLUSION: Our findings indicated that most of the COVID-19 patients suffered from sinus bradycardia, and the distribution of complications was more pronounced in men than in women. The mean age in the group with complications was higher than the group without complications. Smoking was found to be associated with the occurrence of cardiovascular complications and the mean changes of Bilirubin and ALKP before and after treatment were significantly different in the groups with and without cardiovascular complications.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Humans , Male , Alanine/analogs & derivatives , Alanine/adverse effects , Alanine/therapeutic use , Female , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/therapeutic use , Middle Aged , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Case-Control Studies , Aged , COVID-19/complications , Adult , SARS-CoV-2 , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Sex Factors , Bradycardia/chemically induced , Bradycardia/epidemiology , Retrospective Studies
2.
J Med Virol ; 96(7): e29783, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965890

ABSTRACT

Many COVID-19 patients suffer from gastrointestinal symptoms and impaired intestinal barrier function is thought to play a key role in Long COVID. Despite its importance, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on intestinal epithelia is poorly understood. To address this, we established an intestinal barrier model integrating epithelial Caco-2 cells, mucus-secreting HT29 cells and Raji cells. This gut epithelial model allows efficient differentiation of Caco-2 cells into microfold-like cells, faithfully mimics intestinal barrier function, and is highly permissive to SARS-CoV-2 infection. Early strains of SARS-CoV-2 and the Delta variant replicated with high efficiency, severely disrupted barrier function, and depleted tight junction proteins, such as claudin-1, occludin, and ZO-1. In comparison, Omicron subvariants also depleted ZO-1 from tight junctions but had fewer damaging effects on mucosal integrity and barrier function. Remdesivir, the fusion inhibitor EK1 and the transmembrane serine protease 2 inhibitor Camostat inhibited SARS-CoV-2 replication and thus epithelial barrier damage, while the Cathepsin inhibitor E64d was ineffective. Our results support that SARS-CoV-2 disrupts intestinal barrier function but further suggest that circulating Omicron variants are less damaging than earlier viral strains.


Subject(s)
COVID-19 , Intestinal Mucosa , SARS-CoV-2 , Tight Junctions , Virus Replication , Humans , SARS-CoV-2/pathogenicity , Caco-2 Cells , COVID-19/virology , COVID-19/pathology , Intestinal Mucosa/virology , Intestinal Mucosa/pathology , Tight Junctions/virology , Alanine/analogs & derivatives , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Antiviral Agents/pharmacology , HT29 Cells , Occludin/metabolism , Occludin/genetics , Adenosine Monophosphate/analogs & derivatives
3.
Am J Case Rep ; 25: e941165, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943241

ABSTRACT

BACKGROUND SARS-CoV-2 infection can persist in immunocompromised patients with hematological malignancies, despite antiviral treatment. This report is of a 67-year-old man with chronic lymphocytic leukemia (CLL), secondary hypogammaglobulinemia, and thrombocytopenia on maintenance therapy with ibrutinib, with persistent SARS-CoV-2 infection unresponsive to antiviral treatment, including remdesivir, nirmatrelvir/ritonavir (Paxlovid), and tixagevimab/cilgavimab (Evusheld). CASE REPORT The patient was admitted to our hospital 3 times. During his first hospitalization, he was treated with 5-day course of remdesivir and intravenous steroids; however, antigen and molecular nasopharyngeal swabs were persistently positive, and he was discharged home. Due to respiratory worsening, he was rehospitalized, and despite being treated initially with tixagevimab/cilgavimab, and subsequently with a remdesivir course of 5 days, SARS-CoV-2 tests remained persistently positive. During his third hospital stay, our patient was subjected to combined therapy with remdesivir and nirmatrelvir/ritonavir for 5 days, obtaining a significant reduction of viral load at both antigen and molecular testing. As an ultimate attempt to achieve a negative status before discharge, a 10-day course of combined remdesivir and nirmatrelvir/ritonavir was administered, with a temporary reduction of viral load, followed by a sudden increase immediately after the discontinuation of Paxlovid. Due to worsening hematological disease and bacterial over-infections, the patient gradually worsened until death. CONCLUSIONS This is an emblematic case of correlation between persistent SARS-CoV-2 infection and immunosuppression status in hematological hosts. In these patients, the viral load remains high, favoring the evolution of the virus, and the immunodeficiency makes it difficult to identify the appropriate therapeutic approach.


Subject(s)
Adenine , COVID-19 , Leukemia, Lymphocytic, Chronic, B-Cell , Piperidines , Humans , Male , Aged , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Adenine/analogs & derivatives , Adenine/therapeutic use , COVID-19/diagnosis , Piperidines/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Immunocompromised Host , Maintenance Chemotherapy
4.
Cardiovasc Toxicol ; 24(7): 656-666, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851664

ABSTRACT

Antiviral therapies for treatment of COVID-19 may be associated with significant proarrhythmic potential. In the present study, the potential cardiotoxic side effects of these therapies were evaluated using a Langendorff model of the isolated rabbit heart. 51 hearts of female rabbits were retrogradely perfused, employing a Langendorff-setup. Eight catheters were placed endo- and epicardially to perform an electrophysiology study, thus obtaining cycle length-dependent action potential duration at 90% of repolarization (APD90), QT intervals and dispersion of repolarization. After generating baseline data, the hearts were assigned to four groups: In group 1 (HXC), hearts were treated with 1 µM hydroxychloroquine. Thereafter, 3 µM hydroxychloroquine were infused additionally. Group 2 (HXC + AZI) was perfused with 3 µM hydroxychloroquine followed by 150 µM azithromycin. In group 3 (LOP) the hearts were perfused with 3 µM lopinavir followed by 5 µM and 10 µM lopinavir. Group 4 (REM) was perfused with 1 µM remdesivir followed by 5 µM and 10 µM remdesivir. Hydroxychloroquine- and azithromycin-based therapies have a significant proarrhythmic potential mediated by action potential prolongation and an increase in dispersion. Lopinavir and remdesivir showed overall significantly less pronounced changes in electrophysiology. In accordance with the reported bradycardic events under remdesivir, it significantly reduced the rate of the ventricular escape rhythm.


Subject(s)
Action Potentials , Antiviral Agents , Isolated Heart Preparation , Animals , Rabbits , Female , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , Action Potentials/drug effects , COVID-19 Drug Treatment , Hydroxychloroquine/toxicity , Hydroxychloroquine/pharmacology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Cardiotoxicity , Alanine/analogs & derivatives , Alanine/pharmacology , Heart Rate/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/toxicity , Adenosine Monophosphate/pharmacology , Heart/drug effects
5.
In Vivo ; 38(4): 1841-1846, 2024.
Article in English | MEDLINE | ID: mdl-38936945

ABSTRACT

BACKGROUND/AIM: Reports regarding the association of remdesivir use for the treatment of Coronavirus disease 2019 (COVID-19) with the development of acute kidney injury (AKI) are inconsistent, and the associations between the use of other antivirals and AKI remain unclear. Therefore, this study investigated whether the use of antiviral drugs for the treatment of COVID-19 is a risk factor for the development of AKI. PATIENTS AND METHODS: This study analyzed 176,197 reports submitted to the Japanese Adverse Event Reporting Database between 2020 and 2022. Reporting odds ratios (RORs) and 95% confidence intervals (95%CIs) for AKI that were associated with the use of antiviral drugs in patients with COVID-19 were calculated after adjusting for potential confounders. RESULTS: Overall, 5,879 of the reports analyzed were associated with AKI. Signs of AKI were detected with the use of remdesivir [crude ROR (cROR)=2.45; 95%CI=1.91-3.14] and nirmatrelvir/ritonavir (cROR=6.07; 95%CI=4.06-9.06). These results were maintained even after adjusting for potential confounders [remdesivir: adjusted ROR (aROR)=2.18; 95%CI=1.69-2.80, nirmatrelvir/ritonavir: aROR=5.24; 95%CI=3.48-7.90]. However, when analyzing data stratified by reporting year, the association between remdesivir and AKI appeared to diminish over time and was not sustained. CONCLUSION: Nirmatrelvir/ritonavir use may be associated with developing AKI. This knowledge may be useful in helping patients with COVID-19 avoid AKI complications.


Subject(s)
Acute Kidney Injury , Adenosine Monophosphate , Alanine , Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Ritonavir , SARS-CoV-2 , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adenosine Monophosphate/adverse effects , Alanine/analogs & derivatives , Alanine/therapeutic use , COVID-19/complications , COVID-19/epidemiology , Female , Male , Ritonavir/adverse effects , Ritonavir/therapeutic use , Middle Aged , Aged , Risk Factors , Adult , Drug Combinations , Adenosine/analogs & derivatives
6.
Clin Exp Med ; 24(1): 123, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856777

ABSTRACT

Lung transplant (LTx) recipients face a significant risk from coronavirus disease 2019 (COVID-19), with elevated hospitalization mortality rates even post-vaccination. While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) typically induces pneumonia in even healthy individuals, it can also infect the transplanted lungs of LTx recipients, potentially leading to graft dysfunction. Despite the prevalence of COVID-19 pneumonia in LTx recipients, data on its characteristics and associated risk factors remain limited. This retrospective study analyzed data from LTx recipients at Tohoku University Hospital between January 2001 and November 2023. COVID-19 cases were identified, and patient records, including thoracic computed tomography (CT) evaluations, were reviewed. Patient characteristics, vaccination history, immunosuppressant use, and comorbidities were assessed. Descriptive analysis was utilized for data presentation. Among 172 LTx recipients, 39 (22.7%) contracted COVID-19, with 9 (23%) developing COVID-19 pneumonia. COVID-19 incidence in LTx recipients aligned with national rates, but pneumonia risk was elevated. Delayed antiviral therapy initiation was noted in pneumonia cases. Remdesivir was uniformly administered and remained the primary treatment choice. LTx recipients are susceptible to COVID-19 pneumonia, warranting vigilance and tailored management strategies. Pre-transplant vaccination and prompt COVID-19 diagnosis and treatment are imperative for optimizing outcomes in this population.


Subject(s)
Antiviral Agents , COVID-19 , Lung Transplantation , Humans , COVID-19/epidemiology , COVID-19/complications , COVID-19/therapy , Male , Female , Japan/epidemiology , Middle Aged , Lung Transplantation/adverse effects , Risk Factors , Retrospective Studies , Aged , Adult , Antiviral Agents/therapeutic use , SARS-CoV-2/isolation & purification , Transplant Recipients , Treatment Outcome , COVID-19 Drug Treatment , Incidence , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives
7.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892037

ABSTRACT

This review article focuses on the role of adenosine in coronary artery disease (CAD) diagnosis and treatment. Adenosine, an endogenous purine nucleoside, plays crucial roles in cardiovascular physiology and pathology. Its release and effects, mediated by specific receptors, influence vasomotor function, blood pressure regulation, heart rate, and platelet activity. Adenosine therapeutic effects include treatment of the no-reflow phenomenon and paroxysmal supraventricular tachycardia. The production of adenosine involves complex cellular pathways, with extracellular and intracellular synthesis mechanisms. Adenosine's rapid metabolism underscores its short half-life and physiological turnover. Furthermore, adenosine's involvement in side effects of antiplatelet therapy, particularly ticagrelor and cangrelor, highlights its clinical significance. Moreover, adenosine serves as a valuable tool in CAD diagnosis, aiding stress testing modalities and guiding intracoronary physiological assessments. Its use in assessing epicardial stenosis and microvascular dysfunction is pivotal for treatment decisions. Overall, understanding adenosine's mechanisms and clinical implications is essential for optimizing CAD management strategies, encompassing both therapeutic interventions and diagnostic approaches.


Subject(s)
Adenosine , Coronary Artery Disease , Humans , Adenosine/metabolism , Coronary Artery Disease/metabolism , Coronary Artery Disease/drug therapy , Animals , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adenosine Monophosphate/metabolism , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology
8.
Ann Med ; 56(1): 2361843, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38830017

ABSTRACT

BACKGROUND: Literature on the safety of remdesivir in hospitalized COVID-19 patients with severe renal impairment is limited. We aimed to investigate the safety and effectiveness of remdesivir in this population. METHODS: We conducted a retrospective cohort study of adult hospitalized COVID-19 patients who received remdesivir between April 2022 and October 2022. Outcomes were compared between estimated glomerular filtration rate (eGFR) <30 mL/min/1.73 m2 and ≥30 mL/min/1.73 m2 groups. The primary safety outcomes were acute kidney injury (AKI) and bradycardia, while the primary effectiveness outcomes included mortality in COVID-19-dedicated wards and hospital mortality. Secondary outcomes included laboratory changes, disease progression, and recovery time. RESULTS: A total of 1,343 patients were recruited, with 307 (22.9%) in the eGFR <30 group and 1,036 (77.1%) in the eGFR ≥30 group. Patients with an eGFR <30 had higher risks of AKI (adjusted hazard ratio [aHR] 2.92, 95% CI 1.93-4.44) and hospital mortality (aHR 1.47, 95% CI 1.06-2.05) but had comparable risks of bradycardia (aHR 1.15, 95% CI 0.85-1.56) and mortality in dedicated wards (aHR 1.43, 95% CI 0.90-2.28) than patients with an eGFR ≥30. Risk of disease progression was higher in the eGFR <30 group (adjusted odds ratio 1.62, 95% CI 1.16-2.26). No difference between the two groups in laboratory changes and recovery time. CONCLUSIONS: Hospitalized COVID-19 patients receiving remdesivir with severe renal impairment had an increased risk of AKI, hospital mortality, and COVID-19 disease progression compared to patients without severe renal impairment.


Subject(s)
Acute Kidney Injury , Adenosine Monophosphate , Alanine , Antiviral Agents , COVID-19 Drug Treatment , Glomerular Filtration Rate , Hospital Mortality , Hospitalization , SARS-CoV-2 , Humans , Alanine/analogs & derivatives , Alanine/therapeutic use , Alanine/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adenosine Monophosphate/adverse effects , Male , Female , Retrospective Studies , Middle Aged , Aged , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Hospitalization/statistics & numerical data , COVID-19/complications , COVID-19/mortality , Treatment Outcome , Renal Insufficiency/epidemiology , Bradycardia/chemically induced , Bradycardia/epidemiology , Adult
9.
J Pharm Biomed Anal ; 247: 116248, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823223

ABSTRACT

GS-441524 is an adenosine nucleoside antiviral demonstrating significant efficacy in the treatment of feline infectious peritonitis (FIP), an otherwise fatal illness, resulting from infection with feline coronavirus. However, following the emergence of COVID-19, veterinary development was halted, and Gilead pursued clinical development of a GS-441524 pro-drug, resulting in the approval of Remdesivir under an FDA emergency use authorization. Despite lack of regulatory approval, GS-441524 is available without a prescription through various unlicensed online distributors and is commonly purchased by pet owners for the treatment of FIP. Herein, we report data obtained from the analytical characterization of two feline renal calculi, demonstrating the propensity for GS-441524 to cause renal toxicity through drug-induced crystal nephropathy in vivo. As definitive diagnosis of drug-induced crystal nephropathy requires confirmation of the lithogenic material to accurately attribute a mechanism of toxicity, renal stone composition and crystalline matrix were characterized using ultra-performance liquid chromatography photodiode array detection (UPLC-PDA), ultra-performance liquid chromatography mass spectrometry (LCMS), nuclear magnetic resonance (NMR) spectroscopy, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). This work serves to provide the first analytical confirmation of GS-441524-induced crystal nephropathy in an effort to support toxicologic identification of adverse renal effects caused by administration of GS-441524 or any pro-drug thereof.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , Animals , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/analysis , Cats , Kidney Calculi/chemically induced , COVID-19 Drug Treatment , Adenosine/analogs & derivatives , Cat Diseases/chemically induced , Cat Diseases/drug therapy , Chromatography, High Pressure Liquid/methods , Magnetic Resonance Spectroscopy/methods
10.
J Vasc Nurs ; 42(2): 138-140, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823974

ABSTRACT

Medical decision-making surrounding high risk surgical procedures requires extensive consideration about the potential risks and benefits to the patient, including implications for concomitant medications and therapies. Managing cardiovascular risk in patients undergoing non-cardiac surgery is essential for safe and effective patient care. In instances where cardiac revascularization is needed prior to surgery, antiplatelet medication is also needed which can complicate future surgical procedures. This case report describes a patient who underwent percutaneous coronary intervention with drug eluting stent placement, who also needed urgent treatment for expanding thoracic abdominal aortic aneurysm (TAAA). Standard practice for endovascular repair of a TAAA includes placement of a lumbar drain to decrease the risk of spinal cord ischemia, however dual antiplatelet therapy is contraindicated. Cangrelor is the only intravenous platelet P2Y12 receptor inhibitor currently available. The use of Cangrelor, a short-acting P2Y12 inhibitor, was successfully utilized as a bridge in the setting of a patient requiring dual antiplatelet therapy (DAPT) and further surgical intervention. This medication may improve outcomes for this subset of patients.


Subject(s)
Adenosine Monophosphate , Percutaneous Coronary Intervention , Platelet Aggregation Inhibitors , Humans , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Male , Drug-Eluting Stents , Aged , Aortic Aneurysm, Abdominal/surgery , Aortic Aneurysm, Abdominal/drug therapy , Purinergic P2Y Receptor Antagonists/therapeutic use
11.
ASAIO J ; 70(6): 546-552, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829573

ABSTRACT

Drug treatments for coronavirus disease 2019 (COVID-19) dramatically improve patient outcomes, and although extracorporeal membrane oxygenation (ECMO) has significant use in these patients, it is unknown whether ECMO affects drug dosing. We used an ex vivo adult ECMO model to measure ECMO circuit effects on concentrations of specific COVID-19 drug treatments. Three identical ECMO circuits used in adult patients were set up. Circuits were primed with fresh human blood (temperature and pH maintained within normal limits). Three polystyrene jars with 75 ml fresh human blood were used as controls. Remdesivir, GS-441524, nafamostat, and tocilizumab were injected in the circuit and control jars at therapeutic concentrations. Samples were taken from circuit and control jars at predefined time points over 6 h and drug concentrations were measured using validated assays. Relative to baseline, mean (± standard deviation [SD]) study drug recoveries in both controls and circuits at 6 h were significantly lower for remdesivir (32.2% [±2.7] and 12.4% [±2.1], p < 0.001), nafamostat (21.4% [±5.0] and 0.0% [±0.0], p = 0.018). Reduced concentrations of COVID-19 drug treatments in ECMO circuits is a clinical concern. Remdesivir and nafamostat may need dose adjustments. Clinical pharmacokinetic studies are suggested to guide optimized COVID-19 drug treatment dosing during ECMO.


Subject(s)
Adenosine Monophosphate , Alanine , COVID-19 Drug Treatment , Extracorporeal Membrane Oxygenation , Extracorporeal Membrane Oxygenation/methods , Humans , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adenosine Monophosphate/pharmacokinetics , Alanine/analogs & derivatives , Alanine/pharmacokinetics , Alanine/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Guanidines/pharmacokinetics , Guanidines/therapeutic use , Benzamidines , COVID-19/therapy , SARS-CoV-2 , Adenosine/analogs & derivatives
12.
PLoS One ; 19(6): e0303896, 2024.
Article in English | MEDLINE | ID: mdl-38875257

ABSTRACT

BACKGROUND AND AIM: Renal dysfunction is associated with poor outcomes in patients with coronavirus disease 2019 (COVID-19). In an effort to improve outcomes, intravenous remdesivir has been broadly used for the treatment of COVID-19 even in patients with low estimated glomerular filtration rate (eGFR). Our study assessed the residual risk of outcomes of patients with low eGFR despite treatment with remdesivir for COVID-19, during a timeframe prior to the expanded label across all levels of renal function. METHODS: We conducted an observational, retrospective, multi-site cohort study of adults hospitalized with COVID-19 treated with at least one dose of remdesivir between November 6, 2020, and November 5, 2021. Electronic medical records were reviewed to obtain patient characteristics, related laboratory data, and outcomes. The primary endpoint was all-cause mortality by day 28. Multivariable logistic regression was used to evaluate association between groups. RESULTS: The study population consisted of 3024 patients hospitalized with COVID-19 and treated with remdesivir. The median age was 67 [IQR 55, 77] years; 42.7% were women, and 88.6% were white. The median eGFR was 76.6 mL/min/1.73 m2 [IQR 52.5, 95.2]; the majority (67.2%) of patients had an eGFR ≥ 60, while 9% had an eGFR <30. All-cause mortality by day 28 was 8.7%. All-cause mortality rates were significantly higher among patients with impaired renal function (Odds Ratio [OR] 1.63 for patients with eGFR 30-59; OR 1.46 for eGFR 15-29; OR 2.42 for eGFR <15 and OR 5.44 for patients on dialysis) compared to patients with eGFR ≥60 mL/min/1.73m2. CONCLUSIONS: Lower eGFR remains an independent risk factor for mortality in COVID-19 even in patients treated with remdesivir.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Glomerular Filtration Rate , Hospitalization , Humans , Alanine/analogs & derivatives , Alanine/therapeutic use , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Female , Male , Middle Aged , Aged , Retrospective Studies , COVID-19/mortality , Antiviral Agents/therapeutic use , SARS-CoV-2/isolation & purification , Kidney/physiopathology , Kidney/drug effects
13.
Viruses ; 16(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38932157

ABSTRACT

(1) Background: Geriatric patients are at high risk of complications of Coronavirus disease-2019 (COVID-19) and are good candidates for antiviral drugs. (2) Methods: A retrospective study of electronic health records (EHRs) aiming to describe antiviral (nirmatrelvir and ritonavir (nirmatrelvir/r) or remdesivir) use, drug-drug interactions (DDIs) and adverse drug reactions (ADRs) in elderly patients (75 and over), hospitalized with mild-to-moderate COVID-19 between July 2022 and June 2023. (3) Results: Out of 491 patients (mean age: 86.9 years), 180 (36.7%) received nirmatrelvir/r, 78 (15.9%) received remdesivir, and 233 (47.4%) received no antiviral therapy. No association was found between the choice of antiviral and the demographic or medical data. No serious ADR was observed. Nirmatrelvir/r dosage adjustment was inadequate in 65% of patients with renal impairment. In total, 128 patients (71%) on nirmatrelvir/r had potential pharmacokinetic DDIs, with 43 resulting in a possibly related ADR. In the remdesivir group, pharmacodynamic DDIs were more frequent, with QTc prolongation risk in 56 patients (72%). Only 20 patients underwent follow-up ECG, revealing QTc prolongation in 4. (4) Conclusions: There is an underutilization of antivirals despite their justified indications. Nirmatrelvir/r dosage was rarely adjusted to renal function. Dose adjustments and closer monitoring are needed due to the high risk of drug interactions.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , COVID-19 Drug Treatment , Drug Interactions , Ritonavir , SARS-CoV-2 , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Female , Male , Aged, 80 and over , Retrospective Studies , Alanine/analogs & derivatives , Alanine/therapeutic use , Alanine/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adenosine Monophosphate/adverse effects , SARS-CoV-2/drug effects , Aged , Ritonavir/therapeutic use , Ritonavir/adverse effects , COVID-19/virology , Adenosine/analogs & derivatives
14.
Viruses ; 16(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38932239

ABSTRACT

The aim of this study was to investigate the effects of administrating Remdesivir at the acute COVID-19 phase on developing post-COVID symptoms in previously hospitalized COVID-19 survivors by controlling factors such as age, sex, body mass index, and vaccination status. A case-control study was performed. Hospitalized COVID-19 survivors who had received intravenous Remdesivir during the acute phase (n = 216) were matched by age, sex, body mass index, and vaccination status with survivors who did not receive antiviral treatment (n = 216). Participants were asked to self-report the presence of any post-COVID symptom (defined as a symptom that started no later than three months after infection) and whether the symptom persisted at the time of study (mean: 18.4, SD: 0.8 months). Anxiety levels (HADS-A), depressive symptoms (HADS-D), sleep quality (PSQI), and severity/disability (FIC) were also compared. The multivariate analysis revealed that administration of Remdesivir at the acute COVID-19 phase was a protective factor for long-term COVID development (OR0.401, 95%CI 0.256-0.628) and specifically for the following post-COVID symptoms: fatigue (OR0.399, 95%CI 0.270-0.590), pain (OR0.368, 95% CI 0.248-0.548), dyspnea at rest (OR0.580, 95%CI 0.361-0.933), concentration loss (OR0.368, 95%CI 0.151-0.901), memory loss (OR0.399, 95%CI 0.270-0.590), hair loss (OR0.103, 95%CI 0.052-0.207), and skin rashes (OR0.037, 95%CI 0.005-0.278). This study supports the potential protective role of intravenous administration of Remdesivir during the COVID-19 acute phase for long-lasting post-COVID symptoms in previously hospitalized COVID-19 survivors.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Humans , Alanine/analogs & derivatives , Alanine/therapeutic use , Alanine/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adenosine Monophosphate/administration & dosage , Female , Male , Antiviral Agents/therapeutic use , Middle Aged , SARS-CoV-2/drug effects , COVID-19/complications , Case-Control Studies , Post-Acute COVID-19 Syndrome , Adult , Aged
15.
Virol Sin ; 39(3): 459-468, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782261

ABSTRACT

Ebola virus (EBOV) and Marburg virus (MARV), members of the Filoviridae family, are highly pathogenic and can cause hemorrhagic fevers, significantly impacting human society. Bats are considered reservoirs of these viruses because related filoviruses have been discovered in bats. However, due to the requirement for maximum containment laboratories when studying infectious viruses, the characterization of bat filoviruses often relies on pseudoviruses and minigenome systems. In this study, we used RACE technology to sequence the 3'-leader and 5'-trailer of Menglà virus (MLAV) and constructed a minigenome. Similar to MARV, the transcription activities of the MLAV minigenome are independent of VP30. We further assessed the effects of polymorphisms at the 5' end on MLAV minigenome activity and identified certain mutations that decrease minigenome reporter efficiency, probably due to alterations in the RNA secondary structure. The reporter activity upon recombination of the 3'-leaders and 5'-trailers of MLAV, MARV, and EBOV with those of the homologous or heterologous minigenomes was compared and it was found that the polymerase complex and leader and trailer sequences exhibit intrinsic specificities. Additionally, we investigated whether the polymerase complex proteins from EBOV and MARV support MLAV minigenome RNA synthesis and found that the homologous system is more efficient than the heterologous system. Remdesivir efficiently inhibited MLAV as well as EBOV replication. In summary, this study provides new information on bat filoviruses and the minigenome will be a useful tool for high-throughput antiviral drug screening.


Subject(s)
Ebolavirus , Genome, Viral , Marburgvirus , Animals , Genome, Viral/genetics , Ebolavirus/genetics , Humans , Marburgvirus/genetics , Mengovirus/genetics , Virus Replication , RNA, Viral/genetics , Alanine/analogs & derivatives , Alanine/pharmacology , Chiroptera/virology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/metabolism , Filoviridae/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
16.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38690769

ABSTRACT

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents , Cathepsin A , Lung , Prodrugs , Prodrugs/chemistry , Prodrugs/metabolism , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Animals , Mice , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Humans , Cathepsin A/metabolism , Lung/metabolism , Cell Membrane Permeability/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacokinetics , Alanine/metabolism , Alanine/pharmacology , Permeability , ProTides
17.
Microbiol Res ; 285: 127750, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761489

ABSTRACT

The progress of viral infection involves numerous transcriptional regulatory events. The identification of the newly synthesized transcripts helps us to understand the replication mechanisms and pathogenesis of the virus. Here, we utilized a time-resolved technique called metabolic RNA labeling approach called thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) to differentially elucidate the levels of steady-state and newly synthesized RNAs of BHK21 cell line in response to human coronavirus OC43 (HCoV-OC43) infection. Our results showed that the Wnt/ß-catenin signaling pathway was significantly enriched with the newly synthesized transcripts of BHK21 cell line in response to HCoV-OC43 infection. Moreover, inhibition of the Wnt pathway promoted viral replication in the early stage of infection, but inhibited it in the later stage of infection. Furthermore, remdesivir inhibits the upregulation of the Wnt/ß-catenin signaling pathway induced by early infection with HCoV-OC43. Collectively, our study showed the diverse roles of Wnt/ß-catenin pathway at different stages of HCoV-OC43 infection, suggesting a potential target for the antiviral treatment. In addition, although infection with HCoV-OC43 induces cytopathic effects in BHK21 cells, inhibiting apoptosis does not affect the intracellular replication of the virus. Monitoring newly synthesized RNA based on such time-resolved approach is a highly promising method for studying the mechanism of viral infections.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , Coronavirus OC43, Human , Transcriptome , Virus Replication , Wnt Signaling Pathway , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/drug effects , Virus Replication/drug effects , Cell Line , Humans , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/metabolism , Antiviral Agents/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/metabolism , Animals , Coronavirus Infections/virology , Coronavirus Infections/drug therapy
18.
Mol Pharmacol ; 106(1): 71-82, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38769019

ABSTRACT

Remdesivir (RDV), a broad-spectrum antiviral agent, is often used together with dexamethasone (DEX) for hospitalized COVID-19 patients requiring respiratory support. Potential hepatic adverse drug reaction is a safety concern associated with the use of RDV. We previously reported that DEX cotreatment effectively mitigates RDV-induced hepatotoxicity and reduces elevated serum alanine aminotransferase and aspartate aminotransferase levels in cultured human primary hepatocytes (HPH) and hospitalized COVID-19 patients, respectively. Yet, the precise mechanism behind this protective drug-drug interaction remains largely unknown. Here, we show that through the activation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling, RDV induces apoptosis (cleavage of caspases 8, 9, and 3), autophagy (increased autophagosome and LC3-II), and mitochondrial damages (decreased membrane potential, respiration, ATP levels, and increased expression of Bax and the released cytosolic cytochrome C) in HPH. Importantly, cotreatment with DEX partially reversed RDV-induced apoptosis, autophagy, and cell death. Mechanistically, DEX deactivates/dephosphorylates p38, JNK, and ERK1/2 signaling by enhancing the expression of dual specificity protein phosphatase 1 (DUSP1), a mitogen-activated protein kinase (MAPK) phosphatase, in a glucocorticoid receptor (GR)-dependent manner. Knockdown of GR in HPH attenuates DEX-mediated DUSP1 induction, MAPK dephosphorylation, as well as protection against RDV-induced hepatotoxicity. Collectively, our findings suggest a molecular mechanism by which DEX modulates the GR-DUSP1-MAPK regulatory axis to alleviate the adverse actions of RDV in the liver. SIGNIFICANCE STATEMENT: The research uncovers the molecular mechanisms by which dexamethasone safeguards against remdesivir-associated liver damage in the context of COVID-19 treatment.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , Apoptosis , Autophagy , COVID-19 Drug Treatment , Chemical and Drug Induced Liver Injury , Dexamethasone , Dual Specificity Phosphatase 1 , Hepatocytes , Dexamethasone/pharmacology , Humans , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Chemical and Drug Induced Liver Injury/etiology , Antiviral Agents/pharmacology , Antiviral Agents/adverse effects , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cells, Cultured , MAP Kinase Signaling System/drug effects
19.
Viruses ; 16(5)2024 04 26.
Article in English | MEDLINE | ID: mdl-38793571

ABSTRACT

The COVID-19 pandemic has resulted in millions of fatalities worldwide. The case of pediatric cancer patients stands out since, despite being considered a population at risk, few studies have been carried out concerning symptom detection or the description of the mechanisms capable of modifying the course of the COVID-19 disease, such as the interaction and response between the virus and the treatment given to cancer patients. By synthesizing existing studies, this paper aims to expose the treatment challenges for pediatric patients with COVID-19 in an oncology context. Additionally, this updated review includes studies that utilized the antiviral agents Remdesivir and PaxlovidTM in pediatric cancer patients. There is no specific treatment designed exclusively for pediatric cancer patients dealing with COVID-19, and it is advisable to avoid self-medication to prevent potential side effects. Managing COVID-19 in pediatric cancer patients is indeed a substantial challenge. New strategies, such as chemotherapy application rooms, have been implemented for children with cancer who were positive for COVID-19 but asymptomatic since the risk of disease progression is greater than the risk of complications from SARS-CoV-2.


Subject(s)
Alanine , Antiviral Agents , COVID-19 , Neoplasms , SARS-CoV-2 , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/complications , COVID-19/epidemiology , Child , Antiviral Agents/therapeutic use , SARS-CoV-2/drug effects , Alanine/analogs & derivatives , Alanine/therapeutic use , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , COVID-19 Drug Treatment , Pandemics
20.
Sci Rep ; 14(1): 10025, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693137

ABSTRACT

The coronavirus-2 has led to a global pandemic of COVID-19 with an outbreak of severe acute respiratory syndrome leading to worldwide quarantine measures and a rise in death rates. The objective of this study is to propose a green, sensitive, and selective densitometric method to simultaneously quantify remdesivir (REM) in the presence of the co-administered drug linezolid (LNZ) and rivaroxaban (RIV) in spiked human plasma. TLC silica gel aluminum plates 60 F254 were used as the stationary phase, and the mobile phase was composed of dichloromethane (DCM): acetone (8.5:1.5, v/v) with densitometric detection at 254 nm. Well-resolved peaks have been observed with retardation factors (Rf) of 0.23, 0.53, and 0.72 for REM, LNZ, and RIV, respectively. A validation study was conducted according to ICH Q2 (R1) Guidelines. The method was rectilinear over the concentration ranges of 0.2-5.5 µg/band, 0.2-4.5 µg/band and 0.1-3.0 µg/band for REM, LNZ and RIV, respectively. The sensitivities of REM, LIN, and RIV were outstanding, with quantitation limits of 128.8, 50.5, and 55.8 ng/band, respectively. The approach has shown outstanding recoveries ranging from 98.3 to 101.2% when applied to pharmaceutical formulations and spiked human plasma. The method's greenness was assessed using Analytical Eco-scale, GAPI, and AGREE metrics.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/blood , SARS-CoV-2/drug effects , COVID-19/blood , Chromatography, Thin Layer/methods , Cost-Benefit Analysis , Alanine/blood , Linezolid/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...