Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.213
Filter
1.
Sci Adv ; 10(34): eadp5753, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39178260

ABSTRACT

Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency, centromeric instability, and facial anomalies syndrome, characterized by DNA hypomethylation at heterochromatin. It remains unclear why CDCA7-HELLS is the sole nucleosome remodeling complex whose deficiency abrogates the maintenance of DNA methylation. We here identify the unique zinc-finger domain of CDCA7 as an evolutionarily conserved hemimethylation-sensing zinc finger (HMZF) domain. Cryo-electron microscopy structural analysis of the CDCA7-nucleosome complex reveals that the HMZF domain can recognize hemimethylated CpG in the outward-facing DNA major groove within the nucleosome core particle, whereas UHRF1, the critical activator of the maintenance methyltransferase DNMT1, cannot. CDCA7 recruits HELLS to hemimethylated chromatin and facilitates UHRF1-mediated H3 ubiquitylation associated with replication-uncoupled maintenance DNA methylation. We propose that the CDCA7-HELLS nucleosome remodeling complex assists the maintenance of DNA methylation on chromatin by sensing hemimethylated CpG that is otherwise inaccessible to UHRF1 and DNMT1.


Subject(s)
CCAAT-Enhancer-Binding Proteins , DNA Methylation , Nucleosomes , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Nucleosomes/metabolism , Nucleosomes/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Cryoelectron Microscopy , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , CpG Islands , Ubiquitination , Evolution, Molecular , DNA/metabolism , DNA/chemistry , DNA/genetics , Zinc Fingers , Chromatin/metabolism , Chromatin/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , DNA Helicases/chemistry , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/chemistry , Eukaryota/genetics , Eukaryota/metabolism , Protein Binding , Histones/metabolism , Histones/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/chemistry
2.
Nat Commun ; 15(1): 6445, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085263

ABSTRACT

MuB is a non-specific DNA-binding protein and AAA+ ATPase that significantly influences the DNA transposition process of bacteriophage Mu, especially in target DNA selection for transposition. While studies have established the ATP-dependent formation of MuB filament as pivotal to this process, the high-resolution structure of a full-length MuB protomer and the underlying molecular mechanisms governing its oligomerization remain elusive. Here, we use cryo-EM to obtain a 3.4-Å resolution structure of the ATP(+)-DNA(+)-MuB helical filament, which encapsulates the DNA substrate within its axial channel. The structure categorizes MuB within the initiator clade of the AAA+ protein family and precisely locates the ATP and DNA binding sites. Further investigation into the oligomeric states of MuB show the existence of various forms of the filament. These findings lead to a mechanistic model where MuB forms opposite helical filaments along the DNA, exposing potential target sites on the bare DNA and then recruiting MuA, which stimulates MuB's ATPase activity and disrupts the previously formed helical structure. When this happens, MuB generates larger ring structures and dissociates from the DNA.


Subject(s)
Bacteriophage mu , Cryoelectron Microscopy , DNA, Viral , DNA-Binding Proteins , Viral Proteins , Bacteriophage mu/genetics , Bacteriophage mu/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry , DNA, Viral/genetics , DNA, Viral/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Models, Molecular , Adenosine Triphosphate/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/chemistry , Binding Sites , Protein Multimerization
3.
Subcell Biochem ; 104: 485-501, 2024.
Article in English | MEDLINE | ID: mdl-38963497

ABSTRACT

Valosin-containing protein (VCP), also known as p97, is an evolutionarily conserved AAA+ ATPase essential for cellular homeostasis. Cooperating with different sets of cofactors, VCP is involved in multiple cellular processes through either the ubiquitin-proteasome system (UPS) or the autophagy/lysosomal route. Pathogenic mutations frequently found at the interface between the NTD domain and D1 ATPase domain have been shown to cause malfunction of VCP, leading to degenerative disorders including the inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS), and cancers. Therefore, VCP has been considered as a potential therapeutic target for neurodegeneration and cancer. Most of previous studies found VCP predominantly exists and functions as a hexamer, which unfolds and extracts ubiquitinated substrates from protein complexes for degradation. However, recent studies have characterized a new VCP dodecameric state and revealed a controlling mechanism of VCP oligomeric states mediated by the D2 domain nucleotide occupancy. Here, we summarize our recent knowledge on VCP oligomerization, regulation, and potential implications of VCP in cellular function and pathogenic progression.


Subject(s)
Valosin Containing Protein , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/chemistry , Humans , Protein Multimerization , Animals , Mutation , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/chemistry , Osteitis Deformans/genetics , Osteitis Deformans/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , Myositis, Inclusion Body/genetics , Myositis, Inclusion Body/metabolism , Muscular Dystrophies, Limb-Girdle
4.
Cell Res ; 34(8): 545-555, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38834762

ABSTRACT

Coupling distinct enzymatic effectors emerges as an efficient strategy for defense against phage infection in bacterial immune responses, such as the widely studied nuclease and cyclase activities in the type III CRISPR-Cas system. However, concerted enzymatic activities in other bacterial defense systems are poorly understood. Here, we biochemically and structurally characterize a two-component defense system DUF4297-HerA, demonstrating that DUF4297-HerA confers resistance against phage infection by cooperatively cleaving dsDNA and hydrolyzing ATP. DUF4297 alone forms a dimer, and HerA alone exists as a nonplanar split spiral hexamer, both of which exhibit extremely low enzymatic activity. Interestingly, DUF4297 and HerA assemble into an approximately 1 MDa supramolecular complex, where two layers of DUF4297 (6 DUF4297 molecules per layer) linked via inter-layer dimerization of neighboring DUF4297 molecules are stacked on top of the HerA hexamer. Importantly, the complex assembly promotes dimerization of DUF4297 molecules in the upper layer and enables a transition of HerA from a nonplanar hexamer to a planar hexamer, thus activating their respective enzymatic activities to abrogate phage infection. Together, our findings not only characterize a novel dual-enzyme anti-phage defense system, but also reveal a unique activation mechanism by cooperative complex assembly in bacterial immunity.


Subject(s)
Bacteriophages , Bacteriophages/enzymology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , CRISPR-Cas Systems , Protein Multimerization , Adenosine Triphosphate/metabolism , Models, Molecular
5.
J Mol Biol ; 436(16): 168689, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38936696

ABSTRACT

Assessing membrane protein stability is among the major challenges in protein science due to their inherent complexity, which complicates the application of conventional biophysical tools. In this work, sodium dodecyl sulfate-induced denaturation of AfCopA, a Cu(I)-transport ATPase from Archaeoglobus fulgidus, was explored using a combined model-free spectral phasor analysis and a model-dependent thermodynamic analysis. Decrease in tryptophan and 1-anilino-naphthalene-8-sulfonate fluorescence intensity, displacements in the spectral phasor space, and the loss of ATPase activity were reversibly induced by this detergent. Refolding from the SDS-induced denatured state yields an active enzyme that is functionally and spectroscopically indistinguishable from the native state of the protein. Phasor analysis of Trp spectra allowed us to identify two intermediate states in the SDS-induced denaturation of AfCopA, a result further supported by principal component analysis. In contrast, traditional thermodynamic analysis detected only one intermediate state, and including the second one led to overparameterization. Additionally, ANS fluorescence spectral analysis detected one more intermediate and a gradual change at the level of the hydrophobic transmembrane surface of the protein. Based on this evidence, a model for acquiring the native structure of AfCopA in a membrane-like environment is proposed.


Subject(s)
Archaeoglobus fulgidus , Membrane Proteins , Protein Denaturation , Sodium Dodecyl Sulfate , Thermodynamics , Sodium Dodecyl Sulfate/chemistry , Sodium Dodecyl Sulfate/pharmacology , Archaeoglobus fulgidus/enzymology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Spectrometry, Fluorescence , Protein Stability , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Anilino Naphthalenesulfonates/chemistry , Anilino Naphthalenesulfonates/metabolism , Tryptophan/chemistry , Tryptophan/metabolism , Copper/chemistry , Copper/metabolism , Protein Folding , Protein Conformation
6.
J Biol Chem ; 300(7): 107440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844133

ABSTRACT

ABC transporters are found in all organisms and almost every cellular compartment. They mediate the transport of various solutes across membranes, energized by ATP binding and hydrolysis. Dysfunctions can result in severe diseases, such as cystic fibrosis or antibiotic resistance. In type IV ABC transporters, each of the two nucleotide-binding domains is connected to a transmembrane domain by two coupling helices, which are part of cytosolic loops. Although there are many structural snapshots of different conformations, the interdomain communication is still enigmatic. Therefore, we analyzed the function of three conserved charged residues in the intracytosolic loop 1 of the human homodimeric, lysosomal peptide transporter TAPL (transporter associated with antigen processing-like). Substitution of D278 in coupling helix 1 by alanine interrupted peptide transport by impeding ATP hydrolysis. Alanine substitution of R288 and D292, both localized next to the coupling helix 1 extending to transmembrane helix 3, reduced peptide transport but increased basal ATPase activity. Surprisingly, the ATPase activity of the R288A variant dropped in a peptide-dependent manner, whereas ATPase activity of wildtype and D292A was unaffected. Interestingly, R288A and D292A mutants did not differentiate between ATP and GTP in respect of hydrolysis. However, in contrast to wildtye TAPL, only ATP energized peptide transport. In sum, D278 seems to be involved in bidirectional interdomain communication mediated by network of polar interactions, whereas the two residues in the cytosolic extension of transmembrane helix 3 are involved in regulation of ATP hydrolysis, most likely by stabilization of the outward-facing conformation.


Subject(s)
ATP-Binding Cassette Transporters , Adenosine Triphosphate , Protein Multimerization , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Humans , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Hydrolysis , Amino Acid Substitution , Protein Domains , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics
7.
Proc Natl Acad Sci U S A ; 121(24): e2316892121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833472

ABSTRACT

The loss of function of AAA (ATPases associated with diverse cellular activities) mechanoenzymes has been linked to diseases, and small molecules that activate these proteins can be powerful tools to probe mechanisms and test therapeutic hypotheses. Unlike chemical inhibitors that can bind a single conformational state to block enzyme function, activator binding must be permissive to different conformational states needed for mechanochemistry. However, we do not know how AAA proteins can be activated by small molecules. Here, we focus on valosin-containing protein (VCP)/p97, an AAA unfoldase whose loss of function has been linked to protein aggregation-based disorders, to identify druggable sites for chemical activators. We identified VCP ATPase Activator 1 (VAA1), a compound that dose-dependently stimulates VCP ATPase activity up to ~threefold. Our cryo-EM studies resulted in structures (ranging from ~2.9 to 3.7 Å-resolution) of VCP in apo and ADP-bound states and revealed that VAA1 binds an allosteric pocket near the C-terminus in both states. Engineered mutations in the VAA1-binding site confer resistance to VAA1, and furthermore, modulate VCP activity. Mutation of a phenylalanine residue in the VCP C-terminal tail that can occupy the VAA1 binding site also stimulates ATPase activity, suggesting that VAA1 acts by mimicking this interaction. Together, our findings uncover a druggable allosteric site and a mechanism of enzyme regulation that can be tuned through small molecule mimicry.


Subject(s)
Valosin Containing Protein , Valosin Containing Protein/metabolism , Valosin Containing Protein/chemistry , Valosin Containing Protein/genetics , Allosteric Regulation , Humans , Protein Binding , Molecular Mimicry , Cryoelectron Microscopy , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Binding Sites , Allosteric Site , Models, Molecular , Protein Conformation
8.
Nature ; 630(8018): 1003-1011, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926614

ABSTRACT

Transposases drive chromosomal rearrangements and the dissemination of drug-resistance genes and toxins1-3. Although some transposases act alone, many rely on dedicated AAA+ ATPase subunits that regulate site selectivity and catalytic function through poorly understood mechanisms. Using IS21 as a model transposase system, we show how an ATPase regulator uses nucleotide-controlled assembly and DNA deformation to enable structure-based site selectivity, transposase recruitment, and activation and integration. Solution and cryogenic electron microscopy studies show that the IstB ATPase self-assembles into an autoinhibited pentamer of dimers that tightly curves target DNA into a half-coil. Two of these decamers dimerize, which stabilizes the target nucleic acid into a kinked S-shaped configuration that engages the IstA transposase at the interface between the two IstB oligomers to form an approximately 1 MDa transpososome complex. Specific interactions stimulate regulator ATPase activity and trigger a large conformational change on the transposase that positions the catalytic site to perform DNA strand transfer. These studies help explain how AAA+ ATPase regulators-which are used by classical transposition systems such as Tn7, Mu and CRISPR-associated elements-can remodel their substrate DNA and cognate transposases to promote function.


Subject(s)
AAA Domain , Adenosine Triphosphatases , Transposases , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/ultrastructure , Catalytic Domain , Cryoelectron Microscopy , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA/ultrastructure , DNA Transposable Elements/genetics , Enzyme Activation , Models, Molecular , Protein Multimerization , Transposases/metabolism , Transposases/chemistry
9.
RNA ; 30(9): 1199-1212, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38876504

ABSTRACT

The spliceosome performs two consecutive transesterification reactions using one catalytic center, thus requiring its rearrangement between the two catalytic steps of splicing. The Prp16 ATPase facilitates exit from the first-step conformation of the catalytic center by destabilizing some interactions important for catalysis. To better understand rearrangements within the Saccharomyces cerevisiae catalytic center, we characterize factors that modulate the function of Prp16: Cwc2, N-terminal domain of Prp8, and U6-41AACAAU46 region. Alleles of these factors were identified through genetic screens for mutants that correct cs defects of prp16-302 alleles. Several of the identified U6, cwc2, and prp8 alleles are located in close proximity of each other in cryo-EM structures of the spliceosomal catalytic conformations. Cwc2 and U6 interact with the intron sequences in the first step, but they do not seem to contribute to the stability of the second-step catalytic center. On the other hand, the N-terminal segment of Prp8 not only affects intron positioning for the first step, but it also makes important contacts in the proximity of the active site for both the first and second steps of splicing. By identifying interactions important for the stability of catalytic conformations, our genetic analyses indirectly inform us about features of the transition-state conformation of the spliceosome.


Subject(s)
RNA Splicing Factors , RNA Splicing , RNA, Small Nuclear , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Spliceosomes , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , RNA, Small Nuclear/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spliceosomes/metabolism , Spliceosomes/genetics , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/chemistry , Introns/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Cryoelectron Microscopy , Mutation , Protein Binding , Catalytic Domain , Alleles , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/chemistry , RNA-Binding Proteins , Ribonucleoprotein, U5 Small Nuclear , RNA Helicases
10.
Nucleic Acids Res ; 52(12): 7321-7336, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38842933

ABSTRACT

The ParABS system, composed of ParA (an ATPase), ParB (a DNA binding protein), and parS (a centromere-like DNA), regulates bacterial chromosome partition. The ParB-parS partition complex interacts with the nucleoid-bound ParA to form the nucleoid-adaptor complex (NAC). In Helicobacter pylori, ParA and ParB homologs are encoded as HpSoj and HpSpo0J (HpParA and HpParB), respectively. We determined the crystal structures of the ATP hydrolysis deficient mutant, HpParAD41A, and the HpParAD41A-DNA complex. We assayed the CTPase activity of HpParB and identified two potential DNA binding modes of HpParB regulated by CTP, one is the specific DNA binding by the DNA binding domain and the other is the non-specific DNA binding through the C-terminal domain under the regulation of CTP. We observed an interaction between HpParAD41A and the N-terminus fragment of HpParB (residue 1-10, HpParBN10) and determined the crystal structure of the ternary complex, HpParAD41A-DNA-HpParBN10 complex which mimics the NAC formation. HpParBN10 binds near the HpParAD41A dimer interface and is clamped by flexible loops, L23 and L34, through a specific cation-π interaction between Arg9 of HpParBN10 and Phe52 of HpParAD41A. We propose a molecular mechanism model of the ParABS system providing insight into chromosome partition in bacteria.


Subject(s)
Bacterial Proteins , Chromosomes, Bacterial , DNA-Binding Proteins , Helicobacter pylori , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Chromosomes, Bacterial/metabolism , Chromosomes, Bacterial/chemistry , Chromosomes, Bacterial/genetics , Models, Molecular , Crystallography, X-Ray , Protein Binding , DNA, Bacterial/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Chromosome Segregation , Adenosine Triphosphate/metabolism , Binding Sites
11.
J Med Chem ; 67(10): 8186-8200, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38733345

ABSTRACT

The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure-function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent post-translational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes.


Subject(s)
ATPases Associated with Diverse Cellular Activities , DNA-Binding Proteins , Histones , Lysine , Histones/metabolism , Histones/chemistry , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/chemistry , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , Lysine/metabolism , Lysine/chemistry , Acetylation , Protein Processing, Post-Translational , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Protein Binding , Protein Domains , Models, Molecular , Binding Sites
12.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 397-409, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38805245

ABSTRACT

Type VII secretion (T7S) systems, also referred to as ESAT-6 secretion (ESX) systems, are molecular machines that have gained great attention due to their implications in cell homeostasis and in host-pathogen interactions in mycobacteria. The latter include important human pathogens such as Mycobacterium tuberculosis (Mtb), the etiological cause of human tuberculosis, which constitutes a pandemic accounting for more than one million deaths every year. The ESX-5 system is exclusively found in slow-growing pathogenic mycobacteria, where it mediates the secretion of a large family of virulence factors: the PE and PPE proteins. The secretion driving force is provided by EccC5, a multidomain ATPase that operates using four globular cytosolic domains: an N-terminal domain of unknown function (EccC5DUF) and three FtsK/SpoIIIE ATPase domains. Recent structural and functional studies of ESX-3 and ESX-5 systems have revealed EccCDUF to be an ATPase-like fold domain with potential ATPase activity, the functionality of which is essential for secretion. Here, the crystal structure of the MtbEccC5DUF domain is reported at 2.05 Šresolution, which reveals a nucleotide-free structure with degenerated cis-acting and trans-acting elements involved in ATP binding and hydrolysis. This crystallographic study, together with a biophysical assessment of the interaction of MtbEccC5DUF with ATP/Mg2+, supports the absence of ATPase activity proposed for this domain. It is shown that this degeneration is also present in DUF domains from other ESX and ESX-like systems, which are likely to exhibit poor or null ATPase activity. Moreover, based on an in silico model of the N-terminal region of MtbEccC5DUF, it is hypothesized that MtbEccC5DUF is a degenerated ATPase domain that may have retained the ability to hexamerize. These observations draw attention to DUF domains as structural elements with potential implications in the opening and closure of the membrane pore during the secretion process via their involvement in inter-protomer interactions.


Subject(s)
Adenosine Triphosphatases , Bacterial Proteins , Mycobacterium tuberculosis , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Mycobacterium tuberculosis/enzymology , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Protein Domains , Crystallography, X-Ray , Models, Molecular , Humans , Type VII Secretion Systems/metabolism , Type VII Secretion Systems/chemistry , Virulence Factors
13.
J Biol Chem ; 300(6): 107387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763336

ABSTRACT

The cryo-EM resolution revolution has heralded a new era in our understanding of eukaryotic lipid flippases with a rapidly growing number of high-resolution structures. Flippases belong to the P4 family of ATPases (type IV P-type ATPases) that largely follow the reaction cycle proposed for the more extensively studied cation-transporting P-type ATPases. However, unlike the canonical P-type ATPases, no flippase cargos are transported in the phosphorylation half-reaction. Instead of being released into the intracellular or extracellular milieu, lipid cargos are transported to their destination at the inner leaflet of the membrane. Recent flippase structures have revealed multiple conformational states during the lipid transport cycle. Nonetheless, critical conformational states capturing the lipid cargo "in transit" are still missing. In this review, we highlight the amazing structural advances of these lipid transporters, discuss various perspectives on catalytic and regulatory mechanisms in the literature, and shed light on future directions in further deciphering the detailed molecular mechanisms of lipid flipping.


Subject(s)
Adenosine Triphosphatases , Humans , Animals , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Cryoelectron Microscopy , Biological Transport , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Lipid Metabolism , Protein Conformation
14.
Elife ; 132024 May 29.
Article in English | MEDLINE | ID: mdl-38809771

ABSTRACT

The yeast SWR1C chromatin remodeling enzyme catalyzes the ATP-dependent exchange of nucleosomal histone H2A for the histone variant H2A.Z, a key variant involved in a multitude of nuclear functions. How the 14-subunit SWR1C engages the nucleosomal substrate remains largely unknown. Studies on the ISWI, CHD1, and SWI/SNF families of chromatin remodeling enzymes have demonstrated key roles for the nucleosomal acidic patch for remodeling activity, however a role for this nucleosomal epitope in nucleosome editing by SWR1C has not been tested. Here, we employ a variety of biochemical assays to demonstrate an essential role for the acidic patch in the H2A.Z exchange reaction. Utilizing asymmetrically assembled nucleosomes, we demonstrate that the acidic patches on each face of the nucleosome are required for SWR1C-mediated dimer exchange, suggesting SWR1C engages the nucleosome in a 'pincer-like' conformation, engaging both patches simultaneously. Loss of a single acidic patch results in loss of high affinity nucleosome binding and nucleosomal stimulation of ATPase activity. We identify a conserved arginine-rich motif within the Swc5 subunit that binds the acidic patch and is key for dimer exchange activity. In addition, our cryoEM structure of a Swc5-nucleosome complex suggests that promoter proximal, histone H2B ubiquitylation may regulate H2A.Z deposition. Together these findings provide new insights into how SWR1C engages its nucleosomal substrate to promote efficient H2A.Z deposition.


Subject(s)
Adenosine Triphosphatases , Histones , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Histones/chemistry , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Chromatin Assembly and Disassembly , Protein Binding , Protein Multimerization
15.
Biochemistry ; 63(11): 1493-1504, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38742407

ABSTRACT

DNA gyrases catalyze negative supercoiling of DNA, are essential for bacterial DNA replication, transcription, and recombination, and are important antibacterial targets in multiple pathogens, including Mycobacterium tuberculosis, which in 2021 caused >1.5 million deaths worldwide. DNA gyrase is a tetrameric (A2B2) protein formed from two subunit types: gyrase A (GyrA) carries the breakage-reunion active site, whereas gyrase B (GyrB) catalyzes ATP hydrolysis required for energy transduction and DNA translocation. The GyrB ATPase domains dimerize in the presence of ATP to trap the translocated DNA (T-DNA) segment as a first step in strand passage, for which hydrolysis of one of the two ATPs and release of the resulting inorganic phosphate is rate-limiting. Here, dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations of the dimeric 43 kDa N-terminal fragment of M. tuberculosis GyrB show how events at the ATPase site (dissociation/hydrolysis of bound nucleotides) are propagated through communication pathways to other functionally important regions of the GyrB ATPase domain. Specifically, our simulations identify two distinct pathways that respectively connect the GyrB ATPase site to the corynebacteria-specific C-loop, thought to interact with GyrA prior to DNA capture, and to the C-terminus of the GyrB transduction domain, which in turn contacts the C-terminal GyrB topoisomerase-primase (TOPRIM) domain responsible for interactions with GyrA and the centrally bound G-segment DNA. The connection between the ATPase site and the C-loop of dimeric GyrB is consistent with the unusual properties of M. tuberculosis DNA gyrase relative to those from other bacterial species.


Subject(s)
Adenosine Triphosphatases , DNA Gyrase , Molecular Dynamics Simulation , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , DNA Gyrase/metabolism , DNA Gyrase/chemistry , DNA Gyrase/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Protein Domains , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Signal Transduction
16.
J Mol Biol ; 436(10): 168575, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38641238

ABSTRACT

DNA mismatch repair endonuclease MutL is a member of GHKL ATPase superfamily. Mutations of MutL homologs are causative of a hereditary cancer, Lynch syndrome. We characterized MutL homologs from human and a hyperthermophile, Aquifex aeolicus, (aqMutL) to reveal the catalytic mechanism for the ATPase activity. Although involvement of a basic residue had not been conceived in the catalytic mechanism, analysis of the pH dependence of the aqMutL ATPase activity revealed that the reaction is catalyzed by a residue with an alkaline pKa. Analyses of mutant aqMutLs showed that Lys79 is the catalytic residue, and the corresponding residues were confirmed to be critical for activities of human MutL homologs, on the basis of which a catalytic mechanism for MutL ATPase is proposed. These and other results described here would contribute to evaluating the pathogenicity of Lynch syndrome-associated missense mutations. Furthermore, it was confirmed that the catalytic lysine residue is conserved among DNA gyrases and microrchidia ATPases, other members of GHKL ATPases, indicating that the catalytic mechanism proposed here is applicable to these members of the superfamily.


Subject(s)
Adenosine Triphosphatases , DNA Gyrase , DNA-Binding Proteins , Lysine , MutL Proteins , Transcription Factors , Humans , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Catalysis , Catalytic Domain , Conserved Sequence , Hydrogen-Ion Concentration , Lysine/chemistry , Lysine/genetics , MutL Proteins/chemistry , MutL Proteins/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , DNA Gyrase/chemistry , DNA Gyrase/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics
17.
Nature ; 629(8011): 467-473, 2024 May.
Article in English | MEDLINE | ID: mdl-38471529

ABSTRACT

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Subject(s)
Bacillus cereus , Bacterial Proteins , Bacteriophages , Cryoelectron Microscopy , Immunity, Innate , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/ultrastructure , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Apoproteins/chemistry , Apoproteins/immunology , Apoproteins/metabolism , Apoproteins/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Bacteriophages/immunology , DNA/metabolism , DNA/chemistry , DNA Cleavage , Magnesium/chemistry , Magnesium/metabolism , Models, Molecular , Protein Binding , Protein Domains , Microbial Viability , Bacillus cereus/chemistry , Bacillus cereus/immunology , Bacillus cereus/metabolism , Bacillus cereus/ultrastructure , Protein Structure, Quaternary , DNA Primase/chemistry , DNA Primase/metabolism , DNA Primase/ultrastructure , DNA Topoisomerases/chemistry , DNA Topoisomerases/metabolism , DNA Topoisomerases/ultrastructure
18.
Braz J Microbiol ; 55(2): 1033-1051, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38386260

ABSTRACT

Mycobacterium tuberculosis is composed of a cumbersome signaling and protein network which partakes in bacterial survival and augments its pathogenesis. Mycobacterial PhoH2 (Mt-PhoH2) is a signaling element and a predictive phosphate starvation protein that works in an ATP-dependent manner. Here, we elaborated the characterization of Mt-PhoH2 through biophysical, biochemical, and computational methods. In addition to its intrinsic ATPase activity, the biochemical experiments revealed its GTPase activity and both activities are metal ion dependent. Magnesium, manganese, copper, iron, nickel, zinc, cesium, calcium, and lithium were examined for their effect on activity, and the optimum activity was found with 10 mM of Mg2+ ions. The kinetic parameters of 3 µM Mt-PhoH2 were observed as Km 4.873 ± 0.44 µM, Vmax 12.3817 ± 0.084 µM/min/mg, Kcat 0.0075 ± 0.00005 s-1, and Kcat/Km 0.0015 ± 0.000001 µM-1 s-1 with GTP. In the case of GTP as a substrate, a 20% decrease in enzymatic activity and a 50% increase in binding affinity of Mt-PhoH2 were observed. The substrates ADP and GDP inhibit the ATPase and GTPase activity of Mt-PhoH2. CD spectroscopy showed the dominance of alpha helix in the secondary structure of Mt-PhoH2, and this structural pattern was altered upon addition of ATP and GTP. In silico inhibitor screening revealed ML141 and NAV_2729 as two potential inhibitors of the catalytic activity of Mt-PhoH2. Mt-PhoH2 is essential for mycobacterial growth as its knockdown strain showed a decreased growth effect. Overall, the present article emphasizes the factors essential for the proper functioning of Mt-PhoH2 which is a participant in the toxin-antitoxin machinery and may also play an important role in phosphate starvation.


Subject(s)
Bacterial Proteins , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Kinetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/chemistry
19.
Biochem Cell Biol ; 102(3): 226-237, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38377487

ABSTRACT

We here describe the structure-based design of small molecule inhibitors of the type IV secretion system of Helicobacter pylori. The secretion system is encoded by the cag pathogenicity island, and we chose Cagα, a hexameric ATPase and member of the family of VirB11-like proteins, as target for inhibitor design. We first solved the crystal structure of Cagα in a complex with the previously identified small molecule inhibitor 1G2. The molecule binds at the interface between two Cagα subunits and mutagenesis of the binding site identified Cagα residues F39 and R73 as critical for 1G2 binding. Based on the inhibitor binding site we synthesized 98 small molecule derivates of 1G2 to improve binding of the inhibitor. We used the production of interleukin-8 of gastric cancer cells during H. pylori infection to screen the potency of inhibitors and we identified five molecules (1G2_1313, 1G2_1338, 1G2_2886, 1G2_2889, and 1G2_2902) that have similar or higher potency than 1G2. Differential scanning fluorimetry suggested that these five molecules bind Cagα, and enzyme assays demonstrated that some are more potent ATPase inhibitors than 1G2. Finally, scanning electron microscopy revealed that 1G2 and its derivatives inhibit the assembly of T4SS-determined extracellular pili suggesting a mechanism for their anti-virulence effect.


Subject(s)
Adenosine Triphosphatases , Bacterial Proteins , Helicobacter pylori , Helicobacter pylori/enzymology , Humans , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Type IV Secretion Systems/metabolism , Type IV Secretion Systems/chemistry , Type IV Secretion Systems/antagonists & inhibitors , Drug Design , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Models, Molecular , Binding Sites , Structure-Activity Relationship , Cell Line, Tumor , Interleukin-8/metabolism
20.
Nat Chem ; 16(3): 363-372, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38326645

ABSTRACT

The human enzyme p97 regulates various cellular pathways by unfolding hundreds of protein substrates in an ATP-dependent manner, making it an essential component of protein homeostasis and an impactful pharmacological target. The hexameric complex undergoes substantial conformational changes throughout its catalytic cycle. Here we elucidate the molecular motions that occur at the active site in the temporal window immediately before and after ATP hydrolysis by merging cryo-EM, NMR spectroscopy and molecular dynamics simulations. p97 populates a metastable reaction intermediate, the ADP·Pi state, which is poised between hydrolysis and product release. Detailed snapshots reveal that the active site is finely tuned to trap and eventually discharge the cleaved phosphate. Signalling pathways originating at the active site coordinate the action of the hexamer subunits and couple hydrolysis with allosteric conformational changes. Our multidisciplinary approach enables a glimpse into the sophisticated spatial and temporal orchestration of ATP handling by a prototype AAA+ protein.


Subject(s)
Adenosine Triphosphatases , Adenosine Triphosphate , Humans , Adenosine Triphosphate/chemistry , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Valosin Containing Protein , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL