Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.545
Filter
1.
J Clin Invest ; 134(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949025

ABSTRACT

Healthy adipose tissue is essential for normal physiology. There are 2 broad types of adipose tissue depots: brown adipose tissue (BAT), which contains adipocytes poised to burn energy through thermogenesis, and white adipose tissue (WAT), which contains adipocytes that store lipids. However, within those types of adipose, adipocytes possess depot and cell-specific properties that have important implications. For example, the subcutaneous and visceral WAT confers divergent risk for metabolic disease. Further, within a depot, different adipocytes can have distinct properties; subcutaneous WAT can contain adipocytes with either white or brown-like (beige) adipocyte properties. However, the pathways that regulate and maintain this cell and depot-specificity are incompletely understood. Here, we found that the transcription factor KLF15 is required for maintaining white adipocyte properties selectively within the subcutaneous WAT. We revealed that deletion of Klf15 is sufficient to induce beige adipocyte properties and that KLF15's direct regulation of Adrb1 is a critical molecular mechanism for this process. We uncovered that this activity is cell autonomous but has systemic implications in mouse models and is conserved in primary human adipose cells. Our results elucidate a pathway for depot-specific maintenance of white adipocyte properties that could enable the development of therapies for obesity and associated diseases.


Subject(s)
Adipocytes, White , Kruppel-Like Transcription Factors , Subcutaneous Fat , Animals , Mice , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Adipocytes, White/metabolism , Subcutaneous Fat/metabolism , Humans , Mice, Knockout , Adipose Tissue, White/metabolism , Male , Adipocytes, Beige/metabolism
2.
Commun Biol ; 7(1): 787, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951550

ABSTRACT

Adipose tissue development begins in the fetal period, and continues to expand after birth. Dysregulation of adipose tissue during weaning may predispose individuals to lifelong metabolic disorders. However, the developmental remodeling of adipose tissue during weaning remains largely unexplored. Here we comprehensively compare the changes in mouse subcutaneous white adipose tissue from 7 days after birth to 7 days after weaning using single-cell RNA sequencing along with other molecular and histologic assays. We characterize the developmental trajectory of preadipocytes and indicate the commitment of preadipocytes with beige potential during weaning. Meanwhile, we find immune cells unique to weaning period, whose expression of extracellular matrix proteins implies potential regulation on preadipocyte. Finally, the strongest cell-cell interaction during weaning determined by the TGFß ligand-receptor pairs is between preadipocytes and endotheliocytes. Our results provide a detailed and unbiased cellular landscape and offer insights into the potential regulation of adipose tissue remodeling during weaning.


Subject(s)
Adipose Tissue, White , Single-Cell Analysis , Subcutaneous Fat , Weaning , Animals , Mice , Adipose Tissue, White/metabolism , Adipose Tissue, White/cytology , Subcutaneous Fat/metabolism , Subcutaneous Fat/cytology , Mice, Inbred C57BL , Adipocytes/metabolism , Adipocytes/cytology , Male , Female
3.
Anal Chem ; 96(25): 10373-10379, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865715

ABSTRACT

Spatially offset Raman spectroscopy (SORS) enhanced the capabilities of Raman spectroscopy for the depth-resolved analysis of biological and diffusely scattering samples. This technique offers selective probing of subsurface layers, providing molecular insights without invasive procedures. While SORS has found application in biomedical research, up to now, studies have focused mainly on the detection of mineralization of bones and tissues. Herein, for the first time, SORS is used to assess the soft, organic tissue beneath the skin's surface. In this study, we demonstrate the diagnostic utility of a hand-held SORS device for evaluating the chemical composition of the adipose tissue. We compared perigonadal white adipose tissue (gWAT) in a murine model of atherosclerosis, heart failure, and high-fat diet (HFD) induced obesity. Our results reveal distinct chemical differences in gWAT between HFD-fed and control mice, showcasing the potential of SORS for intravital adipose tissue phenotype characterization. Furthermore, our findings underscore the effectiveness of SORS as a valuable tool for noninvasive assessment of the adipose tissue composition, holding potential diagnostic significance for metabolic disorders.


Subject(s)
Adipose Tissue , Diet, High-Fat , Mice, Inbred C57BL , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Animals , Mice , Adipose Tissue/metabolism , Obesity/metabolism , Male , Atherosclerosis/metabolism , Adipose Tissue, White/metabolism
4.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38843936

ABSTRACT

Lipid composition is conserved within sub-cellular compartments to maintain cell function. Lipidomic analyses of liver, muscle, white and brown adipose tissue (BAT) mitochondria revealed substantial differences in their glycerophospholipid (GPL) and free cholesterol (FC) contents. The GPL to FC ratio was 50-fold higher in brown than white adipose tissue mitochondria. Their purity was verified by comparison of proteomes with ER and mitochondria-associated membranes. A lipid signature containing PC and FC, calculated from the lipidomic profiles, allowed differentiation of mitochondria from BAT of mice housed at different temperatures. Elevating FC in BAT mitochondria prevented uncoupling protein (UCP) 1 function, whereas increasing GPL boosted it. Similarly, STARD3 overexpression facilitating mitochondrial FC import inhibited UCP1 function in primary brown adipocytes, whereas a knockdown promoted it. We conclude that the mitochondrial GPL/FC ratio is key for BAT function and propose that targeting it might be a promising strategy to promote UCP1 activity.


Subject(s)
Adipose Tissue, Brown , Cholesterol , Lipidomics , Mitochondria , Uncoupling Protein 1 , Animals , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Mice , Adipose Tissue, Brown/metabolism , Cholesterol/metabolism , Mitochondria/metabolism , Lipidomics/methods , Organ Specificity , Mice, Inbred C57BL , Adipose Tissue, White/metabolism , Glycerophospholipids/metabolism , Male , Lipid Metabolism
5.
Lipids Health Dis ; 23(1): 192, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909257

ABSTRACT

BACKGROUND: Overweight, often known as obesity, is the abnormal and excessive accumulation of fat that exposes the health of a person at risk by increasing the likelihood that they may experience many chronic conditions. Consequently, obesity has become a global health threat, presenting serious health issues, and attracting a lot of attention in the healthcare profession and the scientific community. METHOD: This study aims to explore the anti-adipogenic properties of 7-MEGA™ in an attempt to address obesity, using both in vitro and in vivo research. The effects of 7MEGA™ at three distinct concentrations were investigated in obese mice who were given a high-fat diet (HFD) and 3T3-L1 adipocytes. RESULTS: 7MEGA™ decreased the total fat mass, overall body weight, and the perirenal and subcutaneous white adipose tissue (PWAT and SWAT) contents in HFD mice. Additionally, 7MEGA™ showed promise in improving the metabolic health of individuals with obesity and regulate the levels of insulin hormone, pro-inflammatory cytokines and adipokines. Furthermore, Peroxisome proliferator-activated receptors (PPAR) α and γ, Uncoupling Protein 1 (UCP-1), Sterol Regulatory Element-Binding Protein 1 (SREBP-1), Fatty Acid-Binding Protein 4 (FABP4), Fatty Acid Synthase (FAS), Acetyl-CoA Carboxylase (ACC), Stearoyl-CoA Desaturase-1 (SCD-1) and CCAAT/Enhancer-Binding Protein (C/EBPα) were among the adipogenic regulators that 7MEGA™ could regulate. CONCLUSION: In summary, this study uncovered that 7MEGA™ demonstrates anti-adipogenic and anti-obesity effects, suggesting its potential in combating obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Diet, High-Fat/adverse effects , Adipogenesis/drug effects , Obesity/metabolism , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Male , PPAR gamma/metabolism , PPAR gamma/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Mice, Obese , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Adipokines/metabolism , Anti-Obesity Agents/pharmacology , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , CCAAT-Enhancer-Binding Proteins
6.
Cell Death Dis ; 15(6): 443, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914551

ABSTRACT

Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation, adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis. Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases. Further research is needed to improve our understanding of this phenomenon.


Subject(s)
Aging , Homeostasis , Skin Aging , Humans , Aging/pathology , Aging/physiology , Skin Aging/physiology , Animals , Skin/pathology , Skin/metabolism , Adipose Tissue, White/metabolism , Adipogenesis
7.
Cells ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891115

ABSTRACT

The 9p21.3 genomic locus is a hot spot for disease-associated single-nucleotide polymorphisms (SNPs), and its strongest associations are with coronary artery disease (CAD). The disease-associated SNPs are located within the sequence of a long noncoding RNA ANRIL, which potentially contributes to atherogenesis by regulating vascular cell stress and proliferation, but also affects pancreatic ß-cell proliferation. Altered expression of a neighboring gene, CDKN2B, has been also recognized to correlate with obesity and hepatic steatosis in people carrying the risk SNPs. In the present study, we investigated the impact of 9p21.3 on obesity accompanied by hyperlipidemia in mice carrying a deletion of the murine ortholog for the 9p21.3 (Chr4Δ70/Δ70) risk locus in hyperlipidemic Ldlr-/-ApoB100/100 background. The Chr4Δ70/Δ70 mice showed decreased mRNA expression of insulin receptors in white adipose tissue already at a young age, which developed into insulin resistance and obesity by aging. In addition, the Sirt1-Ppargc1a-Ucp2 pathway was downregulated together with the expression of Cdkn2b, specifically in the white adipose tissue in Chr4Δ70/Δ70 mice. These results suggest that the 9p21.3 locus, ANRIL lncRNA, and their murine orthologues may regulate the key energy metabolism pathways in a white adipose tissue-specific manner in the presence of hypercholesterolemia, thus contributing to the pathogenesis of metabolic syndrome.


Subject(s)
Hypercholesterolemia , Insulin Resistance , Obesity , Animals , Obesity/genetics , Obesity/metabolism , Insulin Resistance/genetics , Hypercholesterolemia/genetics , Hypercholesterolemia/metabolism , Hypercholesterolemia/complications , Mice , Humans , Chromosomes, Human, Pair 9/genetics , Male , Gene Deletion , Genetic Loci , Mice, Inbred C57BL , Adipose Tissue, White/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
8.
STAR Protoc ; 5(2): 103042, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38850537

ABSTRACT

The mitochondrial stress test is a gold-standard approach for assessing adipose tissue physiological functions and pathological changes. Here, we present a protocol for conducting Seahorse assays using ex vivo mouse brown and white adipose depots. We describe steps for rehydrating the cartridge, preparing freshly harvested fat depots, placing them onto an islet capture plate, and incubating them in a non-CO2 incubator. We then detail procedures for adding mitochondrial stressor solutions and conducting the mitochondrial stress test using the Seahorse XFe24 Analyzer. For complete details on the use and execution of this protocol, please refer to An et al.1.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue, White , Mitochondria , Animals , Mice , Adipose Tissue, White/metabolism , Adipose Tissue, Brown/metabolism , Mitochondria/metabolism
9.
Sci Adv ; 10(26): eadn5229, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38924414

ABSTRACT

There is a regional preference around lymph nodes (LNs) for adipose beiging. Here, we show that local LN removal within inguinal white adipose tissue (iWAT) greatly impairs cold-induced beiging, and this impairment can be restored by injecting M2 macrophages or macrophage-derived C-C motif chemokine (CCL22) into iWAT. CCL22 injection into iWAT effectively promotes iWAT beiging, while blocking CCL22 with antibodies can prevent it. Mechanistically, the CCL22 receptor, C-C motif chemokine receptor 4 (CCR4), within eosinophils and its downstream focal adhesion kinase/p65/interleukin-4 signaling are essential for CCL22-mediated beige adipocyte formation. Moreover, CCL22 levels are inversely correlated with body weight and fat mass in mice and humans. Acute elevation of CCL22 levels effectively prevents diet-induced body weight and fat gain by enhancing adipose beiging. Together, our data identify the CCL22-CCR4 axis as an essential mediator for LN-controlled adaptive thermogenesis and highlight its potential to combat obesity and its associated complications.


Subject(s)
Adipose Tissue, White , Chemokine CCL22 , Energy Metabolism , Lymph Nodes , Macrophages , Thermogenesis , Animals , Female , Humans , Male , Mice , Adipocytes, Beige/metabolism , Adipose Tissue, White/metabolism , Chemokine CCL22/metabolism , Eosinophils/metabolism , Lymph Nodes/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Receptors, CCR4/metabolism , Signal Transduction
10.
Cancer Res Commun ; 4(7): 1655-1666, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38888911

ABSTRACT

Obesity is a modifiable predisposition factor for postmenopausal breast cancer. This suggests a localized, reciprocal interaction between breast cancer cells and the surrounding mammary white adipose tissue. To investigate how breast cancer cells alter the composition and function of adipose tissue, we screened the secretomes of 10 human breast cancer cell lines for the ability to modulate the differentiation of adipocyte stem and progenitor cells. The screen identified an adipogenic modulator, zinc-alpha-2-glycoprotein (ZAG/AZGP1) that is secreted by triple-negative breast cancer (TNBC) cells. TNBC-secreted ZAG inhibits adipogenesis and instead induces the expression of fibrotic genes. Accordingly, depletion of ZAG in TNBC cells attenuates fibrosis in white adipose tissue and inhibits tumor growth. Further, high expression of ZAG is linked to poor prognosis in patients with TNBC but not in patients with other clinical subtypes of breast cancer. Our findings suggest a role of TNBC-secreted ZAG in promoting the transdifferentiation of adipocyte stem and progenitor cells into cancer-associated fibroblasts to support tumorigenesis. SIGNIFICANCE: Functional screening of breast cancer secretomes revealed that triple-negative breast cancer promotes fibrosis in the adipose tissue microenvironment by secreting zinc-alpha-2-glycoprotein and promoting the transdifferentiation of adipocyte stem cells into myofibroblasts.


Subject(s)
Fibrosis , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Female , Mice , Fibrosis/metabolism , Fibrosis/pathology , Animals , Cell Line, Tumor , Adipogenesis , Adipocytes/metabolism , Adipocytes/pathology , Zn-Alpha-2-Glycoprotein , Tumor Microenvironment , Seminal Plasma Proteins/metabolism , Seminal Plasma Proteins/genetics , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology
11.
J Mol Endocrinol ; 73(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38832641

ABSTRACT

The objective was to assess the potential differential effects of human versus mouse growth hormone in vivo, given that human unlike mouse growth hormone can bind prolactin as well as the growth hormone receptor. To this end, a transgenic CD-1 mouse expressing human but not mouse growth hormone was generated, and the phenotypes of male mice fed with a regular chow or high-fat diet were assessed. Pancreas and epididymal white adipose tissue gene expression and/or related function were targeted as the pancreas responds to both prolactin and growth hormone receptor signaling, and catabolic effects like lipolytic activity are more directly attributable to growth hormone and growth hormone receptor signaling. The resulting human growth hormone-expressing mice are smaller than wild-type CD-1 mice, despite higher body fat and larger adipocytes, but both mouse types grow at the same rate with similar bone densities. Unlike wild-type mice, there was no significant delay in glucose clearance in human growth hormone-expressing mice when assessed at 8 versus 24 weeks on a high-fat diet. However, both mouse types showed signs of hepatic steatosis that correlated with elevated prolactin but not growth hormone RNA levels. The larger adipocytes in human growth hormone-expressing mice were associated with modified leptin (higher) and adiponectin (lower) RNA levels. Thus, while limited to observations in the male, the human growth hormone-expressing mice exhibit signs of growth hormone insufficiency and adipocyte dysfunction as well as an initial resistance to the negative effects of high-fat diet on glucose clearance.


Subject(s)
Adipose Tissue , Diet, High-Fat , Fatty Liver , Glucose , Homeostasis , Insulin Resistance , Mice, Transgenic , Animals , Humans , Diet, High-Fat/adverse effects , Insulin Resistance/genetics , Fatty Liver/metabolism , Fatty Liver/etiology , Fatty Liver/genetics , Mice , Male , Glucose/metabolism , Adipose Tissue/metabolism , Human Growth Hormone/metabolism , Human Growth Hormone/genetics , Growth Hormone/metabolism , Growth Hormone/genetics , Prolactin/metabolism , Leptin/metabolism , Adipocytes/metabolism , Adipose Tissue, White/metabolism
12.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38836615

ABSTRACT

About half of the world population carries at least one allele of the Ala92-DIO2, which slows down the activity of the type 2 deiodinase (D2), the enzyme that activates T4 to T3. Carrying the Ala92-DIO2 allele has been associated with increased body mass index and insulin resistance, but this has not been reproduced in all populations. To test if the genetic background affects the impact of this polymorphism, here we studied the genetically distant C57Bl/6J (B6) and FVB/N (FVB) mice carrying the Ala92-Dio2 allele as compared to control mice carrying the Thr92-Dio2 allele. Whereas B6-Ala92-Dio2 and B6-Thr92-Dio2 mice-fed chow or high-fat diet-behaved metabolically similar in studies using indirect calorimetry, glucose- and insulin tolerance tests, and measuring white adipose tissue (WAT) weight and liver steatosis, major differences were observed between FVB-Ala92-Dio2 and FVB-Thr92-Dio2 mice: carrying the Ala92-Dio2 allele (on a chow diet) resulted in hypercholesterolemia, smaller WAT pads, hepatomegaly, steatosis, and transcriptome changes in the interscapular brown adipose tissue (iBAT) typical of ER stress and apoptosis. Acclimatization at thermoneutrality (30 °C) eliminated most of the metabolic phenotype, indicating that impaired adaptive (BAT) thermogenesis can be involved. In conclusion, the metabolic impact of carrying the Ala92-Dio2 allele depends greatly on the genetic background of the mouse, varying from no phenotype in B6 mice to a major phenotype in FVB mice. These results will help the planning of future clinical trials studying the Thr92Ala-DIO2 polymorphism and may explain why some clinical studies performed in different populations across the globe have obtained inconsistent results.


Subject(s)
Iodide Peroxidase , Iodothyronine Deiodinase Type II , Mice, Inbred C57BL , Animals , Male , Iodide Peroxidase/genetics , Mice , Diet, High-Fat , Genetic Background , Adipose Tissue, White/metabolism , Adipose Tissue, Brown/metabolism , Polymorphism, Genetic , Insulin Resistance/genetics , Fatty Liver/genetics
13.
FASEB J ; 38(11): e23717, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38837270

ABSTRACT

Selenoprotein I (Selenoi) is highly expressed in liver and plays a key role in lipid metabolism as a phosphatidylethanolamine (PE) synthase. However, the precise function of Selenoi in the liver remains elusive. In the study, we generated hepatocyte-specific Selenoi conditional knockout (cKO) mice on a high-fat diet to identify the physiological function of Selenoi. The cKO group exhibited a significant increase in body weight, with a 15.6% and 13.7% increase in fat accumulation in white adipose tissue (WAT) and the liver, respectively. Downregulation of the lipolysis-related protein (p-Hsl) and upregulation of the adipogenesis-related protein (Fasn) were observed in the liver of cKO mice. The cKO group also showed decreased oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure (p < .05). Moreover, various metabolites of the steroid hormone synthesis pathway were affected in the liver of cKO mice. A potential cascade of Selenoi-phosphatidylethanolamine-steroid hormone synthesis might serve as a core mechanism that links hepatocyte-specific Selenoi cKO to biochemical and molecular reactions. In conclusion, we revealed that Selenoi inhibits body fat accumulation and hepatic steatosis and elevates energy consumption; this protein could also be considered a therapeutic target for such related diseases.


Subject(s)
Fatty Liver , Hepatocytes , Mice, Knockout , Obesity , Animals , Mice , Obesity/metabolism , Obesity/genetics , Obesity/etiology , Hepatocytes/metabolism , Fatty Liver/metabolism , Fatty Liver/etiology , Fatty Liver/genetics , Fatty Liver/pathology , Selenoproteins/metabolism , Selenoproteins/genetics , Diet, High-Fat/adverse effects , Male , Liver/metabolism , Energy Metabolism , Lipid Metabolism , Mice, Inbred C57BL , Adipose Tissue, White/metabolism
14.
Cell Metab ; 36(6): 1287-1301.e7, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838641

ABSTRACT

Adipocytes in dermis are considered to be important participants in skin repair and regeneration, but the role of subcutaneous white adipose tissue (sWAT) in skin repair is poorly understood. Here, we revealed the dynamic changes of sWAT during wound healing process. Lineage-tracing mouse studies revealed that sWAT would enter into the large wound bed and participate in the formation of granulation tissue. Moreover, sWAT undergoes beiging after skin injury. Inhibition of sWAT beiging by genetically silencing PRDM16, a key regulator to beiging, hindered wound healing process. The transcriptomics results suggested that beige adipocytes in sWAT abundantly express neuregulin 4 (NRG4), which regulated macrophage polarization and the function of myofibroblasts. In diabetic wounds, the beiging of sWAT was significantly suppressed. Thus, adipocytes from sWAT regulate multiple aspects of repair and may be therapeutic for inflammatory diseases and defective wound healing associated with aging and diabetes.


Subject(s)
Adipose Tissue, White , Skin , Wound Healing , Animals , Adipose Tissue, White/metabolism , Mice , Skin/metabolism , Skin/pathology , Mice, Inbred C57BL , Subcutaneous Fat/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Neuregulins/metabolism , Neuregulins/genetics , Male , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Adipose Tissue, Brown/metabolism , Adipocytes, Beige/metabolism , Macrophages/metabolism , Humans , Myofibroblasts/metabolism
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167258, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788910

ABSTRACT

The increasing prevalence of obesity, type 2 diabetes mellitus (T2DM), and gestational diabetes (GDM) among pregnant women has risen dramatically worldwide. The antihyperglycemic drug metformin is the most common drug for T2DM treatment in non-pregnant individuals; nevertheless, it is increasingly being used for diabetes-complicated pregnancies. Studies on the long-term metabolic effects of this drug in offspring remain scarce. This work aimed to determine the effect of metformin exposure during pregnancy and lactation on the offspring of a model of diet-induced maternal hyperglycemia. Cohorts of pregnant mice were fed a 46% fat diet (HFD) or a control standard diet (SD). A group of dams were exposed to metformin during pregnancy and lactation. After weaning, the offspring were fed SD for 8 weeks and then challenged with a 46% HFD after puberty for 12 weeks. Irrespective of the maternal diet, offspring of metformin-exposed mothers had a lower body weight and reduced inguinal white adipose tissue (iWAT) mass after HFD challenge. This was associated with increased expression of Pparg, Fabp4, Glut4, Srebp1, and Fasn in the iWAT during adulthood in the metabolically impaired dams exposed to metformin, suggesting increased adipogenesis and de novo lipogenesis. Increased expression of Fasn associated with decreased methylation levels at its promoter and proximal coding region in the iWAT was found. These results suggest that metformin modulates gene expression levels by epigenetic mechanisms in maternal metabolic-impaired conditions.


Subject(s)
Body Weight , Diet, High-Fat , Lactation , Metformin , Prenatal Exposure Delayed Effects , Sterol Regulatory Element Binding Protein 1 , Animals , Metformin/pharmacology , Female , Pregnancy , Lactation/drug effects , Mice , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/chemically induced , Diet, High-Fat/adverse effects , Body Weight/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Hypoglycemic Agents/pharmacology , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Obesity/metabolism , Obesity/pathology , Obesity/chemically induced , Fatty Acid Synthase, Type I/metabolism , Fatty Acid Synthase, Type I/genetics , Male , Mice, Inbred C57BL , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/chemically induced
16.
J Lipid Res ; 65(6): 100559, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729351

ABSTRACT

Adipogenesis is one of the major mechanisms for adipose tissue expansion, during which spindle-shaped mesenchymal stem cells commit to the fate of adipocyte precursors and differentiate into round-shaped fat-laden adipocytes. Here, we investigated the lipidomic profile dynamics of ex vivo-differentiated brown and white adipocytes derived from the stromal vascular fractions of interscapular brown (iBAT) and inguinal white adipose tissues. We showed that sphingomyelin was specifically enriched in terminally differentiated brown adipocytes, but not white adipocytes. In line with this, freshly isolated adipocytes of iBAT showed higher sphingomyelin content than those of inguinal white adipose tissue. Upon cold exposure, sphingomyelin abundance in iBAT gradually decreased in parallel with reduced sphingomyelin synthase 1 protein levels. Cold-exposed animals treated with an inhibitor of sphingomyelin hydrolases failed to maintain core body temperature and showed reduced oxygen consumption and iBAT UCP1 levels. Conversely, blockade of sphingomyelin synthetic enzymes resulted in enhanced nonshivering thermogenesis, reflected by elevated body temperature and UCP1 levels. Taken together, our results uncovered a relation between sphingomyelin abundance and fine-tuning of UCP1-mediated nonshivering thermogenesis.


Subject(s)
Sphingomyelins , Thermogenesis , Uncoupling Protein 1 , Animals , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Sphingomyelins/metabolism , Mice , Male , Adipose Tissue, White/metabolism , Adipose Tissue, Brown/metabolism , Mice, Inbred C57BL
17.
Vet J ; 305: 106144, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788998

ABSTRACT

Oral consumption of Pep19™, a 10 amino acid intracellular peptide, has been associated with weight loss in rodents and humans via induction of nonshivering thermogenesis. This study aimed to test its safety and tolerance in dogs. Eight healthy adult neutered university owned beagles (4 female and 4 male) were individually housed in runs and fed an extruded kibble in a quantity historically associated with weight stability. They were administered Pep19™ (5 mg/dog/day, 0.32 - 0.49 mg/kg/day) as a once daily oral dose for 28 days. Health screening, including physical examination, body weight, body condition score (BCS), complete blood count, chemistry, total thyroxine, thyroid stimulating hormone, and urinalysis were collected at baseline, day 14, and day 28. Faecal score, appetite, and overall animal temperament and condition were assessed daily. At baseline, average age, weight, and BCS were 3.8 ± 0.3 years, 12.68 ± 2.11 kg, and 6.4 ± 0.7/9, respectively. There were no adverse effects and all blood and urine analyses remained normal. At study termination, average weight, and body condition score (BCS) were 12.53 ± 2.01 kg, and 5.6 ± 0.7/9, respectively. Despite no changes in diet or calorie intake, seven of the dogs lost between 0.7% and 3.8% of their body weight (p<0.01); this was associated with a reduction in body condition score (p<0.05). This initial study shows that Pep19™ is safe for dogs. Future clinical research should investigate its utility as a new approach to reduce excess body fat in dogs.


Subject(s)
Adipose Tissue, White , Animals , Dogs , Female , Male , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Body Weight/drug effects
18.
Am J Physiol Heart Circ Physiol ; 327(1): H155-H181, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38787382

ABSTRACT

Perivascular adipose tissue (PVAT) regulates vascular tone by releasing anticontractile factors. These anticontractile factors are driven by processes downstream of adipocyte stimulation by norepinephrine; however, whether norepinephrine originates from neural innervation or other sources is unknown. The goal of this study was to test the hypothesis that neurons innervating PVAT provide the adrenergic drive to stimulate adipocytes in aortic and mesenteric perivascular adipose tissue (aPVAT and mPVAT), and white adipose tissue (WAT). Healthy male and female mice (8-13 wk) were used in all experiments. Expression of genes associated with synaptic transmission were quantified by qPCR and adipocyte activity in response to neurotransmitters and neuron depolarization was assessed in AdipoqCre+;GCaMP5g-tdTf/WT mice. Immunostaining, tissue clearing, and transgenic reporter lines were used to assess anatomical relationships between nerves and adipocytes. Although synaptic transmission component genes are expressed in adipose tissues (aPVAT, mPVAT, and WAT), strong nerve stimulation with electrical field stimulation does not significantly trigger calcium responses in adipocytes. However, norepinephrine consistently elicits strong calcium responses in adipocytes from all adipose tissues studied. Bethanechol induces minimal adipocyte responses. Imaging neural innervation using various techniques reveals that nerve fibers primarily run alongside blood vessels and rarely branch into the adipose tissue. Although nerve fibers are associated with blood vessels in adipose tissue, they demonstrate limited anatomical and functional interactions with adjacent adipocytes, challenging the concept of classical innervation. These findings dispute the significant involvement of neural input in regulating PVAT adipocyte function and emphasize alternative mechanisms governing adrenergic-driven anticontractile functions of PVAT.NEW & NOTEWORTHY This study challenges prevailing views on neural innervation in perivascular adipose tissue (PVAT) and its role in adrenergic-driven anticontractile effects on vasculature. Contrary to existing paradigms, limited anatomical and functional connections were found between PVAT nerve fibers and adipocytes, underscoring the importance of exploring alternative mechanistic pathways. Understanding the mechanisms involved in PVAT's anticontractile effects is critical for developing potential therapeutic interventions against dysregulated vascular tone, hypertension, and cardiovascular disease.


Subject(s)
Adipocytes , Norepinephrine , Animals , Male , Female , Adipocytes/metabolism , Norepinephrine/metabolism , Norepinephrine/pharmacology , Mice , Adipose Tissue/innervation , Adipose Tissue/metabolism , Mice, Inbred C57BL , Synaptic Transmission , Adipose Tissue, White/innervation , Adipose Tissue, White/metabolism , Mice, Transgenic , Calcium Signaling
19.
J Diabetes Res ; 2024: 5511454, 2024.
Article in English | MEDLINE | ID: mdl-38736904

ABSTRACT

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Subject(s)
Adipogenesis , Lipase , Animals , Male , Mice , Acyltransferases , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Diet, High-Fat , Fibroblast Growth Factors/metabolism , Lipase/metabolism , Lipase/genetics , Lipogenesis , Lipolysis , Mice, Inbred C57BL , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Uncoupling Protein 1/metabolism
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733774

ABSTRACT

Olanzapine (OLA) is a highly obesogenic second-generation antipsychotic (SGA). Recently we demonstrated that, contrarily to OLA oral treatment, intraperitoneal (i.p.) administration resulted in weight loss and absence of hepatic steatosis in wild-type (WT) and protein tyrosine phosphatase 1B (PTP1B)-deficient (KO) male mice. This protection relied on two central-peripheral axes connecting hypothalamic AMPK with brown/inguinal white adipose tissue (BAT/iWAT) uncoupling protein-1 (UCP-1) and hypothalamic JNK with hepatic fatty acid synthase (FAS). Herein, we addressed OLA i.p. treatment effects in WT and PTP1B-KO female mice. Contrarily to our previous results in WT females receiving OLA orally, the i.p. treatment did not induce weight gain or hyperphagia. Molecularly, in females OLA failed to diminish hypothalamic phospho-AMPK or elevate BAT UCP-1 and energy expenditure (EE) despite the preservation of iWAT browning. Conversely, OLA i.p. treatment in ovariectomized mice reduced hypothalamic phospho-AMPK, increased BAT/iWAT UCP-1 and EE, and induced weight loss as occurred in males. Pretreatment of hypothalamic neurons with 17ß-estradiol (E2) abolished OLA effects on AMPK. Moreover, neither hypothalamic JNK activation nor hepatic FAS upregulation were found in WT and PTP1B-KO females receiving OLA via i.p. Importantly, this axis was reestablished upon ovariectomy. In this line, E2 prevented OLA-induced phospho-JNK in hypothalamic neurons. These results support the role of estrogens in sex-related dimorphism in OLA treatment. This study evidenced the benefit of OLA i.p. administration in preventing its obesogenic effects in female mice that could offer clinical value.


Subject(s)
Adipose Tissue, Brown , Estrogens , Hypothalamus , Liver , Mice, Knockout , Olanzapine , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Uncoupling Protein 1 , Animals , Female , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Hypothalamus/metabolism , Hypothalamus/drug effects , Mice , Liver/metabolism , Liver/drug effects , Estrogens/metabolism , Estrogens/pharmacology , Olanzapine/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Energy Metabolism/drug effects , Injections, Intraperitoneal , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Mice, Inbred C57BL , Estradiol/pharmacology , Ovariectomy
SELECTION OF CITATIONS
SEARCH DETAIL
...