ABSTRACT
BACKGROUND: Amazonas was one of the most impacted Brazilian states by the COVID-19 pandemic. Mortality rates were high, and the health systems collapsed. It is important to identify possible intermediate reservoirs to avoid animal-to-human contamination. Several tropical fish are of commercial interest and are sold in large open-air markets in the region, representing a large economic and dietary importance. OBJECTIVES: This study aimed to verify if fish species of commercial importance, aerosols, and fish wastewater in local open-air markets, at a major capital city in the western Brazilian Amazon, are contaminated by SARS-CoV-2. METHODS: 488 fish, 50 aerosol, and 45 wastewater samples were analyzed for the presence of SARS-CoV-2. The samples were subjected to extraction using the BIOGENE Viral DNA/RNA Extraction kit, and the molecular diagnosis was tested for SARS-CoV-2 using the Bio-Manguinhos SARS-CoV-2 (EDx) Molecular Kit. RESULTS: It was not possible to detect the virus (Ct≤40, for Gene E) in these samples, however, in 181 samples of fish it was possible to detect the human RP gene (Ct≤35, for the RP Gene), indicating human contact. There was a high number of COVID-19 diagnoses in all city districts in which the samples were collected, showing that SARS-CoV-2 was circulating. CONCLUSION: This study indicates that fish of local commercial importance do not carry SARS-CoV-2 viral particles, despite circulation of SARS-CoV-2, and are not an important source of animal-to-human contamination. Despite these results, the human RP gene was found detectable in fish, air, and fish wastewater, showing that such places may carry human pathogens.
Subject(s)
COVID-19 , Fishes , SARS-CoV-2 , Animals , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Humans , Brazil/epidemiology , COVID-19/virology , COVID-19/epidemiology , Fishes/virology , Wastewater/virology , Aerosols , RNA, Viral/genetics , RNA, Viral/isolation & purification , RNA, Viral/analysisABSTRACT
Aerosol emission by wind erosion in the arid and semi-arid areas of the world, is of environmental and health significance. Different methods have been used to mitigate aerosol emission among which the biological methods may be the most efficient ones. Although previously investigated, more research is essential to determine how the use of exopolysaccharide (biocrust)-producing cyanobacteria may affect soil physical properties. The objective was to investigate the effects of the cyanobacteria, Microcoleus vaginatus ATHK43 (identified and registered by the NCBI accession number MW433686), on soil physical properties of a sandy soil 15, 30, 60, and 90 d after inoculation. The effects of cyanobacterial biocrust on soil properties including shear strength, soil resistance, aggregate stability (mean weight diameter (MWD) and geometric mean diameter (GMD)), and wind erosion were determined in trays using a wind tunnel. Cyanobacterial inoculation significantly increased MWD (0-1 cm depth, from 0.12 mm to 0.47 mm) and GMD (from 0.3 to 0.5 mm) after a period of 90 d. Biocrust production significantly decreased soil erosion from 55.7 kgm- 2 to 0.3 kgm- 2 (wind rate of 50 kmh- 1), and from 116.42 kgm- 2 to 0.6 kgm- 2 (wind rate of 90 kmh- 1) after 90 d. In conclusion, cyanobacterial biocrust can significantly improve soil physical properties in different parts of the world including the deserts, and reduce aerosol emission by mitigating the destructive effects of wind erosion on soil physical properties.
Subject(s)
Aerosols , Cyanobacteria , Soil Microbiology , Soil , Soil/chemistry , Aerosols/analysis , Cyanobacteria/metabolism , Cyanobacteria/growth & development , WindABSTRACT
Identifying and evaluating potential vaccine candidates has become one of the main objectives to combat tuberculosis. Among them, mannosylated Apa antigen from Mycobacterium tuberculosis and the non-mannosylated protein expressed in Escherichia coli, have been studied. Although both proteins can induce a protective response in mice, it has been considered that native protein can be dispensed. In this work, we study the protective response induced by Apa expressed in E. coli and in Streptomyces lividans. The latter, like native is secreted as a double band of 45/47 kDa, however, only its 47 kDa band is mannosylated. Both antigens and BCG were intranasal administrated in mice, and animals were then challenged by aerosol with M. tuberculosis H37Rv. The results showed that both, Apa from S. lividans and E. coli conferred statistically significantly protection to animals compared to controls. The cytokine immune response was studied by an immunoassay after animals' immunization, revealing that Apa from S. lividans induced a statistically significant proliferation of T cell, as well as the expression of IFN-γ, IL-1ß, IL-17 and IL-10. In contrast, non-proliferation was obtained with non-mannosylated protein, but induction of IL-12 and IL-17 was observed. Together, these results demonstrate that both proteins were able to modulate a specific immune response against M. tuberculosis, that could be driven by different mechanisms possibly associated with the presence or not of mannosylation. Furthermore, stimulation of cells from BCG-vaccinated animals with the proteins could be an important tool, to help define the use of a given subunit-vaccine after BCG vaccination.
Subject(s)
Administration, Intranasal , Cytokines , Mycobacterium tuberculosis , Streptomyces lividans , Tuberculosis , Animals , Mice , Aerosols , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Antigens, Bacterial/administration & dosage , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/administration & dosage , Cytokines/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Mice, Inbred BALB C , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/administration & dosage , Streptomyces lividans/genetics , Streptomyces lividans/immunology , Tuberculosis/prevention & control , Tuberculosis/immunology , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/administration & dosage , Tuberculosis Vaccines/geneticsABSTRACT
This study evaluated the health-related weighted ultraviolet radiation (UVR) due to the total ozone content (TOC) and the aerosol optical depth (AOD) changes. Clear-sky Ultraviolet Index (UVI), daily doses, and exposure times for erythema induction (Dery and Tery) and vitamin D synthesis (DvitD and TvitD) were computed by a radiative transfer estimator. TOC and AOD data were provided by six Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6). For projections, we consider four Shared Socioeconomic Pathways scenarios-SSPs (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5)-and two time-slices (near: 2041-2060 and far future: 2081-2100). UVR projections showed pronounced changes for the summer hemispheres in the far future. TOC increases in mid- and high latitudes of the Southern Hemisphere caused decreases in UVR at the summer solstice. However, projections did not indicate sun-safe exposure conditions in South America, Australia, and Southern Africa. On the contrary, exposure around solar noon from 10 to 20 min will still be sufficient to induce erythema in skin type III individuals throughout this century. In southern Argentina and Chile, the UVR insufficiency for vitamin D synthesis at solar noon in skin type III remains the same during this century at the winter solstice. In the Northern Hemisphere, UVI and Dery at the summer solstice should remain high (UVI ≥ 8; Dery ~ 7.0 kJ m-2) in highly populated locations. Above 45 °N, UVR levels cannot be enough to synthesize vitamin D in skin type III during the boreal winter. Our results show that climate change will affect human health through excess or lack of solar UVR availability.
Subject(s)
Aerosols , Ozone , Ultraviolet Rays , Aerosols/chemistry , Ozone/chemistry , Ozone/analysis , Humans , South AmericaABSTRACT
BACKGROUND: Many instruments used in dentistry are rotary, such as handpieces, water syringes, and ultrasonic scalers that produce aerosols. The spray created by these instruments can carry, in addition to water, droplets of saliva, blood, and microorganisms, which can pose a risk of infections for healthcare professionals and patients. Due to the COVID-19 pandemic, this gained attention. OBJECTIVE: The aim was to carry out a systematic review of the evidence of the scope of the aerosol produced by ultrasonic scaler in environmental contamination and the influence of the use of intraoral suction reduction devices. DESIGN: Scientific literature was searched until June 19, 2021 in 6 databases: Pubmed, EMBASE, Web of science, Scopus, Virtual Health Library and Cochrane Library, without restrictions on language or publication date. Studies that evaluated the range of the aerosol produced by ultrasonic scaler during scaling/prophylaxis and the control of environmental contamination generated by it with the use of low (LVE) and high (HVE) volume evacuation systems were included. RESULTS: Of the 1893 potentially relevant articles, 5 of which were randomized controlled trials (RCTs). The meta-analysis of 3 RCTs showed that, even at different distances from the patient's oral cavity, there was a significant increase in airborne bacteria in the dental environment with the use of ultrasonic scaler. In contrast, when meta-analysis compared the use of HVE with LVE, there was no significant difference (P = 0.40/CI -0.71[-2.37, 0.95]) for aerosol produced in the environment. CONCLUSIONS: There is an increase in the concentration of bioaerosol in the dental environment during the use of ultrasonic scaler in scaling/prophylaxis, reaching up to 2 m away from the patient's mouth and the use of LVE, HVE or a combination of different devices, can be effective in reducing air contamination in the dental environment, with no important difference between different types of suction devices.
Subject(s)
Aerosols , COVID-19 , Dental Scaling , Equipment Contamination , Humans , Dental Scaling/instrumentation , COVID-19/prevention & control , COVID-19/transmission , Equipment Contamination/prevention & control , Air Microbiology , Dental Instruments , Ultrasonics/instrumentation , Suction/instrumentation , SARS-CoV-2ABSTRACT
The effects of the El Nino-Southern Oscillation (ENSO) events have local, regional, and global consequences for water regimes, causing floods or extreme drought events. Tropical forests are strongly affected by ENSO, and in the case of the Amazon, its territorial extension allows for a wide variation of these effects. The prolongation of drought events in the Amazon basin contributes to an increase in gas and aerosol particle emissions mainly caused by biomass burning, which in turn alter radiative fluxes and evapotranspiration rates, cyclically interfering with the hydrological regime. The ENSO effects on the interactions between aerosol particles and evapotranspiration is a critical aspect to be systematically investigated. Therefore, this study aimed to evaluate the ENSO effect on a site located on the southern portion of the Amazonian region. In addition to quantifying and testing possible differences between aerosols and evapotranspiration under different ENSO classes (El Niño, La Niña and Neutrality), this study also evaluated possible variations in evapotranspiration as a function of the aerosol load. A highly significant difference was found for air temperature, relative humidity and aerosol load between the El Niño and La Niña classes. For evapotranspiration, significant differences were found for the El Niño and La Niña classes and for El Niño and Neutrality classes. Under the Neutrality class, the aerosol load correlated significantly with evapotranspiration, explaining 20% of the phenomenon. Under the El Niño and La Niña classes, no significant linear correlation was found between aerosol load and evapotranspiration. However, the results showed that for the total data set, there is a positive and significant correlation between aerosol and evapotranspiration. It increases with a quadratic fit, i.e., the aerosol favors evapotranspiration rates up to a certain concentration threshold. The results obtained in this study can help to understand the effects of ENSO events on atmospheric conditions in the southern Amazon basin, in addition to elucidating the role of aerosols in feedback to the water cycle in the region.
Subject(s)
Aerosols , El Nino-Southern Oscillation , Aerosols/analysis , Brazil , Plant Transpiration , Environmental MonitoringABSTRACT
Current methods for measuring black carbon aerosol (BC) by optical methods apportion BC to fossil fuel and wood combustion. However, these results are aggregated: local and non-local combustion sources are lumped together. The spatial apportioning of carbonaceous aerosol sources is challenging in remote or suburban areas because non-local sources may be significant. Air quality modeling would require highly accurate emission inventories and unbiased dispersion models to quantify such apportionment. We propose FUSTA (FUzzy SpatioTemporal Apportionment) methodology for analyzing aethalometer results for equivalent black carbon coming from fossil fuel (eBCff) and wood combustion (eBCwb). We applied this methodology to ambient measurements at three suburban sites around Santiago, Chile, in the winter season 2021. FUSTA results showed that local sources contributed â¼80% to eBCff and eBCwb in all sites. By using PM2.5 - eBCff and PM2.5 - eBCwb scatterplots for each fuzzy cluster (or source) found by FUSTA, the estimated lower edge lines showed distinctive slopes in each measurement site. These slopes were larger for non-local sources (aged aerosols) than for local ones (fresh emissions) and were used to apportion combustion PM2.5 in each site. In sites Colina, Melipilla and San Jose de Maipo, fossil fuel combustion contributions to PM2.5 were 26 % (15.9 µg m-3), 22 % (9.9 µg m-3), and 22 % (7.8 µg m-3), respectively. Wood burning contributions to PM2.5 were 22 % (13.4 µg m-3), 19 % (8.9 µg m-3) and 22% (7.3 µg m-3), respectively. This methodology generates a joint source apportionment of eBC and PM2.5, which is consistent with available chemical speciation data for PM2.5 in Santiago.
Subject(s)
Air Pollutants , Air Pollutants/analysis , Particulate Matter/analysis , Environmental Monitoring/methods , Seasons , Soot/analysis , Fossil Fuels/analysis , Aerosols/analysis , Carbon/analysisABSTRACT
The main objective of this study is to analyze hazardous elements in nanoparticles (NPs) (smaller than 100 nm) and ultrafine particles (smaller than 1 µm) in Porto Alegre City, southern Brazil using a self-made passive sampler and Sentinel-3B SYN satellite images in 32 collection points. The Aerosol Optical Thickness proportion (T550) identification was conducted using images of the Sentinel-3B SYN satellite at 634 points sampled in 2019, 2020, 2021, and 2022. Focused ion beam scanning electron microscopy analyses were performed to identify chemical elements present in NPs and ultrafine particles, followed by single-stage cascade impactor to be processed by high-resolution transmission electron microscopy. This process was coupled with energy-dispersive X-ray spectroscopy and later analysis via secondary ion mass spectrometry. Data was acquired from Sentinel-3B SYN images, normalized to a standard mean of 0.83 µg/mg, at moderate spatial resolution (260 m), and modeled in the Sentinel Application Platform (SNAP) software v.8.0. Statistical matrix data was generated in the JASP software (Jeffreys's Amazing Statistics Program) v.0.14.1.0 followed by a K-means cluster analysis. The results demonstrate the presence of between 1 and 100 nm particles of the following chemical elements: Si, Al, K, Mg, P, and Ti. Many people go through these areas daily and may inhale or absorb these elements that can harm human health. In the Sentinel-3B SYN satellite images, the sum of squares in cluster 6 is 168,265 and in cluster 7 a total of 21,583. The use of images from the Sentinel-3B SYN satellite to obtain T550 levels is of great importance as it reveals that atmospheric pollution can move through air currents contaminating large areas on a global scale.
Subject(s)
Air Pollutants , Nanoparticles , Humans , Air Pollutants/analysis , Brazil , Environmental Monitoring/methods , Particulate Matter/analysis , Aerosols/analysis , Particle SizeABSTRACT
OBJECTIVE: To evaluate indoor use of commercial aerosols for dengue vector mosquito control, and estimate the number of treatable houses per can. MATERIALS AND METHODS: Four aerosol products containing combinations of pyrethroids (two containing propoxur and one containing synergists too), were evaluated with mosquitoes in a room of a Tapachulastyle house. Eight cages containing 20 insecticide susceptible or resistant females were hung from tripods, another set was placed in sheltered areas of the room. From the entrance of the room, one of 4-9 concentrations was sprayed for each aerosol, leaving the mosquitoes for 30 min after sprayed. Mortality was recorded after 24 h and lethal concentrations were calculated. RESULTS: Aerosol A had the highest LC50, with 0.308 g for mosquitoes hanging from tripods and 0.453 g for sheltered mosquitoes; followed by aerosols C, D and B, with statistical differences between types of exposure. CONCLUSIONS: Aerosols B-D could spray 20-25 3-room houses (56 m3-room), killing all resistant mosquitoes. Aerosols may become a good tool for indoor mosquito control, if the optimal concentration and correct spray method are used.
Subject(s)
Aedes , Insecticides , Pyrethrins , Humans , Animals , Female , Insecticides/pharmacology , Mosquito Vectors , Mosquito Control/methods , AerosolsABSTRACT
Aerosols have implications to climate and biogeochemical cycles in the global oceans. At sites under indirect influence of dust emitted by the Patagonian semi-desert, a debate exists on the potential fertilization effects of iron enriched aerossol. Considering this subject we conducted measurements of aerosols optical properties using a Microtops II sun photometer to access aerosol size distributions and other intrinsic properties oversea from Atlantic Southern mid-latitudes to Antarctica. Oceanographic cruises were developed between December 2010 to April 2011 and October 2011 to April 2012, in the context of the Brazilian Antarctic Program, and between November 2011 to December 2011. This survey was taken as part of the Global Maritime Aerosol Network (MAN/NASA). Our data of AOD (500 nm) along the South American coast depicts a steady decrease southwards following the decreased latitudinal continental extent. However, the influence of the aerosols blown from Patagonia semi-desert region was clear from latitude 53°S to 64°S. The predominance of aerosol fine mode was observed in Central Atlantic and close to the Drake Passage. An unexpected aerosol coarse mode predominance was found close to the Antarctic Peninsula. We attribute that to a possible weathering of rock outcrops due to the strong westerly winds in that region.
Subject(s)
Air Pollutants , Environmental Monitoring , Humans , Seasons , Climate , Weather , Aerosols/analysis , Air Pollutants/analysisABSTRACT
Aerosols produced by dental handpieces represent a permanent risk of disease transmission in the dental environment. The current study evaluated the effects of natural ventilation (open windows) on Streptococcus mutans airborne contamination by dental handpieces in simulated clinical conditions. A dental phantom was placed on a dental chair at a standard university dental clinic operatory. An S. mutans suspension was infused into the phantom's mouth while an operator performed standardized dental procedures using low (contra-angle) and high speed (turbine) dental handpieces or an ultrasonic scaler, with windows open or closed. Selective medium Petri dishes were placed in 18 sites of the operatory environment to evaluate contamination topographically. Sites were clustered as: wall, floor, ceiling, dental chair, and cabinet. Contamination was expressed as log10 CFU/cm2 . A linear mixed model analysis was used, nesting the sites within each ventilation and handpiece combination. Open windows significantly reduced contamination. The high-speed handpiece provided the highest contamination, followed by the ultrasonic scaler and the low-speed handpiece. Contamination values were much smaller at the ceiling, and much larger at the chair. Opening windows produced more homogeneous contamination of the operatory compared to closed windows. Natural ventilation during dental procedures decreases contamination and affects its topographical distribution.
Subject(s)
Mouth , Streptococcus mutans , Humans , AerosolsABSTRACT
Methylsiloxanes have gained growing attention as emerging pollutants due to their toxicity to organisms. As man-made chemicals with no natural source, most research to date has focused on volatile methylsiloxanes from personal care or household products and industrial processes. Here, we show that methylsiloxanes can be found in primary aerosol particles emitted by vehicles based on aerosol samples collected in two tunnels in São Paulo, Brazil. The aerosol samples were analyzed with thermal desorption-proton transfer reaction-mass spectrometry (TD-PTR-MS), and methylsiloxanes were identified and quantified in the mass spectra based on the natural abundance of silicon isotopes. Various methylsiloxanes and derivatives were found in aerosol particles from both tunnels. The concentrations of methylsiloxanes and derivatives ranged 37.7-377 ng m-3, and the relative fractions in organic aerosols were 0.78-1.9%. The concentrations of methylsiloxanes exhibited a significant correlation with both unburned lubricating oils and organic aerosol mass. The emission factors of methylsiloxanes averaged 1.16 ± 0.59 mg kg-1 of burned fuel for light-duty vehicles and 1.53 ± 0.37 mg kg-1 for heavy-duty vehicles. Global annual emissions of methylsiloxanes in vehicle-emitted aerosols were estimated to range from 0.0035 to 0.0060 Tg, underscoring the significant yet largely unknown potential for health and climate impacts.
Subject(s)
Environmental Pollutants , Vehicle Emissions , Humans , Brazil , Aerosols , ClimateABSTRACT
The use of an external dome aerosol containment device (Prime Protector) is proposed to reduce the spread of particles within the dental office. Hence, the aim of our study was to compare the spread of bioaerosols generated by a High-speed Handpiece (HH) and an Ultrasonic Prophylaxis Device (UPD), with and without the Prime Protector dome (PP) by counting Colony Forming Units (CFU) of Lactobacillus casei Shirota, at different distances on the x and y axis. The PP was located considering the parallelism between the base of the dome and the frontal plane of the simulator, aligning the center of the mouth with the center of the dome. The PP dome measurements are 560.0mm x 255.0mm x 5mm. Petri dishes were placed at 0.5 m, 1 m and 1.5 m respectively. Aerosol generation in the laboratory environment was done three times with the following experimental groups 1) HH, 2) HH-PP, 3) UPD, 4) UPD-PP. Each dental device activation (HH and UPD) had a time frame of 2 minutes on the upper anterior teeth of the dental phantom with a liquid suspension containing Lactobacillus casei Shirota (YAKULT 0836A 0123; 1027F 0407). Air pressure and ventilation were parameterized. No separate high-volume evacuation used, nor was there any air removal attached to the dome. Results showed no significant difference between distance and axis in the CFU count. When means for devices and distances were compared between each of them all showed significant differences except for UPD and UPD-PP (p <0,004). In conclusion, external devices like Prime Protector could help decrease aerosol diffusion during high-speed handpiece activation. However, this dome does not replace the use of PPE inside dental clinics.
Subject(s)
Dental Scaling , Aerosols , Mouth , Ultrasonics , Dental Offices , Dental Scaling/adverse effects , Dental Scaling/instrumentation , Personal Protective Equipment , Occupational Exposure/adverse effects , HumansABSTRACT
The present study reports the development of a bioassay using Artemia spp. to analyse the preliminary ecotoxicity of atmospheric aerosols (PM), which can affect the environment and human health. Herein, PM samples were collected in the city of Goiânia (Brazil) in 2016, extracted with ultrapure water and subsequently filtered through membranes with different pore sizes (100, 0.8, and 0.22 µm), and the extracts employed in the bioassays. The mortality rates (endpoint analysed) declined to membranes with smaller pore sizes (15 ± 4%, 47 ± 10% and 43 ± 9% for pore sizes of 100 µm, 0.8 µm and 0.22 µm, respectively). In general, the toxicity of the extract depended on its concentration, except for the sample with a higher negative particle surface charge, which presents a lower affinity for the negatively charged surfaces of cellular membranes. Moreover, although the PM concentration was higher for the sample collected during the dry season (September), the mortality rate was not significantly different to that determined for a sample with similar physical and chemical characteristics collected in the rainy season (December). This result demonstrates the importance of monitoring PM toxicities and their chemical and physical characteristics, in addition to their concentrations. Therefore, the new protocol to provide a preliminary analysis of the toxicity of the extracts of aerosol emerges as a useful, accessible, and fast tool for monitoring possible environmental hazards, and can simplify fieldwork.
Subject(s)
Air Pollutants , Artemia , Humans , Animals , Brazil , Aerosols/toxicity , Aerosols/analysis , Biological Assay , Seasons , Environmental Monitoring/methods , Air Pollutants/analysisABSTRACT
Currently, the marketing of electronic cigarettes as a safe alternative to smoking has increased, which is associated with greater use of these devices, especially among young people and smokers interested in quitting tobacco cigarettes. Given the growing use of this type of product, there is a need to determine the consequences of electronic cigarettes on human health, especially since many of the compounds contained in the aerosol and liquid of these devices have a high potential to be carcinogenic and genotoxic. Additionally, many of these compounds' aerosol concentrations exceed the safe limits. We have evaluated the levels of genotoxicity and changes in DNA methylation patterns associated with vaping. We analyzed a total of 90 peripheral blood samples from a population of vapers (n = 32), smokers (n = 18), and controls (n = 32), in which the frequencies of genotoxicity were determined by the cytokinesis-blocking micronuclei (CBMN) assay and the patterns of methylation of the repetitive elements of LINE-1 through the Quantitative Methylation Specific PCR (qMSP) assay. Here we show an increase in genotoxicity levels associated with vaping habits. Additionally, the group of vapers showed changes at the epigenetic level specifically associated with the loss of methylation of the LINE-1 elements. These changes in LINE-1 methylation patterns were reflected in its representative RNA expression detected in vapers.
Subject(s)
Electronic Nicotine Delivery Systems , Humans , Adolescent , DNA Methylation , Long Interspersed Nucleotide Elements , Smoking , AerosolsABSTRACT
Atmospheric data are collected by researchers every day. Campaigns such as GOAmazon 2014/2015 and the Amazon Tall Tower Observatory collect essential data on aerosols, gases, cloud properties, and meteorological parameters in the Brazilian Amazon basin. These data products provide insights and essential information for analyzing and predicting natural processes. However, in Brazil, it is estimated that more than 80% of the scientific data collected are not published due to the lack of web portals that collect and store these data. This makes it difficult, or even impossible, to access and integrate the data, which can result in the loss of significant amounts of information and significantly affect the understanding of the overall data. To address this problem, we propose a data portal architecture and open data deployment that enable Big Data processing, human interaction, and download-oriented approaches with tools that help users catalog, publish and visualize atmospheric data. Thus, we describe the architecture developed, based on the experience of the Atmospheric Radiation Measurement Data Center, which incorporates the principles of FAIR, the infrastructure and content management system for managing scientific data. The portal partial results were tested with environmental data from contaminated areas at the University of São Paulo. Overall, this data portal creates more shared knowledge about atmospheric processes by providing users with access to open environmental data.
Subject(s)
Publications , Publishing , Humans , Brazil , AerosolsABSTRACT
We measured submicron aerosols (PM1) at a beachfront site in Texas in Spring 2021 to characterize the "background" aerosol chemical composition advecting into Texas and the factors controlling this composition. Observations show that marine "background" aerosols from the Gulf of Mexico were highly processed and acidic; sulfate was the most abundant component (on average 57% of total PM1 mass), followed by organic material (26%). These chemical characteristics are similar to those observed at other marine locations globally. However, Gulf "background" aerosols were much more polluted; the average non-refractory (NR-) PM1 mass concentration was 3-70 times higher than that observed in other clean marine atmospheres. Anthropogenic shipping emissions over the Gulf of Mexico explain 78.3% of the total measured "background" sulfate in the Gulf air. We frequently observed haze pollution in the air mass from the Gulf, with significantly elevated concentrations of sulfate, organosulfates, and secondary organic aerosol associated with sulfuric acid. Analysis suggests that aqueous oxidation of shipping emissions over the Gulf of Mexico by peroxides in the particles might potentially be an important pathway for the rapid production of acidic sulfate and organosulfates during the haze episodes under acidic conditions.
Subject(s)
Air Pollutants , Sulfates , Sulfates/analysis , Air Pollutants/analysis , Gulf of Mexico , Oxidation-Reduction , Sulfur Oxides/analysis , Aerosols/analysis , Particulate Matter/analysis , Environmental Monitoring , ChinaABSTRACT
OBJECTIVE: The aim of this study was to test the plausibility of using the ΦX174 bacteriophage as a tracer of viral aerosols spreading in a dental aerosol-generating procedure (AGP) model. METHODS: ΦX174 bacteriophage (~ 108 plaque-forming units (PFU)/mL) was added into instrument irrigation reservoirs and aerosolized during class-IV cavity preparations followed by composite fillings on natural upper-anterior teeth (n = 3) in a phantom head. Droplets/aerosols were sampled through a passive approach that consisted of Escherichia coli strain C600 cultures immersed in a LB top agar layer in Petri dishes (PDs) in a double-layer technique. In addition, an active approach consisted of E coli C600 on PDs sets mounted in a six-stage cascade Andersen impactor (AI) (simulating human inhalation). The AI was located at 30 cm from the mannequin during AGP and afterwards at 1.5 m. After collection PDs were incubated overnight (18 h at 37 °C) and bacterial lysis was quantified. RESULTS: The passive approach disclosed PFUs mainly concentrated over the dental practitioner, on the mannequin's chest and shoulder and up to 90 cm apart, facing the opposite side of the AGP's source (around the spittoon). The maximum aerosol spreading distance was 1.5 m in front of the mannequin's mouth. The active approach disclosed collection of PFUs corresponding to stages (and aerodynamic diameters) 5 (1.1-2.1 µm) and 6 (0.65-1.1 µm), mimicking access to the lower respiratory airways. CONCLUSION: The ΦX174 bacteriophage can be used as a traceable viral surrogate in simulated studies contributing to understand dental bioaerosol's behavior, its spreading, and its potential threat for upper and lower respiratory tract. CLINICAL RELEVANCE: The probability to find infectious virus during AGPs is high. This suggests the need to continue characterizing the spreading viral agents in different clinical settings through combination of passive and active approaches. In addition, subsequent identification and implementation of virus-related mitigation strategies is relevant to avoid occupational virus infections.
Subject(s)
Bacteriophages , Humans , Escherichia coli , Dental Clinics , Dentists , Professional Role , AerosolsABSTRACT
Due to the recent coronavirus-2019 pandemic, several studies have emerged looking for new materials, especially with biocidal characteristics. Thus, the present research investigates the antibacterial properties of biodegradable cellulose acetate (CA) / cetylpyridinium bromide (CPB) electrospun nanofibers, their aerosol filtration, and the possible use as a filter media of surgical face masks. Then, samples of these nanofibers were produced over a nonwoven substrate, using different volumes of polymeric solution during the electrospinning process. The evaluation of the antibacterial properties of the nanofibers was performed for Escherichia coli and Staphylococcus aureus using quantitative methods. The aerosol filtration performance was evaluated in these samples for NaCl nanoparticles (from 7-300â nm) and with 8â mL min-1 of air flow rate. The results show that the single use of the surfactant has antibacterial properties from a concentration of 39â µg mL-1 of solution. The nanofibers presented a reduction of 100% for both bacteria. Air filtration tests showed 126.03 and 207.73 Pa cm-² of pressure drops and 63 and 77% of aerosol filtration efficiency (FE) for samples with 0.13 and 0.15 mL, respectively. Regarding the nanofiber produced with 0.35 mL, the value obtained was 115.13 ± 33.64 Pa cm-2 and 3.15% of particle penetration. These breathability values are higher than those required for the surgical face mask standard, indicating that improvements in the porosity and thickness are necessary to meet the Brazilian requirements. However, the nanofibers could be applied as filter media for indoor air conditioning systems due to their FE and biocidal properties.
Subject(s)
Air Filters , Nanofibers , Nanofibers/chemistry , Masks , Filtration/methods , Anti-Bacterial Agents , Aerosols , Escherichia coliABSTRACT
A molecular-level understanding of the compositions and formation mechanism of secondary organic aerosols is important in the context of growing evidence regarding the adverse impacts of aerosols on the atmosphere and human health. The ever-growing emissions of pollutants and particulate matter in the atmosphere are a global concern. A particular class of pollutants, which are being important in this sense, are persistent organic pollutants (POPs) since they represent synthetic organic compounds with a long lifetime in the environment. Among the POPs, the perfluorinated compounds, such as perfluoroalkyl carboxylic acids (CnF2n+1COOH) or PFCAs, draw a lot of attention due to their adverse effect on human health. In the present work, we employ high-level density functional theory to investigate the electrostatic interaction of perfluoropropionic acid (C2F5COOH) or PFPA, a PFCA with n = 2, with well-known atmospheric molecules, namely, HCHO, HCOOH, CH3OH, H2SO4, and CH3SO3H [methanesulfonic acid (MSA)]. A detailed and systematic quantum chemical calculation has been performed to analyze the structural, energetic, electrical, and spectroscopic properties of several binary clusters in the context of atmospheric nucleation process. Our analysis shows that PFPA forms very stable hydrogen-bonded binary clusters with molecules like H2SO4 and MSA, which widely recognized atmospheric nucleation precursors. Scattering intensities of radiation (Rayleigh activities) are found to increase many fold when PFPA forms clusters. Analyses of the cluster-binding electronic energies and the free-energy changes associated with their formation at different temperatures indicate that PFPA could participate in the initial nucleation processes and contribute effectively to the new particle formation in the atmosphere.