Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Int J Mol Sci ; 23(1)2022 Jan 04.
Article En | MEDLINE | ID: mdl-35008954

AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and N-acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the aralar-KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.


Aggrecans/genetics , Amino Acid Transport Systems, Acidic/deficiency , Antiporters/deficiency , Genetic Predisposition to Disease , Hereditary Central Nervous System Demyelinating Diseases/etiology , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Mitochondrial Diseases/etiology , Mitochondrial Diseases/metabolism , Psychomotor Disorders/etiology , Psychomotor Disorders/metabolism , Aggrecans/deficiency , Aggrecans/metabolism , Amino Acid Transport Systems, Acidic/metabolism , Animals , Antiporters/metabolism , Biomarkers , Brain/metabolism , Combined Modality Therapy , Disease Management , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Energy Metabolism , Genetic Association Studies , Glutamic Acid/metabolism , Hereditary Central Nervous System Demyelinating Diseases/diagnosis , Hereditary Central Nervous System Demyelinating Diseases/therapy , Humans , Malates/metabolism , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/therapy , Myelin Sheath/metabolism , Oxidation-Reduction , Phenotype , Psychomotor Disorders/diagnosis , Psychomotor Disorders/therapy
2.
PLoS One ; 14(6): e0218399, 2019.
Article En | MEDLINE | ID: mdl-31206541

Aggrecan is an integral component of the extracellular matrix in cartilaginous tissues, including the growth plate. Heterozygous defects in the aggrecan gene have been identified as a cause of autosomal dominant short stature, bone age acceleration, and premature growth cessation. The mechanisms accounting for this phenotype remain unknown. We used ATDC5 cells, an established model of chondrogenesis, to evaluate the effects of aggrecan deficiency. ATDC5 aggrecan knockdown cell lines (AggKD) were generated using lentiviral shRNA transduction particles. Cells were stimulated with insulin/transferrin/selenium for up to 21 days to induce chondrogenesis. Control ATDC5 cells showed induction of Col2a1 starting at day 8 and induction of Col10a1 starting at day 12. AggKD cells had significantly reduced expression of Col2a1 and Col10a1 (p<0.0001) with only minimal increases in expression over time, indicating that chondrogenesis was markedly impaired. The induction of Col2a1 and Col10a1 was not rescued by culturing of AggKD cells in wells pre-conditioned with ATDC5 extracellular matrix or in co-culture with wild-type ATDC5 cells. We interpret our studies as indicating that aggrecan has an integral role in chondrogenesis that may be mediated through intracellular mechanisms.


Aggrecans/physiology , Cell Differentiation , Chondrocytes/cytology , Stem Cells/cytology , Aggrecans/deficiency , Aggrecans/genetics , Animals , Cell Line , Chondrogenesis/drug effects , Collagen Type II/genetics , Collagen Type X/genetics , Gene Knockdown Techniques , Mice , Transcriptional Activation
3.
J Neurosci ; 38(47): 10102-10113, 2018 11 21.
Article En | MEDLINE | ID: mdl-30282728

In the adult brain, the extracellular matrix (ECM) influences recovery after injury, susceptibility to mental disorders, and is in general a strong regulator of neuronal plasticity. The proteoglycan aggrecan is a core component of the condensed ECM structures termed perineuronal nets (PNNs), and the specific role of PNNs on neural plasticity remains elusive. Here, we genetically targeted the Acan gene encoding for aggrecan using a novel animal model. This allowed for conditional and targeted loss of aggrecan in vivo, which ablated the PNN structure and caused a shift in the population of parvalbumin-expressing inhibitory interneurons toward a high plasticity state. Selective deletion of the Acan gene in the visual cortex of male adult mice reinstated juvenile ocular dominance plasticity, which was mechanistically identical to critical period plasticity. Brain-wide targeting improved object recognition memory.SIGNIFICANCE STATEMENT The study provides the first direct evidence of aggrecan as the main functional constituent and orchestrator of perineuronal nets (PNNs), and that loss of PNNs by aggrecan removal induces a permanent state of critical period-like plasticity. Loss of aggrecan ablates the PNN structure, resulting in invoked juvenile plasticity in the visual cortex and enhanced object recognition memory.


Aggrecans/deficiency , Extracellular Matrix/metabolism , Nerve Net/metabolism , Neuronal Plasticity/physiology , Visual Cortex/metabolism , Aggrecans/analysis , Aggrecans/genetics , Animals , Cell Line , Extracellular Matrix/chemistry , Extracellular Matrix/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Net/chemistry , Photic Stimulation/methods , Visual Cortex/chemistry
4.
J Neurosci ; 36(16): 4443-56, 2016 Apr 20.
Article En | MEDLINE | ID: mdl-27098689

ARALAR/AGC1/Slc25a12, the aspartate-glutamate carrier from brain mitochondria, is the regulatory step in the malate-aspartate NADH shuttle, MAS. MAS is used to oxidize cytosolic NADH in mitochondria, a process required to maintain oxidative glucose utilization. The role of ARALAR was analyzed in two paradigms of glutamate-induced excitotoxicity in cortical neurons: glucose deprivation and acute glutamate stimulation. ARALAR deficiency did not aggravate glutamate-induced neuronal death in vitro, although glutamate-stimulated respiration was impaired. In contrast, the presence of L-lactate as an additional source protected against glutamate-induced neuronal death in control, but not ARALAR-deficient neurons.l-Lactate supplementation increased glutamate-stimulated respiration partially prevented the decrease in the cytosolic ATP/ADP ratio induced by glutamate and substantially diminished mitochondrial accumulation of 8-oxoguanosine, a marker of reactive oxygen species production, only in the presence, but not the absence, of ARALAR. In addition,l-lactate potentiated glutamate-induced increase in cytosolic Ca(2+), in a way independent of the presence of ARALAR. Interestingly,in vivo, the loss of half-a-dose of ARALAR in aralar(+/-)mice enhanced kainic acid-induced seizures and neuronal damage with respect to control animals, in a model of excitotoxicity in which increased L-lactate levels and L-lactate consumption have been previously proven. These results suggest that,in vivo, an inefficient operation of the shuttle in the aralar hemizygous mice prevents the protective role of L-lactate on glutamate excitotoxiciy and that the entry and oxidation of L-lactate through ARALAR-MAS pathway is required for its neuroprotective function. SIGNIFICANCE STATEMENT: Lactate now stands as a metabolite necessary for multiple functions in the brain and is an alternative energy source during excitotoxic brain injury. Here we find that the absence of a functional malate-aspartate NADH shuttle caused by aralar/AGC1 disruption causes a block in lactate utilization by neurons, which prevents the protective role of lactate on excitotoxicity, but not glutamate excitotoxicity itself. Thus, failure to use lactate is detrimental and is possibly responsible for the exacerbated in vivo excitotoxicity in aralar(+/-)mice.


Aggrecans/deficiency , Glutamic Acid/toxicity , Lactic Acid/metabolism , Mitochondrial Membrane Transport Proteins/deficiency , Neuroprotection/drug effects , Animals , Cells, Cultured , Lactic Acid/pharmacology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neuroprotection/physiology
5.
Dev Biol ; 396(2): 224-36, 2014 Dec 15.
Article En | MEDLINE | ID: mdl-25446537

The proteoglycan aggrecan is a prominent component of the extracellular matrix in growth plate cartilage. A naturally occurring, recessive, perinatally lethal mutation in the aggrecan core protein gene, cmd(bc) (Acan(cmd-Bc)), that deletes the entire protein-coding sequence provided a model in which to characterize the phenotypic and morphologic effects of aggrecan deletion on skeletal development. We also generated a novel transgenic mouse, Tg(COL2A1-ACAN), that has the chick ACAN coding sequence driven by the mouse COL2A1 promoter to enable the production of cmd(bc)/cmd(bc); Tg(COL2A1-ACAN) rescue embryos. These were used to assess the impact of aggrecan on growth plate organization, chondrocyte survival and proliferation, and the expression of mRNAs encoding chondrocyte differentiation markers and growth factors. Homozygous mutant (cmd(bc)/cmd(bc)) embryos exhibited severe defects in all skeletal elements with deformed and shortened (50%) limb elements. Expression of aggrecan in rescue embryos reversed the skeletal defects to varying degrees with a 20% increase in limb element length and near-full reversal (80%) of size and diameter of the ribcage and vertebrae. Aggrecan-null growth plates were devoid of matrix and lacked chondrocyte organization and differentiation, while those of the rescue embryos exhibited matrix production concomitant with partial zonation of chondrocytes having proliferative and hypertrophic morphologies. Deformation of the trachea, likely the cause of the mutation's lethality, was reduced in the rescue embryos. Aggrecan-null embryos also had abnormal patterns of COL10A1, SOX9, IHH, PTCH1, and FGFR3 mRNA expression in the growth plate. Expression of chick aggrecan in the rescue embryos notably increased COLX expression, accompanied by the reappearance of a hypertrophic zone and IHH expression. Significantly, in transgenic rescue embryos, the cell death and decreased proliferation phenotypes exhibited by the mutants were reversed; both were restored to wild-type levels. These findings suggest that aggrecan has a major role in regulating the expression of key growth factors and signaling molecules during development of cartilaginous tissue and is essential for proper chondrocyte organization, morphology, and survival during embryonic limb development.


Aggrecans/genetics , Aggrecans/metabolism , Cell Differentiation/physiology , Chondrocytes/physiology , Extremities/embryology , Gene Expression Regulation, Developmental/physiology , Growth Plate/embryology , Aggrecans/deficiency , Animals , Blotting, Southern , Cell Proliferation , Chickens , Chondrocytes/metabolism , DNA Primers/genetics , Growth Plate/cytology , Hedgehog Proteins/metabolism , Immunohistochemistry , In Situ Hybridization , In Situ Nick-End Labeling , Mice , Mice, Transgenic , SOX9 Transcription Factor/metabolism
6.
Cell Death Dis ; 5: e1119, 2014 Mar 13.
Article En | MEDLINE | ID: mdl-24625978

In Alzheimer's disease (AD), different types of neurons and different brain areas show differential patterns of vulnerability towards neurofibrillary degeneration, which provides the basis for a highly predictive profile of disease progression throughout the brain that now is widely accepted for neuropathological staging. In previous studies we could demonstrate that in AD cortical and subcortical neurons are constantly less frequently affected by neurofibrillary degeneration if they are enwrapped by a specialized form of the hyaluronan-based extracellular matrix (ECM), the so called 'perineuronal net' (PN). PNs are basically composed of large aggregating chondroitin sulphate proteoglycans connected to a hyaluronan backbone, stabilized by link proteins and cross-linked via tenascin-R (TN-R). Under experimental conditions in mice, PN-ensheathed neurons are better protected against iron-induced neurodegeneration than neurons without PN. Still, it remains unclear whether these neuroprotective effects are directly mediated by the PNs or are associated with some other mechanism in these neurons unrelated to PNs. To identify molecular components that essentially mediate the neuroprotective aspect on PN-ensheathed neurons, we comparatively analysed neuronal degeneration induced by a single injection of FeCl3 on four different mice knockout strains, each being deficient for a different component of PNs. Aggrecan, link protein and TN-R were identified to be essential for the neuroprotective properties of PN, whereas the contribution of brevican was negligible. Our findings indicate that the protection of PN-ensheathed neurons is directly mediated by the net structure and that both the high negative charge and the correct interaction of net components are essential for their neuroprotective function.


Aggrecans/metabolism , Brain/drug effects , Chlorides/toxicity , Extracellular Matrix Proteins/metabolism , Extracellular Matrix/metabolism , Ferric Compounds/toxicity , Neurons/drug effects , Oxidative Stress/drug effects , Proteoglycans/metabolism , Tenascin/metabolism , Aggrecans/deficiency , Aggrecans/genetics , Animals , Brain/metabolism , Brain/pathology , Brevican/deficiency , Brevican/genetics , Chondroitin Sulfates/metabolism , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/genetics , Female , Genotype , Hyaluronic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Degeneration , Neurons/metabolism , Neurons/pathology , Phenotype , Proteoglycans/deficiency , Proteoglycans/genetics , Tenascin/deficiency , Tenascin/genetics
...