Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Nat Commun ; 15(1): 4906, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851803

ABSTRACT

Various low-density lipoprotein receptors (LPRs) have been identified as entry factors for alphaviruses, and structures of the corresponding virion-receptor complexes have been determined. Here, we analyze the similarities and differences in the receptor binding modes of multiple alphaviruses to understand their ability to infect a wide range of hosts. We further discuss the challenges associated with the development of broad-spectrum treatment strategies against a diverse range of alphaviruses.


Subject(s)
Alphavirus , Antiviral Agents , Receptors, LDL , Virus Internalization , Animals , Humans , Alphavirus/drug effects , Alphavirus/physiology , Alphavirus/genetics , Alphavirus Infections/drug therapy , Alphavirus Infections/virology , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Protein Binding , Receptors, LDL/metabolism , Receptors, LDL/genetics , Receptors, Virus/metabolism , Receptors, Virus/chemistry , Virion/metabolism , Virus Internalization/drug effects
2.
mBio ; 15(6): e0042024, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38700353

ABSTRACT

Chikungunya virus (CHIKV) is an enveloped, positive-sense RNA virus that has re-emerged to cause millions of human infections worldwide. In humans, acute CHIKV infection causes fever and severe muscle and joint pain. Chronic and debilitating arthritis and joint pain can persist for months to years. To date, there are no approved antivirals against CHIKV. Recently, the ribonucleoside analog 4'-fluorouridine (4'-FlU) was reported as a highly potent orally available inhibitor of SARS-CoV-2, respiratory syncytial virus, and influenza virus replication. In this study, we assessed 4'-FlU's potency and breadth of inhibition against a panel of alphaviruses including CHIKV, and found that it broadly suppressed alphavirus production in cell culture. 4'-FlU acted on the viral RNA replication step, and the first 4 hours post-infection were the critical time for its antiviral effect. In vitro replication assays identified nsP4 as the target of inhibition. In vivo, treatment with 4'-FlU reduced disease signs, inflammatory responses, and viral tissue burden in mouse models of CHIKV and Mayaro virus infection. Treatment initiated at 2 hours post-infection was most effective; however, treatment initiated as late as 24-48 hours post-infection produced measurable antiviral effects in the CHIKV mouse model. 4'-FlU showed effective oral delivery in our mouse model and resulted in the accumulation of both 4'-FlU and its bioactive triphosphate form in tissues relevant to arthritogenic alphavirus pathogenesis. Together, our data indicate that 4'-FlU inhibits CHIKV infection in vitro and in vivo and is a promising oral therapeutic candidate against CHIKV infection.IMPORTANCEAlphaviruses including chikungunya virus (CHIKV) are mosquito-borne positive-strand RNA viruses that can cause various diseases in humans. Although compounds that inhibit CHIKV and other alphaviruses have been identified in vitro, there are no licensed antivirals against CHIKV. Here, we investigated a ribonucleoside analog, 4'-fluorouridine (4'-FlU), and demonstrated that it inhibited infectious virus production by several alphaviruses in vitro and reduced virus burden in mouse models of CHIKV and Mayaro virus infection. Our studies also indicated that 4'-FlU treatment reduced CHIKV-induced footpad swelling and reduced the production of pro-inflammatory cytokines. Inhibition in the mouse model correlated with effective oral delivery of 4'-FlU and accumulation of both 4'-FlU and its bioactive form in relevant tissues. In summary, 4'-FlU exhibits potential as a novel anti-alphavirus agent targeting the replication of viral RNA.


Subject(s)
Alphavirus , Antiviral Agents , Chikungunya virus , Virus Replication , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice , Chikungunya virus/drug effects , Chikungunya virus/physiology , Alphavirus/drug effects , Alphavirus/physiology , Uridine/analogs & derivatives , Uridine/pharmacology , Humans , Chikungunya Fever/drug therapy , Chikungunya Fever/virology , Disease Models, Animal , Cell Line , Chlorocebus aethiops , Female , Vero Cells
3.
Viruses ; 14(2)2022 02 18.
Article in English | MEDLINE | ID: mdl-35216015

ABSTRACT

Mayaro virus (MAYV) manipulates cell machinery to successfully replicate. Thus, identifying host proteins implicated in MAYV replication represents an opportunity to discover potential antiviral targets. PIM kinases are enzymes that regulate essential cell functions and also appear to be critical factors in the replication of certain viruses. In this study we explored the consequences of PIM kinase inhibition in the replication of MAYV and other arboviruses. Cytopathic effects or viral titers in samples from MAYV-, Chikungunya-, Una- or Zika-infected cells treated with PIM kinase inhibitors were evaluated using an inverted microscope or plaque-forming assays. The expression of viral proteins E1 and nsP1 in MAYV-infected cells was assessed using an immunofluorescence confocal microscope or Western blot. Our results revealed that PIM kinase inhibition partially prevented MAYV-induced cell damage and also promoted a decrease in viral titers for MAYV, UNAV and ZIKV. The inhibitory effect of PIM kinase blocking was observed for each of the MAYV strains tested and also occurred as late as 8 h post infection (hpi). Finally, PIM kinase inhibition suppressed the expression of MAYV E1 and nsP1 proteins. Taken together, these findings suggest that PIM kinases could represent an antiviral target for MAYV and other arboviruses.


Subject(s)
Alphavirus/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Cell Line , Chikungunya virus/drug effects , Humans , Zika Virus/drug effects
4.
Antiviral Res ; 197: 105223, 2022 01.
Article in English | MEDLINE | ID: mdl-34856248

ABSTRACT

Repurposing drugs is a promising strategy to identify therapeutic interventions against novel and re-emerging viruses. Posaconazole is an antifungal drug used to treat invasive aspergillosis and candidiasis. Recently, posaconazole and its structural analog, itraconazole were shown to inhibit replication of multiple viruses by modifying intracellular cholesterol homeostasis. Here, we show that posaconazole inhibits replication of the alphaviruses Semliki Forest virus (SFV), Sindbis virus and chikungunya virus with EC50 values ranging from 1.4 µM to 9.5 µM. Posaconazole treatment led to a significant reduction of virus entry in an assay using a temperature-sensitive SFV mutant, but time-of-addition and RNA transfection assays indicated that posaconazole also inhibits post-entry stages of the viral replication cycle. Virus replication in the presence of posaconazole was partially rescued by the addition of exogenous cholesterol. A transferrin uptake assay revealed that posaconazole considerably slowed down cellular endocytosis. A single point mutation in the SFV E2 glycoprotein, H255R, provided partial resistance to posaconazole as well as to methyl-ß-cyclodextrin, corroborating the effect of posaconazole on cholesterol and viral entry. Our results indicate that posaconazole inhibits multiple steps of the alphavirus replication cycle and broaden the spectrum of viruses that can be targeted in vitro by posaconazole, which could be further explored as a therapeutic agent against emerging viruses.


Subject(s)
Alphavirus/drug effects , Antiviral Agents/pharmacology , Drug Repositioning/methods , Triazoles/pharmacology , Virus Replication/drug effects , Alphavirus/classification , Animals , Cell Line , Chikungunya virus/drug effects , Chlorocebus aethiops , Cricetinae , Endocytosis/drug effects , Humans , Semliki forest virus/drug effects , Sindbis Virus/drug effects , Vero Cells , Virus Internalization/drug effects
5.
J Virol ; 96(2): e0177421, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34757841

ABSTRACT

Alphaviruses and flaviviruses have class II fusion glycoproteins that are essential for virion assembly and infectivity. Importantly, the tip of domain II is structurally conserved between the alphavirus and flavivirus fusion proteins, yet whether these structural similarities between virus families translate to functional similarities is unclear. Using in vivo evolution of Zika virus (ZIKV), we identified several novel emerging variants, including an envelope glycoprotein variant in ß-strand c (V114M) of domain II. We have previously shown that the analogous ß-strand c and the ij loop, located in the tip of domain II of the alphavirus E1 glycoprotein, are important for infectivity. This led us to hypothesize that flavivirus E ß-strand c also contributes to flavivirus infection. We generated this ZIKV glycoprotein variant and found that while it had little impact on infection in mosquitoes, it reduced replication in human cells and mice and increased virus sensitivity to ammonium chloride, as seen for alphaviruses. In light of these results and given our alphavirus ij loop studies, we mutated a conserved alanine at the tip of the flavivirus ij loop to valine to test its effect on ZIKV infectivity. Interestingly, this mutation inhibited infectious virion production of ZIKV and yellow fever virus, but not West Nile virus. Together, these studies show that shared domains of the alphavirus and flavivirus class II fusion glycoproteins harbor structurally analogous residues that are functionally important and contribute to virus infection in vivo.IMPORTANCE Arboviruses are a significant global public health threat, yet there are no antivirals targeting these viruses. This problem is in part due to our lack of knowledge of the molecular mechanisms involved in the arbovirus life cycle. In particular, virus entry and assembly are essential processes in the virus life cycle and steps that can be targeted for the development of antiviral therapies. Therefore, understanding common, fundamental mechanisms used by different arboviruses for entry and assembly is essential. In this study, we show that flavivirus and alphavirus residues located in structurally conserved and analogous regions of the class II fusion proteins contribute to common mechanisms of entry, dissemination, and infectious-virion production. These studies highlight how class II fusion proteins function and provide novel targets for development of antivirals.


Subject(s)
Alphavirus/physiology , Flavivirus/physiology , Viral Fusion Proteins/metabolism , Virion/metabolism , Virus Replication , A549 Cells , Alphavirus/drug effects , Ammonium Chloride/pharmacology , Animals , Culicidae/virology , Flavivirus/drug effects , Humans , Interferon Type I/deficiency , Mice , Mice, Mutant Strains , Mutation , Protein Domains , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virion/genetics , Virus Assembly/genetics , Virus Internalization/drug effects , Virus Replication/genetics , Zika Virus/drug effects , Zika Virus/physiology , Zika Virus Infection/virology
6.
Viruses ; 13(11)2021 10 21.
Article in English | MEDLINE | ID: mdl-34834929

ABSTRACT

Mayaro virus (MAYV) is a neglected arthropod-borne virus found in the Americas. MAYV infection results in Mayaro fever, a non-lethal debilitating disease characterized by a strong inflammatory response affecting the joints and muscles. MAYV was once considered endemic to forested areas in Brazil but has managed to adapt and spread to urban regions using new vectors, such as Aedes aegypti, and has the potential to cause serious epidemics in the future. Currently, there are no vaccines or specific treatments against MAYV. In this study, the antiviral activity of a series of synthetic cyclic ketones were evaluated for the first time against MAYV. Twenty-four compounds were screened in a cell viability assay, and eight were selected for further evaluation. Effective concentration (EC50) and selectivity index (SI) were calculated and compound 9-(5-(4-chlorophenyl]furan-2-yl)-3,6-dimethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2))-dione (9) (EC50 = 21.5 µmol·L-1, SI = 15.8) was selected for mechanism of action assays. The substance was able to reduce viral activity by approximately 70% in both pre-treatment and post-treatment assays.


Subject(s)
Alphavirus Infections/virology , Alphavirus/drug effects , Antiviral Agents/pharmacology , Ketones/pharmacology , Aedes/virology , Alphavirus/physiology , Alphavirus Infections/drug therapy , Alphavirus Infections/transmission , Animals , Antiviral Agents/chemistry , Brazil , Drug Evaluation, Preclinical , Humans , Ketones/chemistry , Mosquito Vectors/virology
7.
Viruses ; 13(11)2021 11 03.
Article in English | MEDLINE | ID: mdl-34835018

ABSTRACT

Mayaro virus (MAYV) is an emergent alphavirus that causes MAYV fever. It is often associated with debilitating symptoms, particularly arthralgia and myalgia. MAYV infection is becoming a considerable health issue that, unfortunately, lacks a specific antiviral treatment. Favipiravir, a broad-spectrum antiviral drug, has recently been shown to exert anti-MAYV activity in vitro. In the present study, the potential of Favipiravir to inhibit MAYV replication in an in vivo model was evaluated. Immunocompetent mice were orally administrated 300 mg/kg/dose of Favipiravir at pre-, concurrent-, or post-MAYV infection. The results showed a significant reduction in infectious viral particles and viral RNA transcripts in the tissues and blood of the pre- and concurrently treated infected mice. A significant reduction in the presence of both viral RNA transcript and infectious viral particles in the tissue and blood of pre- and concurrently treated infected mice was observed. By contrast, Favipiravir treatment post-MAYV infection did not result in a reduction in viral replication. Interestingly, Favipiravir strongly decreased the blood levels of the liver disease markers aspartate- and alanine aminotransferase in the pre- and concurrently treated MAYV-infected mice. Taken together, these results suggest that Favipiravir is a potent antiviral drug when administered in a timely manner.


Subject(s)
Alphavirus Infections/drug therapy , Alphavirus/drug effects , Amides/pharmacology , Antiviral Agents/pharmacology , Pyrazines/pharmacology , Alanine Transaminase/drug effects , Alphavirus Infections/virology , Animals , Aspartate Aminotransferases/drug effects , Cell Line , Chlorocebus aethiops , Disease Models, Animal , Female , Liver , Mice , Mice, Inbred C57BL , Vero Cells , Virus Replication/drug effects
8.
Parasit Vectors ; 14(1): 443, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34479605

ABSTRACT

BACKGROUND: The arthropod-borne Mayaro virus (MAYV) causes "Mayaro fever," a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. There are currently no licensed drugs against most mosquito-transmitted viruses. Punica granatum (pomegranate) fruits cultivated in Brazil have been subjected to phytochemical investigation for the identification and isolation of antiviral compounds. In the present study, we explored the antiviral activity of pomegranate extracts in Vero cells infected with Mayaro virus. METHODS: The ethanol extract and punicalagin of pomegranate were extracted solely from the shell and purified by chromatographic fractionation, and were chemically identified using spectroscopic techniques. The cytotoxicity of the purified compounds was measured by the dye uptake assay, while their antiviral activity was evaluated by a virus yield inhibition assay. RESULTS: Pomegranate ethanol extract (CC50 = 588.9, IC50 = 12.3) and a fraction containing punicalagin as major compound (CC50 = 441.5, IC50 = 28.2) were shown to have antiviral activity (SI 49 and 16, respectively) against Mayaro virus, an alphavirus. Immunofluorescence analysis showed the virucidal effect of pomegranate extract, and transmission electron microscopy (TEM) revealed damage in viral particles treated with this extract. CONCLUSIONS: The P. granatum extract is a promising source of antiviral compounds against the alphavirus MAYV and represents an excellent candidate for future studies with other enveloped RNA viruses.


Subject(s)
Alphavirus/drug effects , Antiviral Agents/pharmacology , Arboviruses/drug effects , Culicidae/virology , Phytochemicals/pharmacology , Pomegranate/chemistry , Virus Replication/drug effects , Alphavirus/classification , Animals , Chlorocebus aethiops , Hydrolyzable Tannins/pharmacology , Vero Cells
9.
Virol Sin ; 36(6): 1465-1474, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34374926

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. As an emerging virus, CHIKV imposes a threat to public health. Currently, there are no vaccines or antivirals available for the prevention of CHIKV infection. Lycorine, an alkaloid from Amaryllidaceae plants, has antiviral activity against a number of viruses such as coronavirus, flavivirus and enterovirus. In this study, we found that lycorine could inhibit CHIKV in cell culture at a concentration of 10 µmol/L without apparent cytotoxicity. In addition, it exhibited broad-spectrum anti-alphavirus activity, including Sindbis virus (SINV), Semliki Forest virus (SFV), and Venezuelan equine encephalomyelitis virus (VEEV). The time of addition studies indicated that lycorine functions at an early post-entry stage of CHIKV life cycle. The results based on two different CHIKV replicons provided further evidence that lycorine exerts its antiviral activity mainly by inhibiting CHIKV translation. Overall, our study extends the antiviral spectrum of lycorine.


Subject(s)
Alphavirus/drug effects , Amaryllidaceae Alkaloids/pharmacology , Chikungunya virus/drug effects , Phenanthridines/pharmacology , Virus Replication , Alphavirus/physiology , Animals , Cell Line , Chikungunya virus/physiology , Semliki forest virus , Sindbis Virus
10.
J Fish Dis ; 44(12): 1911-1924, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34402092

ABSTRACT

Pancreas disease (PD) caused by salmonid alphavirus (SAV) continues to negatively impact salmon farming. To assess the effect on growth and mortality of three vaccines against PD, two controlled field designs were employed: one controlled field study with individual marked fish (PIT tag) assessing three PD vaccines and three controls groups, and a second controlled field study with group marked fish (Maxilla) comparing two PD vaccines against controls. In addition, a descriptive study using whole cages compared fish immunized with two different PD vaccines against controls. The target populations experienced a natural PD outbreak where both SAV 2 and SAV 3 were identified. Only one of the PD vaccines provided statistically significant improvements in harvest weight of 0.43 kg (CI: 0.29-0.57) and 0.51 kg (CI: 0.36-0.65) compared with the control in the PIT tag and the Maxilla study, respectively. In the latter, a significant reduction in mortality of 1.31 (CI:0.8-1.8) per cent points was registered for the same vaccine compared with controls. These results aligned with the growth and PD-specific mortality registered in the descriptive Cage study. The data in this study show a difference in the efficacy of PD vaccines in farmed Atlantic salmon.


Subject(s)
Alphavirus Infections/veterinary , Fish Diseases/virology , Pancreatic Diseases/veterinary , Viral Vaccines/pharmacology , Alphavirus/drug effects , Alphavirus Infections/immunology , Alphavirus Infections/prevention & control , Animals , Aquaculture , Fish Diseases/immunology , Fish Diseases/prevention & control , Pancreatic Diseases/prevention & control , Pancreatic Diseases/virology , Salmo salar , Vaccines, Inactivated/pharmacology
11.
Antiviral Res ; 194: 105168, 2021 10.
Article in English | MEDLINE | ID: mdl-34437912

ABSTRACT

Infection caused by Mayaro virus (MAYV) is responsible for causing acute nonspecific fever, in which the majority of patients develop incapacitating and persistent arthritis/arthralgia. Mayaro fever is a neglected and underreported disease without treatment or vaccine, which has gained attention in recent years after the competence of Aedes aegypti to transmit MAYV was observed in the laboratory, coupled with the fact that cases are being increasingly reported outside of endemic forest areas, calling attention to the potential of an urban cycle arising in the near future. Thus, to mitigate the lack of information about the pathological aspects of MAYV, we previously described the involvement of oxidative stress in MAYV infection in cultured cells and in a non-lethal mouse model. Additionally, we showed that silymarin, a natural compound, attenuated MAYV-induced oxidative stress and inhibited MAYV replication in cells. The antioxidant and anti-MAYV effects prompted us to determine whether silymarin could also reduce oxidative stress and MAYV replication after infection in an immunocompetent animal model. We show that infected mice exhibited reduced weight gain, hepatomegaly, splenomegaly, anaemia, thrombocytopenia, leukopenia, increased liver transaminases, increased pro-inflammatory cytokines and liver inflammation, increased oxidative damage biomarkers, and reduced antioxidant enzyme activity. However, in animals infected and treated with silymarin, all these parameters were reversed or significantly improved, and the detection of viral load in the liver, spleen, brain, thigh muscle, and footpad was significantly reduced. This work reinforces the potent hepatoprotective, antioxidant, anti-inflammatory, and antiviral effects of silymarin against MAYV infection, demonstrating its potential against Mayaro fever disease.


Subject(s)
Alphavirus Infections/drug therapy , Alphavirus/drug effects , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Silymarin/pharmacology , Virus Replication/drug effects , Animals , Cell Line , Female , Male , Mice , Mice, Inbred BALB C , Oxidative Stress/drug effects , Phytotherapy/methods
12.
Bioorg Med Chem Lett ; 46: 128171, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34098081

ABSTRACT

We have previously reported the development of indole-based CNS-active antivirals for the treatment of neurotropic alphavirus infection, but further optimization is impeded by a lack of knowledge of the molecular target and binding site. Herein we describe the design, synthesis and evaluation of a series of conformationally restricted analogues with the dual objectives of improving potency/selectivity and identifying the most bioactive conformation. Although this campaign was only modestly successful at improving potency, the sharply defined SAR of the rigid analogs enabled the definition of a three-dimensional pharmacophore, which we believe will be of value in further analog design and virtual screening for alternative antiviral leads.


Subject(s)
Alphavirus/drug effects , Antiviral Agents/pharmacology , Indoles/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Drug Design , Indoles/chemical synthesis , Indoles/chemistry , Microbial Sensitivity Tests , Molecular Conformation , Structure-Activity Relationship , Virus Replication/drug effects
13.
Cell Host Microbe ; 28(5): 699-711.e7, 2020 11 11.
Article in English | MEDLINE | ID: mdl-32783883

ABSTRACT

Mosquito inoculation of humans with arthritogenic alphaviruses results in a febrile syndrome characterized by debilitating musculoskeletal pain and arthritis. Despite an expanding global disease burden, no approved therapies or licensed vaccines exist. Here, we describe human monoclonal antibodies (mAbs) that bind to and neutralize multiple distantly related alphaviruses. These mAbs compete for an antigenic site and prevent attachment to the recently discovered Mxra8 alphavirus receptor. Three cryoelectron microscopy structures of Fab in complex with Ross River (RRV), Mayaro, or chikungunya viruses reveal a conserved footprint of the broadly neutralizing mAb RRV-12 in a region of the E2 glycoprotein B domain. This mAb neutralizes virus in vitro by preventing virus entry and spread and is protective in vivo in mouse models. Thus, the RRV-12 mAb and its defined epitope have potential as a therapeutic agent or target of vaccine design against multiple emerging arthritogenic alphavirus infections.


Subject(s)
Alphavirus/drug effects , Antibodies, Monoclonal/immunology , Antibodies, Viral/pharmacology , Binding Sites , Immunoglobulins/chemistry , Membrane Proteins/chemistry , Alphavirus Infections/virology , Animals , Antibodies, Neutralizing/immunology , Arthritis , Chikungunya virus/immunology , Chlorocebus aethiops , Cross Reactions , Cryoelectron Microscopy , Epitopes/immunology , Female , Humans , Immunoglobulins/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Middle Aged , Receptors, Virus , Ross River virus , Vero Cells , Virus Internalization
14.
mBio ; 11(3)2020 06 30.
Article in English | MEDLINE | ID: mdl-32605989

ABSTRACT

Alphaviruses are enveloped positive-sense RNA viruses that can cause serious human illnesses such as polyarthritis and encephalitis. Despite their widespread distribution and medical importance, there are no licensed vaccines or antivirals to combat alphavirus infections. Berberine chloride (BBC) is a pan-alphavirus inhibitor that was previously identified in a replicon-based small-molecule screen. This work showed that BBC inhibits alphavirus replication but also suggested that BBC might have additional effects later in the viral life cycle. Here, we show that BBC has late effects that target the virus nucleocapsid (NC) core. Infected cells treated with BBC late in infection were unable to form stable cytoplasmic NCs or assembly intermediates, as assayed by gradient sedimentation. In vitro studies with recombinant capsid protein (Cp) and purified genomic RNA (gRNA) showed that BBC perturbs core-like particle formation and potentially traps the assembly process in intermediate states. Particles produced from BBC-treated cells were less infectious, despite efficient particle production and only minor decreases in genome packaging. In addition, BBC treatment of free virus particles strongly decreased alphavirus infectivity. In contrast, the infectivity of the negative-sense RNA virus vesicular stomatitis virus was resistant to BBC treatment of infected cells or free virus. Together, our data indicate that BBC alters alphavirus Cp-gRNA interactions and oligomerization and suggest that this may cause defects in NC assembly and in disassembly during subsequent virus entry. Thus, BBC may be considered a novel alphavirus NC assembly inhibitor.IMPORTANCE The alphavirus chikungunya virus (CHIKV) is an example of an emerging human pathogen with increased and rapid global spread. Although an acute CHIKV infection is rarely fatal, many patients suffer from debilitating chronic arthralgia for years. Antivirals against chikungunya and other alphaviruses have been identified in vitro, but to date none have been shown to be efficacious and have been licensed for human use. Here, we investigated a small molecule, berberine chloride (BBC), and showed that it inhibited infectious virus production by several alphaviruses including CHIKV. BBC acted on a late step in the alphavirus exit pathway, namely the formation of the nucleocapsid containing the infectious viral RNA. Better understanding of nucleocapsid formation and its inhibition by BBC will provide important information on the mechanisms of infectious alphavirus production and may enable their future targeting in antiviral strategies.


Subject(s)
Alphavirus/drug effects , Antiviral Agents/pharmacology , Berberine/pharmacology , Nucleocapsid/physiology , Virus Assembly/drug effects , Virus Replication/drug effects , Alphavirus/physiology , Animals , Berberine/chemistry , Cell Line , Chlorides/chemistry , Chlorides/pharmacology , Cricetinae , Kidney/cytology , Virus Internalization/drug effects
15.
Viruses ; 12(4)2020 04 15.
Article in English | MEDLINE | ID: mdl-32326564

ABSTRACT

The alphaviruses Chikungunya (CHIKV), Mayaro (MAYV), Una (UNAV), and the flavivirus Zika (ZIKV) are emerging or re-emerging arboviruses which are responsible for frequent epidemic outbreaks. Despite the large impact of these arboviruses on health systems, there are no approved vaccines or treatments to fight these infections. As a consequence, there is an urgent need to discover new antiviral drugs. Natural products are a rich source of compounds with distinct biological activities, including antiviral properties. Thus, we aimed to explore the potential antiviral activity of Ginkgolic acid against the arboviruses CHIKV, MAYV, UNAV, and ZIKV. Viral progeny production in supernatants from cells treated or not treated with Ginkgolic acid was quantified by plaque-forming assay. Ginkgolic acid's direct virucidal activity against these arboviruses was also determined. Additionally, viral protein expression was assessed using Western blot and immunofluorescence. Our results reveal that Ginkgolic acid promotes a dose-dependent decrease in viral titers in all tested viruses. Moreover, the compound demonstrated strong virucidal activity. Finally, we found that viral protein expression was affected by treatment with this drug. Collectively, these findings suggest that Ginkgolic acid could have broader antiviral activity.


Subject(s)
Alphavirus/drug effects , Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Salicylates/pharmacology , Zika Virus/drug effects , Animals , Cells, Cultured , Chlorocebus aethiops , Dose-Response Relationship, Drug , Gene Expression Regulation, Viral/drug effects , HeLa Cells , Humans , Vero Cells , Viral Plaque Assay , Virus Replication/drug effects
16.
Mini Rev Med Chem ; 20(10): 921-928, 2020.
Article in English | MEDLINE | ID: mdl-32178610

ABSTRACT

Tropical infectious diseases cause millions of deaths every year in developing countries, with about half of the world population living at risk. Mayaro virus (MAYV) is an emerging arbovirus that causes Mayaro fever, which is characterized by fever, headache, diarrhea, arthralgia, and rash. These symptoms can be clinically indistinguishable from other arboviruses, such as Dengue, Zika, and Chikungunya, which makes the diagnosis and treatment of the disease more difficult. Though, the Mayaro virus is a potential candidate to cause large-scale epidemics on the scale of ZIKV and CHIKV. Despite this, there is no licensed vaccine or antiviral for the treatment of Mayaro fever and most arboviruses, so the design and development of candidates for antiviral drugs are urgently needed. In this context, this mini-review aims to provide an overview of studies of anti-MAYV derivatives and highlight the importance of the discovery and development of promising drug candidates for Mayaro fever.


Subject(s)
Alphavirus Infections/drug therapy , Alphavirus/drug effects , Alphavirus/physiology , Antiviral Agents/pharmacology , Drug Discovery , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Humans
17.
Curr Drug Discov Technol ; 17(4): 484-497, 2020.
Article in English | MEDLINE | ID: mdl-31969106

ABSTRACT

Arboviruses are a diverse group of viruses that are among the major causes of emerging infectious diseases. Arboviruses from the genera flavivirus and alphavirus are the most important human arboviruses from a public health perspective. During recent decades, these viruses have been responsible for millions of infections and deaths around the world. Over the past few years, several investigations have been carried out to identify antiviral agents to treat these arbovirus infections. The use of synthetic antiviral compounds is often unsatisfactory since they may raise the risk of viral mutation; they are costly and possess either side effects or toxicity. One attractive strategy is the use of plants as promising sources of novel antiviral compounds that present significant inhibitory effects on these viruses. In this review, we describe advances in the exploitation of compounds and extracts from natural sources that target the vital proteins and enzymes involved in arbovirus replication.


Subject(s)
Alphavirus Infections/drug therapy , Antiviral Agents/pharmacology , Flavivirus Infections/drug therapy , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Alphavirus/drug effects , Alphavirus/genetics , Alphavirus/pathogenicity , Alphavirus Infections/transmission , Alphavirus Infections/virology , Animals , Antiviral Agents/therapeutic use , Disease Reservoirs/virology , Disease Vectors , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Flavivirus/drug effects , Flavivirus/genetics , Flavivirus/pathogenicity , Flavivirus Infections/transmission , Flavivirus Infections/virology , Humans , Mutation , Phytochemicals/therapeutic use , Plant Extracts/therapeutic use , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Virus Replication/drug effects
18.
Biochem Pharmacol ; 174: 113777, 2020 04.
Article in English | MEDLINE | ID: mdl-31874146

ABSTRACT

Alphaviruses are (mainly) arthropod-borne viruses that belong to the family of the Togaviridae. Based on the disease they cause, alphaviruses are divided into an arthritogenic and an encephalitic group. Arthritogenic alphaviruses such as the chikungunya virus (CHIKV), the Ross River virus (RRV) and the Mayaro virus (MAYV) have become a serious public health concern in recent years. Epidemics are associated with high morbidity and the infections cause in many patients debilitating joint pain that can persist for months to years. The recent (2013-2014) introduction of CHIKV in the Americas resulted in millions of infected persons. Massive outbreaks of CHIKV and other arthritogenic alphaviruses are likely to occur in the future. Despite the worldwide (re-)emergence of these viruses, there are no antivirals or vaccines available for the treatment or prevention of infections with alphaviruses. It is therefore of utmost importance to develop antiviral strategies against these viruses. We here review the possible molecular targets in the replication cycle of these viruses for the development of antivirals. In addition, we provide an overview of the currently available in vitro systems and mouse infection models that can be used to assess the potential antiviral effect against these viruses.


Subject(s)
Alphavirus Infections/drug therapy , Alphavirus/drug effects , Antiviral Agents/pharmacology , Arthritis/drug therapy , Drug Discovery/methods , Alphavirus/genetics , Alphavirus/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Arthritis/virology , Cytopathogenic Effect, Viral , Disease Models, Animal , Humans , Mice , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects
19.
Antiviral Res ; 172: 104642, 2019 12.
Article in English | MEDLINE | ID: mdl-31678479

ABSTRACT

Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne RNA virus that causes epidemics of debilitating disease in tropical and sub-tropical regions with autochtonous transmission in regions with temperate climate. Currently, there is no licensed vaccine or specific antiviral drug available against CHIKV infection. In this study, we examine the role, in the CHIKV viral cycle, of fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD1), two key lipogenic enzymes required for fatty acid production and early desaturation. We show that both enzymes and their upstream regulator PI3K are required for optimal CHIKV infection. We demonstrate that pharmacologic manipulation of FASN or SCD1 enzymatic activity by non-toxic concentrations of cerulenin or CAY10566 decreases CHIKV genome replication. Interestingly, a similar inhibitory effect was also obtained with Orlistat, an FDA-approved anti-obesity drug that targets FASN activity. These drugs were also effective against Mayaro virus (MAYV), an under-studied arthritogenic Old world Alphavirus endemic in South American countries with potential risk of emergence, urbanization and dispersion to other regions. Altogether, our results identify FASN and SCD1 as conserved druggable cofactors of Alphavirus genome replication and support the broad-spectrum activity of drugs targeting the host fatty acids metabolism.


Subject(s)
Alphavirus/drug effects , Fatty Acid Synthases/metabolism , Stearoyl-CoA Desaturase/metabolism , Virus Replication/drug effects , Alphavirus/genetics , Alphavirus Infections/drug therapy , Animals , Antiviral Agents/pharmacology , Cell Line , Cerulenin/pharmacology , Chikungunya Fever/drug therapy , Chikungunya virus/drug effects , Chikungunya virus/genetics , Chlorocebus aethiops , Fatty Acid Synthases/drug effects , Genome, Viral , HEK293 Cells , Humans , Orlistat/pharmacology , Stearoyl-CoA Desaturase/drug effects , Vero Cells
20.
Cell Rep ; 28(10): 2647-2658.e5, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31484075

ABSTRACT

Mxra8 is a recently described receptor for multiple alphaviruses, including Chikungunya (CHIKV), Mayaro (MAYV), Ross River (RRV), and O'nyong nyong (ONNV) viruses. To determine its role in pathogenesis, we generated mice with mutant Mxra8 alleles: an 8-nucleotide deletion that produces a truncated, soluble form (Mxra8Δ8/Δ8) and a 97-nucleotide deletion that abolishes Mxra8 expression (Mxra8Δ97/Δ97). Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 fibroblasts show reduced CHIKV infection in culture, and Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 mice have decreased infection of musculoskeletal tissues with CHIKV, MAYV, RRV, or ONNV. Less foot swelling is observed in CHIKV-infected Mxra8 mutant mice, which correlated with fewer infiltrating neutrophils and cytokines. A recombinant E2-D71A CHIKV with diminished binding to Mxra8 is attenuated in vivo in wild-type mice. Ectopic Mxra8 expression is sufficient to enhance CHIKV infection and lethality in transgenic flies. These studies establish a role for Mxra8 in the pathogenesis of multiple alphaviruses and suggest that targeting this protein may mitigate disease in humans.


Subject(s)
Alphavirus/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/virology , Immunoglobulins/metabolism , Membrane Proteins/metabolism , Alphavirus/drug effects , Animals , Antibodies, Monoclonal/pharmacology , Arthritis/pathology , Arthritis/virology , CRISPR-Cas Systems/genetics , Chikungunya Fever/metabolism , Chikungunya Fever/pathology , Chikungunya virus/drug effects , Chikungunya virus/genetics , Drosophila melanogaster/drug effects , Immunoglobulins/deficiency , Inflammation/pathology , Membrane Proteins/deficiency , Mice, Inbred C57BL , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...