Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.872
Filter
1.
Immunohorizons ; 8(8): 527-537, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39093309

ABSTRACT

Many bacterial polysaccharide vaccines, including the typhoid Vi polysaccharide (ViPS) and tetravalent meningococcal polysaccharide conjugate (MCV4) vaccines, do not incorporate adjuvants and are not highly immunogenic, particularly in infants. I found that endotoxin, a TLR4 ligand in ViPS, contributes to the immunogenicity of typhoid vaccines. Because endotoxin is pyrogenic, and its levels are highly variable in vaccines, I developed monophosphoryl lipid A, a nontoxic TLR4 ligand-based adjuvant named Turbo. Admixing Turbo with ViPS and MCV4 vaccines improved their immunogenicity across all ages and eliminated booster requirement. To understand the characteristics of this adjuvanticity, I compared Turbo with alum. Unlike alum, which polarizes the response toward the IgG1 isotype, Turbo promoted Ab class switching to all IgG isotypes with affinity maturation; the magnitude of this IgG response is durable and accompanied by the presence of long-lived plasma cells in the mouse bone marrow. In striking contrast with the pathways employed by alum, Turbo adjuvanticity is independent of NLPR3, pyroptotic cell death effector Gasdermin D, and canonical and noncanonical inflammasome activation mediated by Caspase-1 and Caspase-11, respectively. Turbo adjuvanticity is primarily dependent on the MyD88 axis and is lost in mice deficient in costimulatory molecules CD86 and CD40, indicating that Turbo adjuvanticity includes activation of these pathways. Because Turbo formulations containing either monophosphoryl lipid A or TLR2 ligands, Pam2CysSerLys4, and Pam3CysSerLys4 help generate Ab response of all IgG isotypes, as an adjuvant Turbo can improve the immunogenicity of glycoconjugate vaccines against a wide range of bacterial pathogens whose elimination requires appropriate IgG isotypes.


Subject(s)
Adjuvants, Immunologic , Lipid A , Animals , Mice , Adjuvants, Immunologic/administration & dosage , Lipid A/analogs & derivatives , Lipid A/immunology , Polysaccharides, Bacterial/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Mice, Inbred C57BL , Adjuvants, Vaccine , Meningococcal Vaccines/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/immunology , Typhoid-Paratyphoid Vaccines/immunology , Typhoid-Paratyphoid Vaccines/administration & dosage , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Female , Ligands , Glycoconjugates/immunology , Humans , Vaccines, Conjugate/immunology , Alum Compounds/administration & dosage , Mice, Knockout
2.
PLoS One ; 19(7): e0307320, 2024.
Article in English | MEDLINE | ID: mdl-39038003

ABSTRACT

Antigen-presenting cells (APCs) play a crucial role in the immune system by breaking down antigens into peptide fragments that subsequently bind to major histocompatibility complex (MHC) molecules. Previous studies indicate that stable proteins can impede CD4+ T cell stimulation by hindering antigen processing and presentation. Conversely, certain proteins require stabilization in order to activate the immune response. Several factors, including the characteristics of the protein and the utilization of different adjuvants in animal experiments, may contribute to this disparity. In this study, we investigated the impact of adjuvants on antigen administration in mice, specifically focusing on the stability of the CH2 domain. Consequently, the CH2 domain induced a stronger IgG response in comparison to the stabilized one when using Alum and PBS (without adjuvant). On the other hand, animal experiment using Freund's adjuvant showed the opposite results. These findings indicate the significance of considering the intrinsic conformational stability of a protein when eliciting its immunogenicity, particularly within the context of vaccine development.


Subject(s)
Adjuvants, Immunologic , Protein Stability , Animals , Adjuvants, Immunologic/pharmacology , Mice , Humans , Antigens/immunology , Antigens/chemistry , Immunoglobulin G/immunology , Protein Conformation , Female , Protein Domains/immunology , Mice, Inbred BALB C , Alum Compounds
3.
Sci Rep ; 14(1): 16808, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039161

ABSTRACT

A new modified cellulose with diaminoguanidine (Cel-Gua) synthesized for specific recovery of Cu (II), Cd (II), and Hg (II) from the alum sample. Cellulose was silanized by 3-chloropropyltrimethoxysilane and then was modified with diaminoguanidine to obtain N-donor chelating fibers. Fourier transform-infrared spectroscopy, scanning electron microscopy, X-ray diffraction, zeta potential, electrons disperse X-ray analysis, elemental analyses (C, H and N), and thermogravimetric analysis were used for characterization. Factors influencing the adsorption were thoroughly examined. Under the optimal conditions, the Cel-Gua sorbent displayed maximum adsorption capacities of 94.33, 112.10 and 95.78 mg/g for Cu (II), Cd (II), and Hg (II), respectively. The sorption process of metal ions is equipped by kinetic model PSO and Langmuir adsorption isotherm. The calculated thermodynamic variables confirmed that the adsorption of Cu (II), Cd (II) and Hg (II) by Cel-Gua sorbent is a spontaneous and exothermic process. In our study, we used the molecular operating environment software to conduct molecular docking simulations on the Cel-Gua compound. The results of the docking simulations showed that the Cel-Gua compound displayed greater potency and a stronger affinity for the Avr2 effector protein derived from Fusarium oxysporum, a fungal plant pathogen (code 5OD4). The adsorbent was stable for 7 cycles, thus allowing its safe reutilization.


Subject(s)
Cadmium , Cellulose , Copper , Molecular Docking Simulation , Cellulose/chemistry , Copper/chemistry , Cadmium/chemistry , Adsorption , Mercury/chemistry , Alum Compounds/chemistry , Kinetics , Thermodynamics , Spectroscopy, Fourier Transform Infrared , Chelating Agents/chemistry
4.
Waste Manag ; 186: 94-108, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38870604

ABSTRACT

Alum sludge (AS) is a by-product generated from drinking water treatment and produced in large amounts around the world. Its chemical composition makes this waste an emerging alternative source of silicon and aluminum for aluminosilicates or zeolite material production, which can add value to residues and contribute to the circular economy process on a global scale. In this sense, and considering the scarcity of information about AS, this review shows data collection about AS in different countries, including generation, chemical composition, and disposal information. The reuse of AS is discussed based on circular economy and the environmental gains derived from such approaches are highlighted, including the possibility of utilization with other residues (e.g., ash, bioproducts, etc). Moreover, this review shows and discusses the benefits and challenges of AS reuse in the synthesis process and how it can be a sustainable raw material for aluminosilicates and zeolite synthesis. The most common conditions (conventional or non-conventional) in zeolite synthesis from AS are mentioned and advantages, limitations and trends are discussed. The discussions and data presented can improve the AS management and reuse legislations, which certainly will collaborate with sustainable AS use and circular economy processes.


Subject(s)
Alum Compounds , Aluminum Silicates , Recycling , Sewage , Water Purification , Zeolites , Zeolites/chemistry , Aluminum Silicates/chemistry , Alum Compounds/chemistry , Water Purification/methods , Recycling/methods , Waste Disposal, Fluid/methods
5.
Vaccine ; 42(18): 3802-3810, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38719690

ABSTRACT

Due to its antimicrobial resistance characteristics, the World Health Organization (WHO) classifies A. baumannii as one of the critical priority pathogens for the development of new therapeutic strategies. Vaccination has been approached as an interesting strategy to overcome the lack of effective antimicrobials and the long time required to develop and approve new drugs. In this study, we aimed to evaluate as a vaccine the hypothetical adhesin protein CAM87009.1 in its recombinant format (rCAM87009.1) associated with aluminum hydroxide (Alhydrogel®) or biogenic silver nanoparticles (bio-AgNP) as adjuvant components against lethal infection by A. baumannii MDR strain. Both vaccine formulations were administered in three doses intramuscularly in BALB/c murine models and the vaccinated animals were tested in a challenge assay with A. baumannii MDR strain (DL100). rCAM87009.1 protein associated with both adjuvants was able to protect 100 % of animals challenged with the lethal strain during the challenge period. After the euthanasia of the animals, no A. baumannii colonies were detected in the lungs of animals vaccinated with the rCAM87009.1 protein in both formulations. Since the first immunization, high IgG antibody titers were observed (1:819,200), with results being statistically similar in both vaccine formulations evaluated. rCAM87009.1 associated with both adjuvants was capable of inducing at least one class of isotypes associated with the processes of neutralization (IgG2b and IgA for bio-AgNP and Alhydrogel®, respectively), opsonization (IgG1 in both vaccines) and complement activation (IgM and IgG3 for bio-AgNP and Alhydrogel®, respectively). Furthermore, reduced tissue damage was observed in animals vaccinated with rCAM87009.1 + bio-AgNP when compared to animals vaccinated with Alhydrogel®. Our results indicate that the rCAM87009.1 protein associated with both bio-AgNP and Alhydrogel® are combinations capable of promoting immunity against infections caused by A. baumannii MDR. Additionally, we demonstrate the potential of silver nanoparticles as alternative adjuvant molecules to the use of aluminum salts.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Adhesins, Bacterial , Adjuvants, Immunologic , Antibodies, Bacterial , Metal Nanoparticles , Mice, Inbred BALB C , Silver , Animals , Silver/administration & dosage , Silver/pharmacology , Acinetobacter baumannii/immunology , Acinetobacter baumannii/drug effects , Mice , Acinetobacter Infections/prevention & control , Acinetobacter Infections/immunology , Adhesins, Bacterial/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Drug Resistance, Multiple, Bacterial , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Alum Compounds/administration & dosage , Female , Immunoglobulin G/blood , Immunoglobulin G/immunology , Disease Models, Animal
6.
J Med Chem ; 67(10): 8346-8360, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38741265

ABSTRACT

Toll-like receptor (TLR)-7 agonists are immunostimulatory vaccine adjuvants. A systematic structure-activity relationship (SAR) study of TLR7-active 1-benzyl-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine led to the identification of a potent hTLR7-specific p-hydroxymethyl IMDQ 23 with an EC50 value of 0.22 µM. The SAR investigation also resulted in the identification of TLR7 selective carboxamide 12 with EC50 values of 0.32 µM for hTLR7 and 18.25 µM for hTLR8. In the vaccination study, TLR7-specific compound 23 alone or combined with alum (aluminum hydroxide wet gel) showed adjuvant activity for a spike protein immunogen in mice, with enhanced anti-spike antibody production. Interestingly, the adjuvant system comprising carboxamide 12 and alum showed prominent adjuvant activity with high levels of IgG1, IgG2b, and IgG2c in immunized mice, confirming a balanced Th1/Th2 response. In the absence of any apparent toxicity, the TLR7 selective agonists in combination with alum may make a suitable vaccine adjuvant.


Subject(s)
Adjuvants, Immunologic , Toll-Like Receptor 7 , Toll-Like Receptor 7/agonists , Structure-Activity Relationship , Animals , Humans , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/chemical synthesis , Mice , Female , Alum Compounds/pharmacology , Alum Compounds/chemistry , Mice, Inbred BALB C , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis
7.
Sci Total Environ ; 931: 172945, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703849

ABSTRACT

The coagulation process has a high potential as a treatment method that can handle pathogenic viruses including emerging enveloped viruses in drinking water treatment process which can lower infection risk through drinking water consumption. In this study, a surrogate enveloped virus, bacteriophage Փ6, and surrogate non-enveloped viruses, including bacteriophage MS-2, T4, ՓX174, were used to evaluate removal efficiencies and mechanisms by the conventional coagulation process with alum, poly­aluminum chloride, and ferric chloride at pH 5, 7, and 9 in turbid water. Also, treatability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recent virus of global concern by coagulation was evaluated as SARS-CoV-2 can presence in drinking water sources. It was observed that an increase in the coagulant dose enhanced the removal efficiency of turbidity and viruses, and the condition that provided the highest removal efficiency of enveloped and non-enveloped viruses was 50 mg/L of coagulants at pH 5. In addition, the coagulation process was more effective for enveloped virus removal than for the non-enveloped viruses, and it demonstrated reduction of SARS-CoV-2 Omicron BA.2 over 0.83-log with alum. According to culture- and molecular-based assays (qPCR and CDDP-qPCR), the virus removal mechanisms were floc adsorption and coagulant inactivation. Through inactivation with coagulants, coagulants caused capsid destruction, followed by genome damage in non-enveloped viruses; however, damage to a lipid envelope is suggested to contribute to a great extend for enveloped virus inactivation. We demonstrated that conventional coagulation is a promising method for controlling emerging and re-emerging viruses in drinking water.


Subject(s)
SARS-CoV-2 , Water Purification , Water Purification/methods , SARS-CoV-2/physiology , COVID-19 , Drinking Water/virology , Drinking Water/chemistry , Alum Compounds , Water Microbiology , Betacoronavirus/physiology , Flocculation , Aluminum Compounds , Ferric Compounds/chemistry
8.
Environ Res ; 252(Pt 3): 118976, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38705451

ABSTRACT

This study evaluates Alum sludge from drinking water treatment plants for the efficient and cost-effective removal of phosphates from aqueous solutions. Extensive characterization and batch experiments have established that optimal phosphate removal was achieved with a sludge dosage of 20 g L-1 (at an initial phosphate concentration of 100 mg L-1), a pH of 5, a temperature of 23 °C, and a stirring speed of 200 rpm. These conditions significantly reduced phosphate levels, ensuring compliance with legal discharge limits. The Langmuir isotherm, pseudo-second-order kinetic and intraparticle diffusion models best described the adsorption process, highlighting the spontaneous and endothermic nature of the phenomenon. The sludge effectively reduced phosphate concentrations to acceptable levels when applied to dairy effluents. This study underscores the potential of Alum sludge as a viable solution for phosphate management in environmental cleanup efforts.


Subject(s)
Alum Compounds , Dairying , Phosphates , Sewage , Adsorption , Phosphates/chemistry , Sewage/chemistry , Alum Compounds/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Kinetics , Models, Chemical
9.
Biomaterials ; 308: 122569, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626556

ABSTRACT

In subunit vaccines, aluminum salts (Alum) are commonly used as adjuvants, but with limited cellular immune responses. To overcome this limitation, CpG oligodeoxynucleotides (ODNs) have been used in combination with Alum. However, current combined usage of Alum and CpG is limited to linear mixtures, and the underlying interaction mechanism between CpG and Alum is not well understood. Thus, we propose to chemically conjugate Alum nanoparticles and CpG (with 5' or 3' end exposed) to design combination adjuvants. Our study demonstrates that compared to the 3'-end exposure, the 5'-end exposure of CpG in combination adjuvants (Al-CpG-5') enhances the activation of bone-marrow derived dendritic cells (BMDCs) and promotes Th1 and Th2 cytokine secretion. We used the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen (HBsAg) as model antigens to demonstrate that Al-CpG-5' enhanced antigen-specific antibody production and upregulated cytotoxic T lymphocyte markers. Additionally, Al-CpG-5' allows for coordinated adaptive immune responses even at lower doses of both CpG ODNs and HBsAg antigens, and enhances lymph node transport of antigens and activation of dendritic cells, promoting Tfh cell differentiation and B cell activation. Our novel Alum-CPG strategy points the way towards broadening the use of nanoadjuvants for both prophylactic and therapeutic vaccines.


Subject(s)
Adjuvants, Immunologic , Aluminum Hydroxide , Aluminum Oxide , Dendritic Cells , Hepatitis B Surface Antigens , Nanoparticles , Oligodeoxyribonucleotides , Adjuvants, Immunologic/pharmacology , Animals , Nanoparticles/chemistry , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/pharmacology , Hepatitis B Surface Antigens/immunology , Hepatitis B Surface Antigens/metabolism , Aluminum Hydroxide/chemistry , Aluminum Hydroxide/pharmacology , Mice , Mice, Inbred C57BL , Female , Cytokines/metabolism , Alum Compounds/chemistry , Alum Compounds/pharmacology
10.
Mar Pollut Bull ; 202: 116345, 2024 May.
Article in English | MEDLINE | ID: mdl-38583219

ABSTRACT

Chemical washing could be suitable for the remediation of marine sediments contaminated with harmful heavy metals. Considering green and sustainable remediation (GSR), the application of aluminum sulfate (AS) is intended to reduce the costs and environmental impacts. We extracted harmful heavy metals from manganese nodules using an ion exchange mechanism that occurs when AS dissociates in water. AS in the range from 2 % to 5 % was used. The remediation efficiencies using 5 % AS were found to be the highest, at 91.8 % for Ni and ≥ 100 % for other harmful heavy metals. The Pearson's coefficient evaluation showed that increasing elapsed time did not significantly affect the extraction of harmful heavy metals. Pollutants in post-processing products may not cause secondary pollutions if solidification/stabilization and additional treatments are used. Our results can serve as fundamental data for the actual remediation processes using AS not only for deep-sea mining tailings but also contaminated marine sediments.


Subject(s)
Alum Compounds , Environmental Restoration and Remediation , Geologic Sediments , Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Geologic Sediments/chemistry , Environmental Restoration and Remediation/methods , Water Pollutants, Chemical/analysis , Alum Compounds/chemistry
11.
Vaccine ; 42(12): 3009-3017, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38575433

ABSTRACT

BACKGROUND: Bio Farma has developed a recombinant protein subunit vaccine (IndoVac) that is indicated for active immunization in population of all ages. This article reported the results of the phase 3 immunogenicity and safety study in Indonesian adults aged 18 years and above. METHODS: We conducted a randomized, active-controlled, multicenter, prospective intervention study to evaluate the immunogenicity and safety of IndoVac in adults aged 18 years and above. Participants who were SARS-CoV-2 vaccine-naïve received two doses of either IndoVac or control (Covovax) with 28 days interval between doses and were followed up until 12 months after complete vaccination. RESULTS: A total of 4050 participants were enrolled from June to August 2022 and received at least one dose of vaccine. The geometric mean ratio (GMR) of neutralizing antibody at 14 days after the second dose was 1.01 (95 % confidence interval (CI) 0.89-1.16), which met the WHO non-inferiority criteria for immunobridging (95 % CI lower bound > 0.67). The antibody levels were maintained through 12 months after the second dose. The incidence rate of adverse events (AEs) were 27.95 % in IndoVac group and 32.15 % in Covovax group with mostly mild intensity (27.70 %). The most reported solicited AEs were pain (14.69 %) followed by myalgia (7.48 %) and fatigue (6.77 %). Unsolicited AEs varied, with each of the incidence rate under 5 %. There were no serious AEs assessed as possibly, probably, or likely related to vaccine. CONCLUSIONS: IndoVac in adults showed favourable safety profile and elicited non-inferior immune response to Covovax. (ClinicalTrials.gov: NCT05433285, Indonesian Clinical Research Registry: INA-R5752S9).


Subject(s)
Alum Compounds , COVID-19 , Protein Subunit Vaccines , Adult , Humans , SARS-CoV-2 , COVID-19 Vaccines/adverse effects , Indonesia , Prospective Studies , COVID-19/prevention & control , Adjuvants, Immunologic , Antibodies, Neutralizing , Myalgia , Immunogenicity, Vaccine , Antibodies, Viral , Double-Blind Method
12.
Acta Trop ; 254: 107208, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621620

ABSTRACT

The study aimed to elicit protective immune responses against murine schistosomiasis mansoni at the parasite lung- and liver stage. Two peptides showing amino acid sequence similarity to gut cysteine peptidases, which induce strong memory immune effectors in the liver, were combined with a peptide based on S. mansoni thioredoxin peroxidase (TPX), a prominent lung-stage schistosomula excretory-secretory product, and alum as adjuvant. Only one of the 2 cysteine peptidases-based peptides in a multiple antigenic peptide construct (MAP-3 and MAP-4) appeared to adjuvant protective immune responses induced by the TPX peptide in a MAP form. Production of TPX MAP-specific IgG1 serum antibodies, and increase in lung interleukin-1 (IL-1), uric acid, and reactive oxygen species (ROS) content were associated with significant (P < 0.05) 50 % reduction in recovery of lung-stage larvae. Increase in lung triglycerides and cholesterol levels appeared to provide the surviving worms with nutrients necessary for a stout double lipid bilayer barrier at the parasite-host interface. Surviving worms-released products elicited memory responses to the MAP-3 immunogen, including production of specific IgG1 antibodies and increase in liver IL-33 and ROS. Reduction in challenge worm burden recorded 45 days post infection did not exceed 48 % associated with no differences in parasite egg counts in the host liver and small intestine compared to unimmunized adjuvant control mice. Alum adjuvant assisted the second peptide, MAP-4, in production of IgG1, IgG2a, IgG2b and IgA specific antibodies and increase in liver ROS, but with no protective potential, raising doubt about the necessity of adjuvant addition. Accordingly, different vaccine formulas containing TPX MAP and 1, 2 or 3 cysteine peptidases-derived peptides with or without alum were used to immunize parallel groups of mice. Compared to unimmunized control mice, significant (P < 0.05 to < 0.005) 22 to 54 % reduction in worm burden was recorded in the different groups associated with insignificant changes in parasite egg output. The results together indicated that a schistosomiasis vaccine able to entirely prevent disease and halt its transmission still remains elusive.


Subject(s)
Adjuvants, Immunologic , Antibodies, Helminth , Immunoglobulin G , Liver , Lung , Schistosoma mansoni , Schistosomiasis mansoni , Vaccines, Subunit , Animals , Schistosoma mansoni/immunology , Schistosomiasis mansoni/prevention & control , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Lung/parasitology , Lung/immunology , Mice , Antibodies, Helminth/immunology , Antibodies, Helminth/blood , Liver/parasitology , Liver/immunology , Immunoglobulin G/blood , Adjuvants, Immunologic/administration & dosage , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Female , Antigens, Helminth/immunology , Disease Models, Animal , Alum Compounds/administration & dosage , Mice, Inbred BALB C , Protein Subunit Vaccines
13.
Int Immunol ; 36(8): 393-404, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38536954

ABSTRACT

Invasive meningococcal disease (IMD) is caused by Neisseria meningitidis, with the main serogroups responsible for the disease being A, B, C, W, X, and Y. To date, several vaccines targeting N. meningitidis have been developed albeit with a short-lived protection. Given that MenW and MenB are the most common causes of IMD in Europe, Turkey, and the Middle East, we aimed to develop an outer membrane vesicle (OMV) based bivalent vaccine as the heterologous antigen source. Herein, we compared the immunogenicity, and breadth of serum bactericidal activity (SBA) assay-based protective coverage of OMV vaccine to the X serotype with existing commercial meningococcal conjugate and polysaccharide (PS) vaccines in a murine model. BALB/c mice were immunized with preclinical batches of the W + B OMV vaccine, either adjuvanted with Alum, CpG ODN, or their combinations, and compared with a MenACYW conjugate vaccine (NimenrixTM, Pfizer), and a MenB OMV-based vaccine (Bexsero®, GSK), The immune responses were assessed through enzyme-linked immunosorbent assay (ELISA) and SBA assay. Antibody responses and SBA titers were significantly higher in the W + B OMV vaccine when adjuvanted with Alum or CpG ODN, as compared to the control groups. Moreover, the SBA titers were not only significantly higher than those achieved with available conjugated ACYW vaccines but also on par with the 4CMenB vaccines. In conclusion, the W + B OMV vaccine demonstrated the capacity to elicit robust antibody responses, surpassing or matching the levels induced by licensed meningococcal vaccines. Consequently, the W + B OMV vaccine could potentially serve as a viable alternative or supplement to existing meningococcal vaccines.


Subject(s)
Alum Compounds , Meningococcal Infections , Meningococcal Vaccines , Mice, Inbred BALB C , Neisseria meningitidis , Oligodeoxyribonucleotides , Animals , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Mice , Neisseria meningitidis/immunology , Alum Compounds/administration & dosage , Oligodeoxyribonucleotides/immunology , Oligodeoxyribonucleotides/administration & dosage , Female , Meningococcal Infections/prevention & control , Meningococcal Infections/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Immunogenicity, Vaccine , Bacterial Outer Membrane/immunology
14.
Int Immunopharmacol ; 131: 111817, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38460299

ABSTRACT

Adjuvants are critical components for vaccines, which enhance the strength and longevity of the antibody response and influence the types of immune response. Limited research has been conducted on the immunogenicity and protective efficacy of various adjuvants in malaria transmission-blocking vaccines (TBVs). In this study, we formulated a promising TBV candidate antigen, the P. berghei ookinete surface antigen PSOP25, with different types of adjuvants, including the TLR4 agonist monophosphoryl lipid A (MPLA), the TLR9 agonist cytosine phosphoguanosine oligodeoxynucleotides (CpG ODN 1826) (CpG), a saponin adjuvant QS-21, aluminum hydroxide (Alum), and two combination adjuvants MPLA + QS-21 and QS-21 + CpG. We demonstrated that adjuvanted vaccines results in elevated elicited antibody levels, increased proliferation of plasma cells, and efficient formation of germinal centers (GCs), leading to enhanced long-term protective immune responses. Furthermore, CpG group exhibited the most potent inhibition of ookinete formation and transmission-blocking activity. We found that the rPSOP25 with CpG adjuvant was more effective than MPLA, QS-21, MPLA + QS-21, QS-21 + CpG adjuvants in dendritic cells (DCs) activation and differentiation. Additionally, the CpG adjuvant elicited more rubust immune memory response than Alum adjuvant. CpG and QS-21 adjuvants could activate the Th1 response and promote the secretion of IFN-γ and TNF-α. PSOP25 induced a higher number of Tfh cells in splenocytes when combined with MPLA, CpG, and QS-21 + CpG; and there was no increase in these cell populations when PSOP25 was administered with Alum. In conclusion, CpG may confer enhanced efficacy for the rPSOP25 vaccine, as evidenced by the ability of the elicited antisera to induce protective immune responses and improved transmission-blocking activity.


Subject(s)
Malaria Vaccines , Malaria , Humans , Adjuvants, Immunologic , Alum Compounds , Aluminum Hydroxide , Malaria/prevention & control , Oligodeoxyribonucleotides
15.
Virology ; 594: 110050, 2024 06.
Article in English | MEDLINE | ID: mdl-38479071

ABSTRACT

The SARS-CoV-2 Omicron variant, which was classified as a variant of concern (VOC) by the World Health Organization on 26 November 2021, has attracted worldwide attention for its high transmissibility and immune evasion ability. The existing COVID-19 vaccine has been shown to be less effective in preventing Omicron variant infection and symptomatic infection, which brings new challenges to vaccine development and application. Here, we evaluated the immunogenicity and safety of an Omicron variant COVID-19 inactivated vaccine containing aluminum and CpG adjuvants in a variety of animal models. The results showed that the vaccine candidate could induce high levels of neutralizing antibodies against the Omicron variant virus and binding antibodies, and significantly promoted cellular immune response. Meanwhile, the vaccine candidate was safe. Therefore, it provided more foundation for the development of aluminum and CpG as a combination adjuvant in human vaccines.


Subject(s)
Alum Compounds , COVID-19 Vaccines , COVID-19 , Animals , Humans , Aluminum , SARS-CoV-2 , COVID-19/prevention & control , Adjuvants, Immunologic , Immunity, Cellular , Antibodies, Neutralizing , Vaccines, Inactivated , Antibodies, Viral
16.
J Environ Qual ; 53(3): 314-326, 2024.
Article in English | MEDLINE | ID: mdl-38453693

ABSTRACT

Snowmelt runoff is a dominant pathway of phosphorus (P) losses from agricultural lands in cold climatic regions. Soil amendments effectively reduce P losses from soils by converting P to less soluble forms; however, changes in P speciation in cold climatic regions with fall-applied amendments have not been investigated. This study evaluated P composition in soils from a manured field with fall-amended alum (Al2(SO4)3·18H2O), gypsum (CaSO4·2H2O), or Epsom salt (MgSO4·7H2O) using three complementary methods: sequential P fractionation, scanning electron microscopy with energy-dispersive X-rays (SEM-EDX) spectroscopy, and P K-edge X-ray absorption near-edge structure spectroscopy (XANES). Plots were established in an annual crop field in southern Manitoba, Canada, with unamended and amended (2.5 Mg ha-1) treatments having four replicates in 2020 fall. Soil samples (0-10 cm) taken from each plot soon after spring snowmelt in 2021 were subjected to P fractionation. A composite soil sample for each treatment was analyzed using SEM-EDX and XANES. Alum- and Epsom salt-treated soils had significantly greater residual P fraction with a higher proportion of apatite-like P and a correspondingly lower proportion of P sorbed to calcite (CaCO3) than unamended and gypsum-amended soils. Backscattered electron imaging of SEM-EDX revealed that alum- and Epsom salt-amended treatments had P-enriched microsites frequently associated with aluminum (Al), iron (Fe), magnesium (Mg), and calcium (Ca), which was not observed in other treatments. Induced precipitation of apatite-like species may have been responsible for reduced P loss to snowmelt previously reported with fall application of amendments.


Subject(s)
Alum Compounds , Calcium Sulfate , Phosphorus , Soil , Calcium Sulfate/chemistry , Calcium Sulfate/analysis , Soil/chemistry , Phosphorus/analysis , Phosphorus/chemistry , Alum Compounds/chemistry , Fertilizers/analysis , Manure/analysis , Agriculture/methods
17.
Acta Chir Belg ; 124(4): 253-260, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38428446

ABSTRACT

BACKGROUND: We conducted a systematic review to assess the safety and efficacy of Aluminum potassium sulfate and tannic acid (ALTA) sclerotherapy for the treatment of hemorrhoidal disease. METHODS: Our study was conducted in accordance with the PRISMA statement (Preferred Reporting Items for Systematic Reviews and Meta-analyses) 2020. Primary endpoints included overall recurrence and type of recurrence while secondary endpoints included postoperative complications, reintervention, presence of rectal ulcer, rectal stricture, defecation abnormalities and perianal abscess. Α regression analysis, where the percentage of patients with grade II, III and IV hemorrhoidal disease was used as a covariate, was also performed. RESULTS: Twelve studies with 4249 patients met all the inclusion criteria and were eventually included. The crude and pooled estimates of the overall recurrence and complications by the end of follow-up were 10% (95% CI, 6.52%-14.08%) and 5.20% (95% CI, 2.59%-8.52%), respectively. Regression analysis displayed no correlation between recurrence and the grade of hemorrhoid disease II, ß= -0.0012 (95% CI, -0.0074 to 0.0049) (p = .64), grade III ß= -0.0006 (95% CI, -0.0056 to 0.0045) (p = .79) and grade IV ß = 0.0025 (95% CI, -0.0075 to 0.0124). However, a trend suggestive of increased recurrence was observed in patient populations with a higher proportion of grade IV disease. CONCLUSION: ALTA sclerotherapy may be a safe and viable alternative for patients with hemorrhoidal disease. Long-term follow-up and high-quality randomized controlled trials will help define the place of ALTA sclerotherapy in the armamentarium of treatment of hemorrhoids.


Subject(s)
Alum Compounds , Hemorrhoids , Sclerosing Solutions , Sclerotherapy , Tannins , Humans , Hemorrhoids/therapy , Sclerotherapy/methods , Tannins/therapeutic use , Alum Compounds/therapeutic use , Sclerosing Solutions/therapeutic use , Treatment Outcome , Recurrence , Polyphenols
18.
Pol J Vet Sci ; 27(1): 61-74, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38511603

ABSTRACT

This study aimed to develop an equine-derived hyperimmune serum against SARS-CoV-2 and evaluate its efficacy as a potential immunotherapy tool for the treatment of known and potential variants of COVID-19 in preclinical trials. The novelty of this study is the whole virus and ALUM gel adjuvant formula. The horses were immunized using a whole inactivated SARS-CoV-2 antigen, and the final purified hyperimmune serum showed high plaque reduction neutralization (PRNT 50) neutralizing titers. The efficacy of the hyperimmune serum was evaluated histopathologically and biochemically in the lungs, hearts, and serum of K18 hACE2 transgenic mice (n=45), which is an accepted model organism for SARS-CoV-2 studies and was challenged with live SARS-CoV-2. Serum treatment improved the general condition, resulting in lower levels of proinflammatory cytokines in the blood plasma, as well as reduced viral RNA titers in the lungs and hearts. Additionally, it reduced oxidative stress significantly and lessened the severity of interstitial pneumonia in the lungs when compared to infected positive controls. The study concluded that equine-derived anti-SARS-CoV-2 antibodies could be used for COVID-19 prevention and treatment, especially in the early stages of the disease and in combination with antiviral drugs and vaccines. This treatment will benefit special patient populations such as immunocompromised individuals, as specific antibodies against SARS-CoV-2 can neutralize the virus before it enters host cells. The rapid and cost-effective production of the serum allows for its availability during the acute phase of the disease, making it a critical intervention in preventing the spread of the disease and saving lives in new variants where a vaccine is not yet developed.


Subject(s)
Alum Compounds , COVID-19 , Horse Diseases , Melphalan , Rodent Diseases , gamma-Globulins , Mice , Animals , Horses , COVID-19/veterinary , SARS-CoV-2 , Antibodies, Viral , Mice, Transgenic , Disease Models, Animal , Horse Diseases/prevention & control
19.
Vaccine ; 42(9): 2463-2474, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38472067

ABSTRACT

Enterovirus D68 (EV-D68), a pathogen that causes respiratory symptoms, mainly in children, has been implicated in acute flaccid myelitis, which is a poliomyelitis-like paralysis. Currently, there are no licensed vaccines or treatments for EV-D68 infections. Here, we investigated the optimal viral inactivation reagents, vaccine adjuvants, and route of vaccination in mice to optimize an inactivated whole-virion (WV) vaccine against EV-D68. We used formalin, ß-propiolactone (BPL), and hydrogen peroxide as viral inactivation reagents and compared their effects on antibody responses. Use of any of these three viral inactivation reagents effectively induced neutralizing antibodies. Moreover, the antibody response induced by the BPL-inactivated WV vaccine was enhanced when adjuvanted with cytosine phosphoguanine oligodeoxynucleotide (CpG ODN) or AddaVax (MF59-like adjuvant), but not with aluminum hydroxide (alum). Consistent with the antibody response results, the protective effect of the inactivated WV vaccine against the EV-D68 challenge was enhanced when adjuvanted with CpG ODN or AddaVax, but not with alum. Further, while the intranasal inactivated WV vaccine induced EV-D68-specific IgA antibodies in the respiratory tract, it was less protective against EV-D68 challenge than the injectable vaccine. Thus, an injectable inactivated EV-D68 WV vaccine prepared with appropriate viral inactivation reagents and an optimal adjuvant is a promising EV-D68 vaccine.


Subject(s)
Alum Compounds , Enterovirus D, Human , Enterovirus Infections , Polysorbates , Squalene , Humans , Child , Animals , Mice , Antibodies, Viral , Vaccines, Inactivated , Oligodeoxyribonucleotides , Adjuvants, Immunologic
20.
BMC Vet Res ; 20(1): 82, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448902

ABSTRACT

BACKGROUND: Senecavirus A (SVA) causes an emerging vesicular disease (VD) with clinical symptoms indistinguishable from other vesicular diseases, including vesicular stomatitis (VS), foot-and-mouth disease (FMD), and swine vesicular disease (SVD). Currently, SVA outbreaks have been reported in Canada, the U.S.A, Brazil, Thailand, Vietnam, Colombia, and China. Based on the experience of prevention and control of FMDV, vaccines are the best means to prevent SVA transmission. RESULTS: After preparing an SVA inactivated vaccine (CH-GX-01-2019), we evaluated the immunogenicity of the SVA inactivated vaccine mixed with Imject® Alum (SVA + AL) or Montanide ISA 201 (SVA + 201) adjuvant in mice, as well as the immunogenicity of the SVA inactivated vaccine combined with Montanide ISA 201 adjuvant in post-weaned pigs. The results of the mouse experiment showed that the immune effects in the SVA + 201 group were superior to that in the SVA + AL group. Results from pigs immunized with SVA inactivated vaccine combined with Montanide ISA 201 showed that the immune effects were largely consistent between the SVA-H group (200 µg) and SVA-L group (50 µg); the viral load in tissues and blood was significantly reduced and no clinical symptoms occurred in the vaccinated pigs. CONCLUSIONS: Montanide ISA 201 is a better adjuvant choice than the Imject® Alum adjuvant in the SVA inactivated vaccine preparation, and the CH-GX-01-2019 SVA inactivated vaccine can provide effective protection for pigs.


Subject(s)
Adjuvants, Immunologic , Alum Compounds , Mannitol/analogs & derivatives , Mineral Oil , Oleic Acids , Picornaviridae , Animals , Mice , Swine , Vaccines, Inactivated
SELECTION OF CITATIONS
SEARCH DETAIL