Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.443
Filter
1.
Brain Behav ; 14(7): e3611, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956818

ABSTRACT

PURPOSE: Mild cognitive impairment (MCI) can be the prodromal phase of Alzheimer's disease (AD) where appropriate intervention might prevent or delay conversion to AD. Given this, there has been increasing interest in using magnetic resonance imaging (MRI) and neuropsychological testing to predict conversion from MCI to AD. Recent evidence suggests that the choroid plexus (ChP), neural substrates implicated in brain clearance, undergo volumetric changes in MCI and AD. Whether the ChP is involved in memory changes observed in MCI and can be used to predict conversion from MCI to AD has not been explored. METHOD: The current study used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to investigate whether later progression from MCI to AD (progressive MCI [pMCI], n = 115) or stable MCI (sMCI, n = 338) was associated with memory scores using the Rey Auditory Verbal Learning Test (RAVLT) and ChP volumes as calculated from MRI. Classification analyses identifying pMCI or sMCI group membership were performed to compare the predictive ability of the RAVLT and ChP volumes. FINDING: The results indicated a significant difference between pMCI and sMCI groups for right ChP volume, with the pMCI group showing significantly larger right ChP volume (p = .01, 95% confidence interval [-.116, -.015]). A significant linear relationship between the RAVLT scores and right ChP volume was found across all participants, but not for the two groups separately. Classification analyses showed that a combination of left ChP volume and auditory verbal learning scores resulted in the most accurate classification performance, with group membership accurately predicted for 72% of the testing data. CONCLUSION: These results suggest that volumetric ChP changes appear to occur before the onset of AD and might provide value in predicting conversion from MCI to AD.


Subject(s)
Alzheimer Disease , Choroid Plexus , Cognitive Dysfunction , Disease Progression , Magnetic Resonance Imaging , Verbal Learning , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnosis , Male , Female , Aged , Verbal Learning/physiology , Choroid Plexus/diagnostic imaging , Choroid Plexus/pathology , Aged, 80 and over , Neuropsychological Tests
2.
BMC Neurosci ; 25(1): 30, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965489

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the two most common neurodegenerative dementias, presenting with similar clinical features that challenge accurate diagnosis. Despite extensive research, the underlying pathophysiological mechanisms remain unclear, and effective treatments are limited. This study aims to investigate the alterations in brain network connectivity associated with AD and FTD to enhance our understanding of their pathophysiology and establish a scientific foundation for their diagnosis and treatment. METHODS: We analyzed preprocessed electroencephalogram (EEG) data from the OpenNeuro public dataset, comprising 36 patients with AD, 23 patients with FTD, and 29 healthy controls (HC). Participants were in a resting state with eyes closed. We estimated the average functional connectivity using the Phase Lag Index (PLI) for lower frequencies (delta and theta) and the Amplitude Envelope Correlation with leakage correction (AEC-c) for higher frequencies (alpha, beta, and gamma). Graph theory was applied to calculate topological parameters, including mean node degree, clustering coefficient, characteristic path length, global and local efficiency. A permutation test was then utilized to assess changes in brain network connectivity in AD and FTD based on these parameters. RESULTS: Both AD and FTD patients showed increased mean PLI values in the theta frequency band, along with increases in average node degree, clustering coefficient, global efficiency, and local efficiency. Conversely, mean AEC-c values in the alpha frequency band were notably diminished, which was accompanied by decreases average node degree, clustering coefficient, global efficiency, and local efficiency. Furthermore, AD patients in the occipital region showed an increase in theta band node degree and decreased alpha band clustering coefficient and local efficiency, a pattern not observed in FTD. CONCLUSIONS: Our findings reveal distinct abnormalities in the functional network topology and connectivity in AD and FTD, which may contribute to a better understanding of the pathophysiological mechanisms of these diseases. Specifically, patients with AD demonstrated a more widespread change in functional connectivity, while those with FTD retained connectivity in the occipital lobe. These observations could provide valuable insights for developing electrophysiological markers to differentiate between the two diseases.


Subject(s)
Alzheimer Disease , Brain , Electroencephalography , Frontotemporal Dementia , Humans , Frontotemporal Dementia/physiopathology , Alzheimer Disease/physiopathology , Female , Male , Aged , Electroencephalography/methods , Brain/physiopathology , Middle Aged , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Neural Pathways/physiopathology
4.
Sci Rep ; 14(1): 14821, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937574

ABSTRACT

The pathogenesis of Alzheimer's disease (AD) remains unclear, but revealing individual differences in functional connectivity (FC) may provide insights and improve diagnostic precision. A hierarchical clustering-based autoencoder with functional connectivity was proposed to categorize 82 AD patients from the Alzheimer's Disease Neuroimaging Initiative. Compared to directly performing clustering, using an autoencoder to reduce the dimensionality of the matrix can effectively eliminate noise and redundant information in the data, extract key features, and optimize clustering performance. Subsequently, subtype differences in clinical and graph theoretical metrics were assessed. Results indicate a significant inter-subject heterogeneity in the degree of FC disruption among AD patients. We have identified two neurophysiological subtypes: subtype I exhibits widespread functional impairment across the entire brain, while subtype II shows mild impairment in the Limbic System region. What is worth noting is that we also observed significant differences between subtypes in terms of neurocognitive assessment scores associations with network functionality, and graph theory metrics. Our method can accurately identify different functional disruptions in subtypes of AD, facilitating personalized treatment and early diagnosis, ultimately improving patient outcomes.


Subject(s)
Alzheimer Disease , Brain , Connectome , Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnostic imaging , Female , Male , Aged , Brain/diagnostic imaging , Brain/physiopathology , Magnetic Resonance Imaging/methods , Aged, 80 and over , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Neuroimaging/methods , Cluster Analysis
5.
Age Ageing ; 53(6)2024 06 01.
Article in English | MEDLINE | ID: mdl-38935531

ABSTRACT

BACKGROUND: This article introduces a novel index aimed at uncovering specific brain connectivity patterns associated with Alzheimer's disease (AD), defined according to neuropsychological patterns. METHODS: Electroencephalographic (EEG) recordings of 370 people, including 170 healthy subjects and 200 mild-AD patients, were acquired in different clinical centres using different acquisition equipment by harmonising acquisition settings. The study employed a new derived Small World (SW) index, SWcomb, that serves as a comprehensive metric designed to integrate the seven SW parameters, computed across the typical EEG frequency bands. The objective is to create a unified index that effectively distinguishes individuals with a neuropsychological pattern compatible with AD from healthy ones. RESULTS: Results showed that the healthy group exhibited the lowest SWcomb values, while the AD group displayed the highest SWcomb ones. CONCLUSIONS: These findings suggest that SWcomb index represents an easy-to-perform, low-cost, widely available and non-invasive biomarker for distinguishing between healthy individuals and AD patients.


Subject(s)
Alzheimer Disease , Electroencephalography , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Female , Male , Aged , Case-Control Studies , Neuropsychological Tests , Brain/physiopathology , Aged, 80 and over , Middle Aged , Brain Waves
6.
Actas Esp Psiquiatr ; 52(3): 347-364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863047

ABSTRACT

BACKGROUND: The number of individuals diagnosed with Alzheimer's disease (AD) has increased, and it is estimated to continue rising in the coming years. The diagnosis of this disease is challenging due to variations in onset and course, its diverse clinical manifestations, and the indications for measuring deposit biomarkers. Hence, there is a need to develop more precise and less invasive diagnostic tools. Multiple studies have considered using electroencephalography (EEG) entropy measures as an indicator of the onset and course of AD. Entropy is deemed suitable as a potential indicator based on the discovery that variations in its complexity can be associated with specific pathologies such as AD. METHODOLOGY: Following PRISMA guidelines, a literature search was conducted in 4 scientific databases, and 40 articles were analyzed after discarding and filtering. RESULTS: There is a diversity in entropy measures; however, Sample Entropy (SampEn) and Multiscale Entropy (MSE) are the most widely used (21/40). In general, it is found that when comparing patients with controls, patients exhibit lower entropy (20/40) in various areas. Findings of correlation with the level of cognitive decline are less consistent, and with neuropsychiatric symptoms (2/40) or treatment response less explored (2/40), although most studies show lower entropy with greater severity. Machine learning-based studies show good discrimination capacity. CONCLUSIONS: There is significant difficulty in comparing multiple studies due to their heterogeneity; however, changes in Multiscale Entropy (MSE) scales or a decrease in entropy levels are considered useful for determining the presence of AD and measuring its severity.


Subject(s)
Alzheimer Disease , Electroencephalography , Entropy , Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Humans , Electroencephalography/methods
7.
Int Ophthalmol ; 44(1): 270, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914919

ABSTRACT

PURPOSE: To compare, between Alzheimer's disease (AD) patients and healthy individuals, corneal subbasal nerve plexus (CSNP) parameters and corneal sensitivities. METHODS: Twenty-two patients who were followed up with Alzheimer's disease (Alzheimer's group) and 18 age- and gender-matched healthy individuals (control group) were included in this cross-sectional study. CSNP parameters, including nerve fiber length (NFL), nerve fiber density (NFD), and nerve branch density (NBD), were evaluated using in vivo confocal microscopy. Corneal sensitivity was evaluated using a Cochet-Bonnet esthesiometer. The results were compared between the two groups. RESULTS: In the Alzheimer's group, NFL was 12.2 (2.4) mm/mm2, NFD was 12.5 [3.1] fibers/mm2, and NBD was 29.7 [9.37] branches/mm2. In the control group, NFL was 16.5 (2.0) mm/mm2, NFD was 25.0 [3.13] fibers/mm2, and NBD was 37.5 [10.9] branches/mm2. All three parameters were significantly lower in the Alzheimer's group compared to the control group (p < 0.001, p < 0.001, and p = 0.001, respectively). Similarly, corneal sensitivity was significantly lower in the Alzheimer's group (55.0 [5.0] mm) compared to the control group (60.0 [5.0] mm) (p < 0.001). CONCLUSION: We determined that, in AD, corneal sensitivity decreases significantly, in parallel with the decrease in corneal nerves. Changes in the corneal nerve plexus and a decrease in corneal sensitivity may be used in the early diagnosis and follow-up of AD. In addition, ocular surface problems secondary to these changes should also be kept in mind.


Subject(s)
Alzheimer Disease , Cornea , Microscopy, Confocal , Nerve Fibers , Humans , Female , Male , Cornea/innervation , Cornea/pathology , Cross-Sectional Studies , Alzheimer Disease/physiopathology , Aged , Nerve Fibers/pathology , Middle Aged , Ophthalmic Nerve/pathology , Sensation Disorders/etiology , Sensation Disorders/physiopathology , Sensation Disorders/diagnosis , Aged, 80 and over
8.
Sci Rep ; 14(1): 13454, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862632

ABSTRACT

Alzheimer's disease (AD) is characterized by the gradual deterioration of brain structures and changes in hemispheric asymmetry. Meanwhile, healthy aging is associated with a decrease in functional hemispheric asymmetry. In this study, functional connectivity analysis was used to compare the functional hemispheric asymmetry in eyes-open resting-state fNIRS data of 16 healthy elderly controls (mean age: 60.4 years, MMSE (Mini-Mental State Examination): 27.3 ± 2.52) and 14 Alzheimer's patients (mean age: 73.8 years, MMSE: 22 ± 4.32). Increased interhemispheric functional connectivity was found in the premotor cortex, supplementary motor cortex, primary motor cortex, inferior parietal cortex, primary somatosensory cortex, and supramarginal gyrus in the control group compared to the AD group. The study revealed that the control group had stronger interhemispheric connectivity, leading to a more significant decrease in hemispheric asymmetry than the AD group. The results show that there is a difference in interhemispheric functional connections at rest between the Alzheimer's group and the control group, suggesting that functional hemispheric asymmetry continues in Alzheimer's patients.


Subject(s)
Alzheimer Disease , Rest , Spectroscopy, Near-Infrared , Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnostic imaging , Male , Female , Aged , Spectroscopy, Near-Infrared/methods , Middle Aged , Rest/physiology , Functional Laterality/physiology , Case-Control Studies , Brain/physiopathology , Brain/diagnostic imaging , Brain Mapping/methods , Aged, 80 and over
9.
J Neurosci ; 44(27)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38830757

ABSTRACT

It was proposed that a reorganization of the relationships between cognitive functions occurs in dementia, a vision that surpasses the idea of a mere decline of specific domains. The complexity of cognitive structure, as assessed by neuropsychological tests, can be captured by exploratory graph analysis (EGA). EGA was applied to the neuropsychological assessment of people (humans) with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and Alzheimer's disease (AD; total N = 638). Both sexes were included. In AD, memory scores detach from the other cognitive functions, and memory subdomains reduce their reciprocal relation. SCD showed a pattern of segregated neuropsychological domains, and MCI showed a noisy and less stable pattern. Results suggest that AD drives a reorganization of cognitive functions toward a less-fractionated architecture compared with preclinical conditions. Cognitive functions show a reorganization that goes beyond the performance decline. Results also have clinical implications in test interpretations and usage.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neuropsychological Tests , Humans , Alzheimer Disease/psychology , Alzheimer Disease/physiopathology , Male , Female , Cognitive Dysfunction/psychology , Cognitive Dysfunction/physiopathology , Aged , Aged, 80 and over , Middle Aged , Nerve Net/physiopathology
10.
Int J Geriatr Psychiatry ; 39(6): e6112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837281

ABSTRACT

OBJECTIVES: People with Alzheimer's Disease (AD) experience changes in their level and content of consciousness, but there is little research on biomarkers of consciousness in pre-clinical AD and Mild Cognitive Impairment (MCI). This study investigated whether levels of consciousness are decreased in people with MCI. METHODS: A multi-site site magnetoencephalography (MEG) dataset, BIOFIND, comprising 83 people with MCI and 83 age matched controls, was analysed. Arousal (and drowsiness) was assessed by computing the theta-alpha ratio (TAR). The Lempel-Ziv algorithm (LZ) was used to quantify the information content of brain activity, with higher LZ values indicating greater complexity and potentially a higher level of consciousness. RESULTS: LZ was lower in the MCI group versus controls, indicating a reduced level of consciousness in MCI. TAR was higher in the MCI group versus controls, indicating a reduced level of arousal (i.e. increased drowsiness) in MCI. LZ was also found to be correlated with mini-mental state examination (MMSE) scores, suggesting an association between cognitive impairment and level of consciousness in people with MCI. CONCLUSIONS: A decline in consciousness and arousal can be seen in MCI. As cognitive impairment worsens, measured by MMSE scores, levels of consciousness and arousal decrease. These findings highlight how monitoring consciousness using biomarkers could help understand and manage impairments found at the preclinical stages of AD. Further research is needed to explore markers of consciousness between people who progress from MCI to dementia and those who do not, and in people with moderate and severe AD, to promote person-centred care.


Subject(s)
Arousal , Cognitive Dysfunction , Magnetoencephalography , Humans , Cognitive Dysfunction/physiopathology , Female , Male , Aged , Arousal/physiology , Aged, 80 and over , Case-Control Studies , Consciousness/physiology , Alzheimer Disease/physiopathology , Biomarkers/analysis , Algorithms , Middle Aged , Mental Status and Dementia Tests
11.
PLoS One ; 19(6): e0305082, 2024.
Article in English | MEDLINE | ID: mdl-38870189

ABSTRACT

Alpha waves, one of the major components of resting and awake cortical activity in human electroencephalography (EEG), are known to show waxing and waning, but this phenomenon has rarely been analyzed. In the present study, we analyzed this phenomenon from the viewpoint of excitation and inhibition. The alpha wave envelope was subjected to secondary differentiation. This gave the positive (acceleration positive, Ap) and negative (acceleration negative, An) values of acceleration and their ratio (Ap-An ratio) at each sampling point of the envelope signals for 60 seconds. This analysis was performed on 36 participants with Alzheimer's disease (AD), 23 with frontotemporal dementia (FTD) and 29 age-matched healthy participants (NC) whose data were provided as open datasets. The mean values of the Ap-An ratio for 60 seconds at each EEG electrode were compared between the NC and AD/FTD groups. The AD (1.41 ±0.01 (SD)) and FTD (1.40 ±0.02) groups showed a larger Ap-An ratio than the NC group (1.38 ±0.02, p<0.05). A significant correlation between the envelope amplitude of alpha activity and the Ap-An ratio was observed at most electrodes in the NC group (Pearson's correlation coefficient, r = -0.92 ±0.15, mean for all electrodes), whereas the correlation was disrupted in AD (-0.09 ±0.21, p<0.05) and disrupted in the frontal region in the FTD group. The present method analyzed the envelope of alpha waves from a new perspective, that of excitation and inhibition, and it could detect properties of the EEG, Ap-An ratio, that have not been revealed by existing methods. The present study proposed a new method to analyze the alpha activity envelope in electroencephalography, which could be related to excitatory and inhibitory neural activity.


Subject(s)
Alpha Rhythm , Alzheimer Disease , Electroencephalography , Frontotemporal Dementia , Humans , Male , Female , Electroencephalography/methods , Aged , Alzheimer Disease/physiopathology , Alpha Rhythm/physiology , Frontotemporal Dementia/physiopathology , Middle Aged , Case-Control Studies
12.
Sensors (Basel) ; 24(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38894334

ABSTRACT

Amnestic mild cognitive impairment (aMCI) is a transitional stage between normal aging and Alzheimer's disease, making early screening imperative for potential intervention and prevention of progression to Alzheimer's disease (AD). Therefore, there is a demand for research to identify effective and easy-to-use tools for aMCI screening. While behavioral tests in virtual reality environments have successfully captured behavioral features related to instrumental activities of daily living for aMCI screening, further investigations are necessary to establish connections between cognitive decline and neurological changes. Utilizing electroencephalography with steady-state visual evoked potentials, this study delved into the correlation between behavioral features recorded during virtual reality tests and neurological features obtained by measuring neural activity in the dorsal stream. As a result, this multimodal approach achieved an impressive screening accuracy of 98.38%.


Subject(s)
Cognitive Dysfunction , Electroencephalography , Evoked Potentials, Visual , Virtual Reality , Humans , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/physiopathology , Electroencephalography/methods , Aged , Male , Female , Evoked Potentials, Visual/physiology , Alzheimer Disease/physiopathology , Neuropsychological Tests , Activities of Daily Living , Middle Aged
13.
Cells ; 13(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38891102

ABSTRACT

Electroencephalogram (EEG) studies have suggested compensatory brain overactivation in cognitively healthy (CH) older adults with pathological beta-amyloid(Aß42)/tau ratios during working memory and interference processing. However, the association between glutamatergic metabolites and brain activation proxied by EEG signals has not been thoroughly investigated. We aim to determine the involvement of these metabolites in EEG signaling. We focused on CH older adults classified under (1) normal CSF Aß42/tau ratios (CH-NATs) and (2) pathological Aß42/tau ratios (CH-PATs). We measured plasma glutamine, glutamate, pyroglutamate, and γ-aminobutyric acid concentrations using tandem mass spectrometry and conducted a correlational analysis with alpha frequency event-related desynchronization (ERD). Under the N-back working memory paradigm, CH-NATs presented negative correlations (r = ~-0.74--0.96, p = 0.0001-0.0414) between pyroglutamate and alpha ERD but positive correlations (r = ~0.82-0.95, p = 0.0003-0.0119) between glutamine and alpha ERD. Under Stroop interference testing, CH-NATs generated negative correlations between glutamine and left temporal alpha ERD (r = -0.96, p = 0.037 and r = -0.97, p = 0.027). Our study demonstrated that glutamine and pyroglutamate levels were associated with EEG activity only in CH-NATs. These results suggest cognitively healthy adults with amyloid/tau pathology experience subtle metabolic dysfunction that may influence EEG signaling during cognitive challenge. A longitudinal follow-up study with a larger sample size is needed to validate these pilot studies.


Subject(s)
Alzheimer Disease , Cognition , Glutamic Acid , Memory, Short-Term , Humans , Alzheimer Disease/blood , Alzheimer Disease/physiopathology , Memory, Short-Term/physiology , Female , Male , Aged , Cognition/physiology , Glutamic Acid/blood , Glutamic Acid/metabolism , Electroencephalography , Middle Aged , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/metabolism , tau Proteins/blood , tau Proteins/metabolism
14.
Sci Rep ; 14(1): 13153, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849418

ABSTRACT

Dementia, and in particular Alzheimer's disease (AD), can be characterized by disrupted functional connectivity in the brain caused by beta-amyloid deposition in neural links. Non-pharmaceutical treatments for dementia have recently explored interventions involving the stimulation of neuronal populations in the gamma band. These interventions aim to restore brain network functionality by synchronizing rhythmic energy through various stimulation modalities. Entrainment, a newly proposed non-invasive sensory stimulation method, has shown promise in improving cognitive functions in dementia patients. This study investigates the effectiveness of entrainment in terms of promoting neural synchrony and spatial connectivity across the cortex. EEG signals were recorded during a 40 Hz auditory entrainment session conducted with a group of elderly participants with dementia. Phase locking value (PLV) between different intraregional and interregional sites was examined as an attribute of network synchronization, and connectivity of local and distant links were compared during the stimulation and rest trials. Our findings demonstrate enhanced neural synchrony between the frontal and parietal regions, which are key components of the brain's default mode network (DMN). The DMN operation is known to be impacted by dementia's progression, leading to reduced functional connectivity across the parieto-frontal pathways. Notably, entrainment alone significantly improves synchrony between these DMN components, suggesting its potential for restoring functional connectivity.


Subject(s)
Default Mode Network , Dementia , Electroencephalography , Gamma Rhythm , Humans , Male , Female , Aged , Dementia/physiopathology , Dementia/therapy , Gamma Rhythm/physiology , Default Mode Network/physiopathology , Acoustic Stimulation , Aged, 80 and over , Nerve Net/physiopathology , Alzheimer Disease/therapy , Alzheimer Disease/physiopathology , Brain/physiopathology , Brain/diagnostic imaging
15.
Alzheimers Res Ther ; 16(1): 124, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851772

ABSTRACT

BACKGROUND: Higher order regulation of autonomic function is maintained by the coordinated activity of specific cortical and subcortical brain regions, collectively referred to as the central autonomic network (CAN). Autonomic changes are frequently observed in Alzheimer's disease (AD) and dementia, but no studies to date have investigated whether plasma AD biomarkers are associated with CAN functional connectivity changes in at risk older adults. METHODS: Independently living older adults (N = 122) without major neurological or psychiatric disorder were recruited from the community. Participants underwent resting-state brain fMRI and a CAN network derived from a voxel-based meta-analysis was applied for overall, sympathetic, and parasympathetic CAN connectivity using the CONN Functional Toolbox. Sensorimotor network connectivity was studied as a negative control. Plasma levels of amyloid (Aß42, Aß40), neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) were assessed using digital immunoassay. The relationship between plasma AD biomarkers and within-network functional connectivity was studied using multiple linear regression adjusted for demographic covariates and Apolipoprotein E (APOE) genotype. Interactive effects with APOE4 carrier status were also assessed. RESULTS: All autonomic networks were positively associated with Aß42/40 ratio and remained so after adjustment for age, sex, and APOE4 carrier status. Overall and parasympathetic networks were negatively associated with GFAP. The relationship between the parasympathetic CAN and GFAP was moderated by APOE4 carrier status, wherein APOE4 carriers with low parasympathetic CAN connectivity displayed the highest plasma GFAP concentrations (B = 910.00, P = .004). Sensorimotor connectivity was not associated with any plasma AD biomarkers, as expected. CONCLUSION: The present study findings suggest that CAN function is associated with plasma AD biomarker levels. Specifically, lower CAN functional connectivity is associated with decreased plasma Aß42/40, indicative of cerebral amyloidosis, and increased plasma GFAP in APOE4 carriers at risk for AD. These findings could suggest higher order autonomic and parasympathetic dysfunction in very early-stage AD, which may have clinical implications.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Magnetic Resonance Imaging , Humans , Female , Alzheimer Disease/blood , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnostic imaging , Aged , Male , Biomarkers/blood , Amyloid beta-Peptides/blood , Brain/diagnostic imaging , Brain/physiopathology , Peptide Fragments/blood , Autonomic Nervous System/physiopathology , Glial Fibrillary Acidic Protein/blood , Aged, 80 and over , Neurofilament Proteins/blood , Autonomic Nervous System Diseases/blood , Autonomic Nervous System Diseases/physiopathology , Autonomic Nervous System Diseases/etiology
16.
Brain Behav ; 14(6): e3550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841739

ABSTRACT

BACKGROUND: Cerebral specialization and interhemispheric cooperation are two vital features of the human brain. Their dysfunction may be associated with disease progression in patients with Alzheimer's disease (AD), which is featured as progressive cognitive degeneration and asymmetric neuropathology. OBJECTIVE: This study aimed to examine and define two inherent properties of hemispheric function in patients with AD by utilizing resting-state functional magnetic resonance imaging (rs-fMRI). METHODS: Sixty-four clinically diagnosed AD patients and 52 age- and sex-matched cognitively normal subjects were recruited and underwent MRI and clinical evaluation. We calculated and compared brain specialization (autonomy index, AI) and interhemispheric cooperation (connectivity between functionally homotopic voxels, CFH). RESULTS: In comparison to healthy controls, patients with AD exhibited enhanced AI in the left middle occipital gyrus. This increase in specialization can be attributed to reduced functional connectivity in the contralateral region, such as the right temporal lobe. The CFH of the bilateral precuneus and prefrontal areas was significantly decreased in AD patients compared to controls. Imaging-cognitive correlation analysis indicated that the CFH of the right prefrontal cortex was marginally positively related to the Montreal Cognitive Assessment score in patients and the Auditory Verbal Learning Test score. Moreover, taking abnormal AI and CFH values as features, support vector machine-based classification achieved good accuracy, sensitivity, specificity, and area under the curve by leave-one-out cross-validation. CONCLUSION: This study suggests that individuals with AD have abnormal cerebral specialization and interhemispheric cooperation. This provides new insights for further elucidation of the pathological mechanisms of AD.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnostic imaging , Female , Male , Aged , Magnetic Resonance Imaging/methods , Brain/physiopathology , Brain/diagnostic imaging , Middle Aged , Support Vector Machine , Aged, 80 and over
17.
Brain Behav ; 14(6): e3567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841742

ABSTRACT

BACKGROUND: Visual attention-related processes that underlie visual search behavior are impaired in both the early stages of Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI), which is considered a risk factor for AD. Although traditional computer-based array tasks have been used to investigate visual search, information on the visual search patterns of AD and MCI patients in real-world environments is limited. AIM: The objective of this study was to evaluate the differences in visual search behaviors among individuals with AD, aMCI, and healthy controls (HCs) in real-world scenes. MATERIALS AND METHODS: A total of 92 participants were enrolled, including 28 with AD, 32 with aMCI, and 32 HCs. During the visual search task, participants were instructed to look at a single target object amid distractors, and their eye movements were recorded. RESULTS: The results indicate that patients with AD made more fixations on distractors and fewer fixations on the target, compared to patients with aMCI and HC groups. Additionally, AD patients had longer fixation durations on distractors and spent less time looking at the target than both patients with aMCI and HCs. DISCUSSION: These findings suggest that visual search behavior is impaired in patients with AD and can be distinguished from aMCI and healthy individuals. For future studies, it is important to longitudinally monitor visual search behavior in the progression from aMCI to AD. CONCLUSION: Our study holds significance in elucidating the interplay between impairments in attention, visual processes, and other underlying cognitive processes, which contribute to the functional decline observed in individuals with AD and aMCI.


Subject(s)
Alzheimer Disease , Attention , Cognitive Dysfunction , Visual Perception , Humans , Alzheimer Disease/physiopathology , Cognitive Dysfunction/physiopathology , Female , Male , Aged , Attention/physiology , Visual Perception/physiology , Amnesia/physiopathology , Eye Movements/physiology , Aged, 80 and over , Middle Aged
18.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230233, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853564

ABSTRACT

Long-term potentiation (LTP)-like activity can be induced by stimulation protocols such as paired associative stimulation (PAS). We aimed to determine whether PAS-induced LTP-like activity (PAS-LTP) of the dorsolateral prefrontal cortex (DLPFC) is associated with cortical thickness and other structural measures impaired in Alzheimer's dementia (AD). We also explored longitudinal relationships between these brain structures and PAS-LTP response after a repetitive PAS (rPAS) intervention. Mediation and regression analyses were conducted using data from randomized controlled trials with AD and healthy control participants. PAS-electroencephalography assessed DLPFC PAS-LTP. DLPFC thickness and surface area were acquired from T1-weighted magnetic resonance imaging. Fractional anisotropy and mean diffusivity (MD) of the superior longitudinal fasciculus (SLF)-a tract important to induce PAS-LTP-were measured with diffusion-weighted imaging. AD participants exhibited reduced DLPFC thickness and increased SLF MD. There was also some evidence that reduction in DLPFC thickness mediates DLPFC PAS-LTP impairment. Longitudinal analyses showed preliminary evidence that SLF MD, and to a lesser extent DLPFC thickness, is associated with DLPFC PAS-LTP response to active rPAS. This study expands our understanding of the relationships between brain structural changes and neuroplasticity. It provides promising evidence for a structural predictor to improving neuroplasticity in AD with neurostimulation. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Alzheimer Disease , Dorsolateral Prefrontal Cortex , Long-Term Potentiation , Neuronal Plasticity , Humans , Alzheimer Disease/physiopathology , Male , Aged , Female , Dorsolateral Prefrontal Cortex/diagnostic imaging , Dorsolateral Prefrontal Cortex/physiopathology , Aged, 80 and over , Middle Aged , Electroencephalography , Magnetic Resonance Imaging , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology
19.
Nat Commun ; 15(1): 4809, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844444

ABSTRACT

The direct access of olfactory afferents to memory-related cortical systems has inspired theories about the role of the olfactory pathways in the development of cortical neurodegeneration in Alzheimer's disease (AD). In this study, we used baseline olfactory identification measures with longitudinal flortaucipir and PiB PET, diffusion MRI of 89 cognitively normal older adults (73.82 ± 8.44 years; 56% females), and a transcriptomic data atlas to investigate the spatiotemporal spreading and genetic vulnerabilities of AD-related pathology aggregates in the olfactory system. We find that odor identification deficits are predominantly associated with tau accumulation in key areas of the olfactory pathway, with a particularly strong predictive power for longitudinal tau progression. We observe that tau spreads from the medial temporal lobe structures toward the olfactory system, not the reverse. Moreover, we observed a genetic background of odor perception-related genes that might confer vulnerability to tau accumulation along the olfactory system.


Subject(s)
Aging , Alzheimer Disease , Olfactory Perception , Positron-Emission Tomography , tau Proteins , Humans , Female , tau Proteins/metabolism , tau Proteins/genetics , Male , Aged , Olfactory Perception/physiology , Aging/physiology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Aged, 80 and over , Olfactory Pathways/metabolism , Olfactory Pathways/diagnostic imaging , Smell/physiology , Brain/metabolism , Brain/diagnostic imaging , Temporal Lobe/metabolism , Temporal Lobe/diagnostic imaging , Middle Aged
20.
Sci Rep ; 14(1): 14135, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898075

ABSTRACT

Numerous prospective biomarkers are being studied for their ability to diagnose various stages of Alzheimer's disease (AD). High-density electroencephalogram (EEG) methods show promise as an accurate, economical, non-invasive approach to measuring the electrical potentials of brains associated with AD. Event-related potentials (ERPs) may serve as clinically useful biomarkers of AD. Through analysis of secondary data, the present study examined the performance and distribution of N4/P6 ERPs across the frontoparietal network (FPN) using EEG topographic mapping. ERP measures and memory as a function of reaction time (RT) were compared between a group of (n = 63) mild untreated AD patients and a control group of (n = 73) healthy age-matched adults. Based on the literature presented, it was expected that healthy controls would outperform patients in peak amplitude and mean component latency across three parameters of memory when measured at optimal N4 (frontal) and P6 (parietal) locations. It was also predicted that the control group would exhibit neural cohesion through FPN integration during cross-modal tasks, thus demonstrating healthy cognitive functioning consistent with older healthy adults. By targeting select frontal and parietal EEG reference channels based on N4/P6 component time windows and positivity, our findings demonstrated statistically significant group variations between controls and patients in N4/P6 peak amplitudes and latencies during cross-modal testing. Our results also support that the N4 ERP might be stronger than its P6 counterpart as a possible candidate biomarker. We conclude through topographic mapping that FPN integration occurs in healthy controls but is absent in AD patients during cross-modal memory tasks.


Subject(s)
Alzheimer Disease , Biomarkers , Electroencephalography , Evoked Potentials , Frontal Lobe , Parietal Lobe , Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnosis , Male , Female , Electroencephalography/methods , Aged , Parietal Lobe/physiopathology , Evoked Potentials/physiology , Frontal Lobe/physiopathology , Frontal Lobe/diagnostic imaging , Middle Aged , Reaction Time/physiology , Case-Control Studies , Brain Mapping/methods , Aged, 80 and over , Memory/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...