Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
J Biophotonics ; 17(9): e202400176, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39023037

ABSTRACT

Oral squamous cell carcinoma (OSCC) constitutes over 90% of oral cancers, known for its aggressiveness and poor prognosis. Photodynamic therapy (PDT) has emerged as a promising adjuvant therapy and is linked to immunogenic cell death, activating innate and adaptive anti-tumor responses. Natural Killer (NK) cells, key players in malignant cell elimination, have not been extensively studied in PDT. This study evaluates whether PDT increases OSCC cell lines' susceptibility to NK cell cytotoxicity. PDT, using 5-aminolevulinic acid (5-ALA) and LED irradiation, was applied to Ca1 and Luc4 cell lines. Results showed a dose-dependent viability decrease post-PDT. Gene expression analysis revealed upregulation of NK cell-activating ligands (ULBP1-4, MICA/B) and decreased MHC class I expression in Ca1, suggesting increased NK cell susceptibility. Enhanced NK cell cytotoxicity was confirmed in Ca1 but not in Luc4 cells. These findings indicate that PDT may enhance NK cell-mediated cytotoxicity in OSCC, offering potential for improved treatment strategies.


Subject(s)
Aminolevulinic Acid , Carcinoma, Squamous Cell , Killer Cells, Natural , Mouth Neoplasms , Photochemotherapy , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Mouth Neoplasms/pathology , Mouth Neoplasms/drug therapy , Mouth Neoplasms/immunology , Cell Line, Tumor , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/immunology , Aminolevulinic Acid/pharmacology , Cell Survival/drug effects , Cell Survival/radiation effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Cytotoxicity, Immunologic/drug effects
2.
Microb Pathog ; 191: 106672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705219

ABSTRACT

Phytopathogenic fungi significantly threaten global food security, causing substantial yield and quality losses. Sustainable solutions are urgently needed to combat these agricultural pathogens. This study explored the potential of silver (Ag), copper (Cu), and combined Ag/Cu nanoparticles capped with aminolevulinic acid (ALA) as antifungal agents. The nanoparticles (ALAAg, ALACu, and ALAAgCu) were synthesized via photoreduction and characterized using various techniques (UV-Vis, TEM, XRD, Zeta potential). Their antifungal activity against four key plant pathogens (Alternaria grandis, Colletotrichum truncatum, Corynespora cassiicola, and Fusarium oxysporum) was evaluated using poisoned food techniques. Notably, ALAAgCuNPs demonstrated superior antifungal activity compared to a conventional fungicide against two fungal strains. Even at lower concentrations, ALAAgCuNPs exhibited fungistatic effects comparable to those of the control. These promising results suggest the potential of ALAAgCu NPs as a broad-spectrum, potentially eco-friendly alternative for fungal control in plants and seeds. This approach is crucial for ensuring crop health, harvest quality, and food safety.


Subject(s)
Aminolevulinic Acid , Antifungal Agents , Copper , Fungi , Metal Nanoparticles , Plant Diseases , Silver , Copper/pharmacology , Copper/chemistry , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Plant Diseases/prevention & control , Plant Diseases/microbiology , Antifungal Agents/pharmacology , Fungi/drug effects , Aminolevulinic Acid/pharmacology , Microbial Sensitivity Tests , Fusarium/drug effects
3.
Arch Biochem Biophys ; 738: 109540, 2023 04.
Article in English | MEDLINE | ID: mdl-36746260

ABSTRACT

5-aminolevulinic acid (5-ALA) is the first precursor of the heme biosynthesis pathway, accumulated in acute intermittent porphyria (AIP), an inherited metabolic disease characterized by porphobilinogen deaminase deficiency. An increased incidence of hepatocellular carcinoma (HCC) has been reported as a long-term manifestation in symptomatic AIP patients. 5-ALA is an α-aminoketone prone to oxidation, yielding reactive oxygen species and 4,5-dioxovaleric acid. A high concentration of 5-ALA presents deleterious pro-oxidant potential. It can induce apoptosis, DNA damage, mitochondrial dysfunction, and altered expression of carcinogenesis-related proteins. Several hypotheses of the increased risk of HCC rely on the harmful effect of elevated 5-ALA in the liver of AIP patients, which could promote a pro-carcinogenic environment. We investigated the global transcriptional changes and perturbed molecular pathways in HepG2 cells following exposure to 5-ALA 25 mM for 2 h and 24 h using DNA microarray. Distinct transcriptome profiles were observed. 5-ALA '25 mM-2h' upregulated 10 genes associated with oxidative stress response and carcinogenesis. Enrichment analysis of differentially expressed genes by KEGG, Reactome, MetaCore™, and Gene Ontology, showed that 5-ALA '25 mM-24h' enriched pathways involved in drug detoxification, oxidative stress, DNA damage, cell death/survival, cell cycle, and mitochondria dysfunction corroborating the pro-oxidant properties of 5-ALA. Furthermore, our results disclosed other possible processes such as senescence, immune responses, endoplasmic reticulum stress, and also some putative effectors, such as sequestosome, osteopontin, and lon peptidase 1. This study provided additional knowledge about molecular mechanisms of 5-ALA toxicity which is essential to a deeper understanding of AIP and HCC pathophysiology. Furthermore, our findings can contribute to improving the efficacy of current therapies and the development of novel biomarkers and targets for diagnosis, prognosis, and therapeutic strategies for AHP/AIP and associated HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Porphyria, Acute Intermittent , Humans , Aminolevulinic Acid/metabolism , Aminolevulinic Acid/pharmacology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Reactive Oxygen Species/metabolism , Liver Neoplasms/genetics , Transcriptome , Porphyria, Acute Intermittent/complications , Porphyria, Acute Intermittent/genetics , Porphyria, Acute Intermittent/metabolism , Carcinogenesis
4.
Photochem Photobiol ; 99(2): 787-792, 2023 03.
Article in English | MEDLINE | ID: mdl-35857390

ABSTRACT

As a tumor photodiagnostic agent, 5-aminolevulinic acid (ALA) is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) with fluorescence. ALA-PpIX fluorescence was evaluated in human renal cell carcinoma (RCC) cell lines and non-tumor HK-2 cell lines. We found that extracellular PpIX level was correlated with ABCG2 activity, illustrating its importance as a PpIX efflux transporter. Extracellular PpIX was also related to the Km of ferrochelatase (FECH) that chelates PpIX with ferrous iron to form heme. The Vmax of FECH was higher in all RCC cell lines tested than in the HK-2 cell line. TCGA dataset analysis indicates a positive correlation between FECH expression and RCC patient survival. These findings suggest FECH as an important biomarker in RCC. Effects of iron chelator deferoxamine (DFO) on the enhancement of PpIX fluorescence were assessed. DFO increased intracellular PpIX in both tumor and non-tumor cells, resulting in no gain in tumor/non-tumor fluorescence ratios. DFO appeared to increase ALA-PpIX more at 1-h than at 4-h treatment. There was an inverse correlation between ALA-PpIX fluorescence and the enhancement effect of DFO. These results suggest that enhancement of ALA-PpIX by DFO may be limited by the availability of ferrous iron in mitochondria following ALA administration.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Photochemotherapy , Humans , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/metabolism , Deferoxamine/pharmacology , Carcinoma, Renal Cell/drug therapy , Fluorescence , Protoporphyrins/pharmacology , Protoporphyrins/metabolism , Iron , Heme , Kidney Neoplasms/drug therapy , Iron Chelating Agents/pharmacology , Photosensitizing Agents/pharmacology , Cell Line, Tumor , Photochemotherapy/methods
5.
J Photochem Photobiol B ; 235: 112552, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36088836

ABSTRACT

The aim of the present study was to investigate the effects of PDT using the photosensitizer 5-aminoulevulinic acid (5-ALA) in oral squamous cell carcinoma (OSCC) behavior, mainly regarding its role on the cancer stem cell (CSC) phenotypes and in maintenance of the stem cell properties. Two OSCC cell lines were used and divided in the groups: Control, 5-ALA, LED 6 J/cm2 and PDT. MTT and Neutral red assays were used to access cellular viability, cell migration was evaluated by the wound healing assay. The stem cell phenotype was analyzed by flow cytometry to evaluate the CD44high/ESAhigh, CD44high/ESAlow and CD44low populations, by the clonogenic and tumor sphere formation assays as well as by RT-qPCR. The presence of Protoporphyrin IX in each CSC fraction was evaluated by flow cytometry. The OSCC cell lines showed a significant decrease in cell viability and migration after PDT. The percentage of CD44high/ESAhigh cells decreased after PDT, which was associated with an increase in the CD44low cells and with a functional decrease in the colony and sphere formation capacity. CD44high/ESAhigh cells showed increased PpIX, which contributed for their greater sensitivity to PDT. INV gene increased significantly after PDT, indicating cellular differentiation. Altogether, our results demonstrate that 5-ALA mediated PDT decreases not only the fraction of oral CSC but also their functional capabilities, inducing their differentiation.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Photochemotherapy , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Humans , Mouth Neoplasms/drug therapy , Neoplastic Stem Cells/metabolism , Neutral Red/therapeutic use , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Protoporphyrins/metabolism
6.
Nitric Oxide ; 125-126: 57-68, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35728762

ABSTRACT

Photodynamic therapy (PDT) is a non-surgical treatment that has been approved for its human medical use in many cancers. PDT involves the interaction of a photosensitizer (PS) with light. The amino acid 5- aminolevulinic acid (ALA) can be used as a pro-PS, leading to the synthesis of Protoporphyrin IX. Hydrogen sulfide (H2S) is an endogenously produced gas that belongs to the gasotransmitter family, which can diffuse through biological membranes and have relevant physiological effects such as cardiovascular functions, vasodilatation, inflammation, cell cycle and neuro-modulation. It was also proposed to have cytoprotective effects. We aimed to study the modulatory effects of H2S on ALAPDT in the mammary adenocarcinoma cell line LM2. Exposure of the cells to NaHS (donor of H2S) in concentrations up to 10 mM impaired the response to ALA-PDT in a dose-dependent manner. The addition of 3 doses of NaHS showed the highest effect. This decreased response to the photodynamic treatment was correlated to an increase in the GSH levels, catalase activity, a dose dependent reduction of PpIX and increased intracellular ALA, decreased levels of oxidized proteins and a decrease of PDT-induced ROS. NaHS also reduced the levels of singlet oxygen in an in vitro assay. H2S also protected other cells of different origins against PDT mediated by ALA and other PSs. These results suggest that H2S has a role in the modulation of the redox state of the cells, and thus impairs the response to ALA-PDT through multifactor pathways. These findings could contribute to developing new strategies to improve the effectiveness of PDT particularly mediated by ALA or other ROS-related treatments.


Subject(s)
Hydrogen Sulfide , Photochemotherapy , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Cell Line, Tumor , Humans , Hydrogen Sulfide/pharmacology , Oxidation-Reduction , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Protoporphyrins/pharmacology , Reactive Oxygen Species/metabolism
7.
J Photochem Photobiol B ; 221: 112244, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34174487

ABSTRACT

The delta-amino acid 5-aminolevulinic acid (ALA), is the precursor of the endogenous photosensitiser Protoporphyrin IX (PpIX), and is currently approved for Photodynamic Therapy (PDT) of certain superficial cancers. However, ALA-PDT is not very effective in diseases in which T-cells play a significant role. Cutaneous T-cell lymphomas (CTCL) is a group of non-Hodgkin malignant diseases, which includes mycosis fungoides (MF) and Sézary syndrome (SS). In previous work, we have designed new ALA esters synthesised by three-component Passerini reactions, and some of them showed higher performance as compared to ALA. This work aimed to determine the efficacy as pro-photosensitisers of five new ALA esters of 2-hydroxy-N-arylacetamides (1f, 1 g, 1 h, 1i and 1 k) of higher lipophilicity than ALA in Myla cells of MF and HuT-78 cells of SS. We have also tested its effectiveness against ALA and the already marketed ALA methyl ester (Me-ALA) and ALA hexyl ester (He-ALA). Both cell Myla and SS cells were effectively and equally photoinactivated by ALA-PDT. Besides, the concentration of ALA required to induce half the maximal porphyrin synthesis was 209 µM for Myla and 169 µM for HuT-78 cells. As a criterion of efficacy, we calculated the concentration of the ALA derivatives necessary to induce half the plateau porphyrin values obtained from ALA. These values were achieved at concentrations 4 and 12 times lower compared to ALA, according to the derivative used. For He-ALA, concentrations were 24 to 25 times lower than required for ALA for inducing comparable porphyrin synthesis in both CTCL cells. The light doses for inducing 50% of cell death (LD50) for He-ALA, 1f, 1 g, 1 h and 1i were around 18 and 25 J/cm2 for Myla and HuT-78 cells respectively, after exposure to 0.05 mM concentrations of the compounds. On the other hand, the LD50s for the compound 1 k were 40 and 57 J/cm2 for Myla and HuT-78, respectively. In contrast, 0.05 mM of ALA and Me-ALA did not provoke photokilling since the concentration employed was far below the porphyrin saturation point for these compounds. Our results suggest the potential use of ALA derivatives for topical application in PDT treatment of MF and extracorporeal PDT for the depletion of activated T-cells in SS.


Subject(s)
Aminolevulinic Acid/analogs & derivatives , Photosensitizing Agents/pharmacology , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Humans , Light , Lymphocytes/drug effects , Lymphocytes/metabolism , Lymphocytes/physiology , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use
8.
Photochem Photobiol Sci ; 20(4): 489-499, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33825180

ABSTRACT

Photodynamic therapy (PDT) is an effective procedure for the treatment of lesions diseases based on the selectivity of a photosensitising compound with the ability to accumulate in the target cell. Atherosclerotic plaque is a suitable target for PDT because of the preferential accumulation of photosensitisers in atherosclerotic plaques. Dendrimers are hyperbranched polymers conjugated to drugs. The dendrimers of ALA hold ester bonds that inside the cells are cleaved and release ALA, yielding PpIX production. The dendrimer 6m-ALA was chosen to perform this study since in previous studies it induced the highest porphyrin macrophage: endothelial cell ratio (Rodriguez et al. in Photochem Photobiol Sci 14:1617-1627, 2015). We transformed Raw 264.7 macrophages to foam cells by exposure to oxidised LDLs, and we employed a co-culture model of HMEC-1 endothelial cells and foam cells to study the affinity of ALA dendrimers for the foam cells. In this work it was proposed an in vitro model of atheromatous plaque, the aim was to study the selectivity of an ALA dendrimer for the foam cells as compared to the endothelial cells in a co-culture system and the type of cell death triggered by the photodynamic treatment. The ALA dendrimer 6m-ALA showed selectivity PDT response for foam cells against endothelial cells. A light dose of 1 J/cm2 eliminate foam cells, whereas less than 50% of HMEC-1 is killed, and apoptosis cell death is involved in this process, and no necrosis is present. We propose the use of ALA dendrimers as pro-photosensitisers to be employed in photoangioplasty to aid in the treatment of obstructive cardiovascular diseases, and these molecules can also be employed as a theranostic agent.


Subject(s)
Aminolevulinic Acid/pharmacology , Apoptosis/drug effects , Foam Cells/drug effects , Macrophages/drug effects , Photosensitizing Agents/pharmacology , Aminolevulinic Acid/chemistry , Animals , Cell Line , Coculture Techniques , Foam Cells/physiology , Humans , Macrophages/physiology , Mice , Photosensitizing Agents/chemistry
9.
Photodiagnosis Photodyn Ther ; 33: 102097, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33232818

ABSTRACT

Glioblastoma is the most severe form of brain cancer. Despite multimodal therapy combining surgery, radiotherapy and chemotherapy, prognosis of patients is dismal. It has been observed that the surgical resection guided by photosensitizer fluorescence followed by photodynamic therapy (PDT) prolongs the average survival in patients with glioblastoma. The main problem with all oncological treatments, including PDT, is the presence of resistant cells. The objective of this study was to isolate and perform an initial characterization of human glioblastoma cells resistant to PDT employing methyl-5-aminolevulinic acid. We obtained resistant cells from the T98 G cell line. Resistant populations accumulated less photosensitizer, formed spheroids of higher number of cells, had higher tumorigenic capacity, and expressed higher mRNA levels of fibroblastic growth factor receptor (FGFR), epidermal growth factor receptor (EGFR) and ß-platelet-derived growth factor receptor (ßPDGFR) than parental cells. The studies of glioblastoma resistance to PDT would help to better understand the causes of tumor recurrence after PDT and to develop new therapeutic proposals in this field of oncology.


Subject(s)
Glioblastoma , Photochemotherapy , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Cell Line, Tumor , Glioblastoma/drug therapy , Humans , Neoplasm Recurrence, Local , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
10.
J Biophotonics ; 14(1): e202000128, 2021 01.
Article in English | MEDLINE | ID: mdl-32981235

ABSTRACT

One important limitation of topical photodynamic therapy (PDT) is the limited tissue penetration of precursors. Microneedles (MNs) are minimally invasive devices used to promote intradermal drug delivery. Dissolving MNs contain drug-associated to polymer blends, dissolving after insertion into skin, allowing drug release. This study comprises development and characterization of a pyramidal model of dissolving MNs (500 µm) prepared with 5% wt/wt aminolevulinic acid and 20% wt/wt Gantrez AN-139 in aqueous blend. Protoporphyrin IX formation and distribution were evaluated in tumor mice model by using fluorescence widefield imaging, spectroscopy, and confocal microscopy. MNs demonstrated excellent mechanical resistance penetrating about 250 µm with minor size alteration in vitro, and fluorescence intensity was 5-times higher at 0.5 mm on average compared to cream in vivo (being 10 ± 5 a.u. for MNs and 2.4 ± 0.8 a.u. for cream). Dissolving MNs have overcome topical cream application, being extremely promising especially for thicker skin lesions treatment using PDT.


Subject(s)
Aminolevulinic Acid , Photochemotherapy , Administration, Cutaneous , Aminolevulinic Acid/pharmacology , Animals , Mice , Photosensitizing Agents/pharmacology , Protoporphyrins , Skin
11.
Photodiagnosis Photodyn Ther ; 32: 102080, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33157326

ABSTRACT

BACKGROUND: Nanoparticles show promise for theranostic applications in cancer. The metal-based nanoparticles can be used both as photosensitizers and delivery vehicles. In bimetallic particles based on gold or silver and iron, a combination of the plasmonic features of the gold or silver components with the magnetic properties of the iron makes these hybrid nanomaterials suitable for both imaging and therapeutic applications. Herein, we discuss toxicity and cell internalization of metallic (silver and gold) and bimetallic (silver-iron, gold-iron, and silver-gold) aminolevulinic acid (ALA) nanoparticles. ALA can control the production of an intracellular photosensitizer, protoporphyrin IX (PpIX), commonly used in photodynamic therapy. METHODS: Nanoparticles were synthesized by photoreduction method and characterized by UV/Vis spectra, Zeta potential, FTIR, XRD, and transmission electron microscopy. The amount of singlet oxygen generation by a yellow LED, and ultrasound was studied for gold, gold-iron, and silver-gold nanoparticles. Cytotoxicity assays of MCF-7 in the presence of nanoparticles were performed, and PpIX fluorescence was quantified by high content screening (HCS). RESULTS: Red fluorescence observed after 24 h of nanoparticles incubation on MCF-7 cells, indicated that the ALA in surface of nanoparticles was efficiently converted to PpIX. The best results for singlet oxygen generation with LED or ultrasound irradiation were obtained with ALA:AgAuNPs. CONCLUSIONS: The studied nanoparticles present the potential to deliver aminolevulinic acid to breast cancer cells efficiently, generate singlet oxygen, and convert ALA into PpIX inside the cells allowing photodiagnosis and therapies such as photodynamic and sonodynamic therapies.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Photochemotherapy , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , Gold/therapeutic use , Humans , Iron/therapeutic use , MCF-7 Cells , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Protoporphyrins/therapeutic use , Silver
12.
Sci Rep ; 10(1): 17065, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33051524

ABSTRACT

Photodynamic inactivation of Leishmania has been shown to render them non-viable, but retain their immunological activities. Installation of dual photodynamic mechanisms ensures complete inactivation of species in the Leishmania subgenus, raising the prospect of their safe and effective application as whole-cell vaccines against leishmaniasis. Here, we report the successful extension of this approach to L. braziliensis in the Viannia subgenus, viz. genetic engineering of promastigotes for cytosolic accumulation of UV-sensitive uroporphyrin (URO) and their loading with red light excitable phthalocyanines (PC) that was cationized by chemical engineering. The transgenic strategy used previously produced L. braziliensis transfectants, which gave the same phenotype of aminolevulinate (ALA)-inducible uroporphyria as found in Leishmania subgenus, indicative of pre-subgenus evolutionary origin for similar genetic deficiencies in porphyrin/heme biosynthesis. In the present study, 12 independent clones were obtained and were invariably ALA-responsive, albeit to different extent for uroporphyrinogenesis and UV-inactivation. In a separate study, L. braziliensis was also found, like other Leishmania spp., to take up diamino-PC (PC2) for red light inactivation. In vitro interactions of a highly uroporphyrinogenic clone with primary macrophages were examined with the intervention of URO/PC2-medated double-photodynamic inactivation to ascertain its complete loss of viability. Doubly sensitized L. braziliensis transfectants were photo-inactivated before (Strategy #1) or after (Strategy #2) loading of macrophages. In both cases, macrophages were found to take up L. braziliensis and degrade them rapidly in contrast to live Leishmania infection. The effector functions of macrophages became upregulated following their loading with L. braziliensis photodynamically inactivated by both strategies, including CD86 expression, and IL6 and NO production. This was in contrast to the immunosuppressive infection of macrophages with live parasites, marked by IL10 production. The results provide evidence that photodynamically inactivated L. braziliensis are susceptible to the degradative pathway of macrophages with upregulation of immunity relevant cytokine and co-stimulatory markers. The relative merits of the two loading strategies with reference to previous experimental vaccination were discussed in light of the present findings with L. braziliensis.


Subject(s)
Indoles/pharmacology , Leishmania braziliensis/drug effects , Leishmania braziliensis/radiation effects , Macrophages/immunology , Macrophages/parasitology , Photosensitizing Agents/pharmacology , Uroporphyrins/pharmacology , Aminolevulinic Acid/pharmacology , Animals , Animals, Genetically Modified , Female , Humans , Immunity, Innate , In Vitro Techniques , Isoindoles , Leishmania braziliensis/immunology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/prevention & control , Mice , Mice, Inbred BALB C , Protozoan Vaccines/immunology , Ultraviolet Rays
13.
Int J Mol Sci ; 21(9)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397263

ABSTRACT

Photodynamic therapy (PDT) has been used to treat certain types of non-melanoma skin cancer with promising results. However, some skin lesions have not fully responded to this treatment, suggesting a potential PDT-resistant phenotype. Therefore, novel therapeutic alternatives must be identified that improve PDT in resistant skin cancer. In this study, we analyzed the cell viability, intracellular protoporphyrin IX (PpIX) content and subcellular localization, proliferation profile, cell death, reactive oxygen species (ROS) detection and relative gene expression in PDT-resistant HSC-1 cells. PDT-resistant HSC-1 cells show a low quantity of protoporphyrin IX and low levels of ROS, and thus a low rate of death cell. Furthermore, the resistant phenotype showed a downregulation of HSPB1, SLC15A2, FECH, SOD2 and an upregulation of HMBS and BIRC5 genes. On the other hand, epigallocatechin gallate catechin enhanced the MAL-PDT effect, increasing levels of protoporphyrin IX and ROS, and killing 100% of resistant cells. The resistant MAL-PDT model of skin cancer squamous cells (HSC-1) is a reliable and useful tool to understand PDT cytotoxicity and cellular response. These resistant cells were successfully sensitized with epigallocatechin gallate catechin. The in vitro epigallocatechin gallate catechin effect as an enhancer of MAL-PDT in resistant cells is promising in the treatment of difficult skin cancer lesions.


Subject(s)
Anticarcinogenic Agents/pharmacology , Carcinoma, Squamous Cell/drug therapy , Catechin/analogs & derivatives , Cell Death/drug effects , Cell Proliferation/drug effects , Combined Modality Therapy/methods , Photochemotherapy/methods , Skin Neoplasms/drug therapy , Aminolevulinic Acid/analogs & derivatives , Aminolevulinic Acid/pharmacology , Carcinoma, Squamous Cell/radiotherapy , Catechin/pharmacology , Cell Death/radiation effects , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Cell Hypoxia/radiation effects , Cell Line, Tumor , Cell Proliferation/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Ferrochelatase/genetics , Ferrochelatase/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Photosensitizing Agents/metabolism , Protoporphyrins/metabolism , Reactive Oxygen Species/metabolism , Skin Neoplasms/radiotherapy , Stress, Physiological/drug effects , Stress, Physiological/genetics , Stress, Physiological/radiation effects , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Survivin/genetics , Survivin/metabolism , Symporters/genetics , Symporters/metabolism
14.
Biochem Pharmacol ; 177: 114016, 2020 07.
Article in English | MEDLINE | ID: mdl-32387459

ABSTRACT

Bacterial photodynamic inactivation (PDI) employing endogenous production of porphyrins from 5-aminolevulinic acid (ALA) - named ALA-PDI-, is a new promising tool to achieve bacteria control in non-spread infections. The technique combines the action of the porphyrins acting as photosensitisers with light, to produce reactive oxygen species to target the pathogen. To date, some clinical applications of ALA-PDI have been reported although variable responses ranging from total eradication to absence of photokilling were found. ALA-PDI conducted at suboptimal conditions may lead to misleading results and the complexity of haem synthesis in bacteria hinders the optimization of the treatment. The present work aimed to gain insight on the variables affecting ALA-PDI in Gram-positives and Gram-negatives bacteria growing on planktonic and biofilm cultures and to correlate the degree of the response with the amount and type of porphyrin synthesised. Staphylococcus epidermidis and Escherichia coli clinical isolates and Pseudomonas aeruginosa ATCC27853 and Staphylococcus aureus ATCC25923 strains were utilised, and the optimal conditions of concentration and time exposure of ALA, and light dose were set. In both Gram-positive species analysed, a peak of porphyrin synthesis was observed at 1-2 mM ALA in biofilm and planktonic cultures, which fairly correlated with the decrease in the number of CFU after PDI (5 to 7 logs) and porphyrin content was in the same order of magnitude. In addition, ALA-PDI was similarly effective for planktonic and biofilm S. aureus cultures, and more effective in S. epidermidis planktonic cultures at low light doses. Beyond a certain light dose, it was not possible to achieve further photosensitization. Similarly, a plateau of cell death was attained at a certain ALA incubation time. Accumulation of hydrophilic porphyrins at longer incubation periods was observed. The proportion of porphyrins changed as a function of ALA concentration and incubation time in the Gram-positive bacteria, though we did not find a clear correlation between the porphyrin type and PDI response. As a salient feature was the presence of isococroporphyrin isoforms in both Gram-positive and Gram-negative bacteria. Gram-negative bacteria were quite refractory to the treatment: P. aeruginosa was slightly inactivated (4-logs reduction) at 40 mM ALA, whereas E. coli was not inactivated at all. These species accumulated high ALA quantities and the amount of porphyrins did not correlate with the degree of photoinactivation. Our microscopy studies show that porphyrins are not located in the envelopes of Gram-negative bacteria, reinforcing the hypothesis that endogenous porphyrins fail to attack these structures.


Subject(s)
Aminolevulinic Acid/pharmacology , Biofilms/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Aminolevulinic Acid/metabolism , Escherichia coli/drug effects , Gram-Negative Bacteria/physiology , Gram-Positive Bacteria/physiology , Light , Photosensitizing Agents/metabolism , Plankton/microbiology , Porphyrins/analysis , Porphyrins/metabolism , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology , Time Factors
15.
Photochem Photobiol ; 95(4): 1052-1059, 2019 07.
Article in English | MEDLINE | ID: mdl-30767226

ABSTRACT

Aminolevulinic acid (ALA) is a prodrug that is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) for tumor fluorescence detection and photodynamic therapy (PDT). The iron chelator deferoxamine (DFO) has been widely used to enhance PpIX accumulation by inhibiting the iron-dependent bioconversion of PpIX to heme, a reaction catalyzed by ferrochelatase (FECH). Tumor response to DFO treatment is known to be highly variable, and some tumors even show no response. Given the fact that tumors often exhibit reduced FECH expression/enzymatic activity, we examined how reducing FECH level affected the DFO enhancement effect. Our results showed that reducing FECH level by silencing FECH in SkBr3 breast cancer cells completely abrogated the enhancement effect of DFO. Although DFO enhanced ALA-PpIX fluorescence and PDT response in SkBr3 vector control cells, it caused a similar increase in MCF10A breast epithelial cells, resulting in no net gain in the selectivity toward tumor cells. We also found that DFO treatment induced less increase in ALA-PpIX fluorescence in tumor cells with lower FECH activity (MDA-MB-231, Hs 578T) than in tumor cells with higher FECH activity (MDA-MB-453). Our study demonstrates that FECH activity is an important determinant of tumor response to DFO treatment.


Subject(s)
Aminolevulinic Acid/pharmacology , Deferoxamine/pharmacology , Ferrochelatase/metabolism , Photosensitizing Agents/pharmacology , Protoporphyrins/pharmacology , Aminolevulinic Acid/administration & dosage , Breast Neoplasms , Cell Line, Tumor , Epithelial Cells , Female , Ferrochelatase/genetics , Gene Silencing , Humans , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Protoporphyrins/administration & dosage , Siderophores/pharmacology
16.
Mol Biol Rep ; 45(6): 2801-2809, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30218352

ABSTRACT

Acute intermittent porphyria (AIP) is a heme pathway disorder caused by a decrease in the activity and synthesis of porphobilinogen deaminase. Thus, the first heme precursor 5-aminolevulinic acid (ALA) accumulates in the liver. Reactive oxygen species (ROS) resulting from ALA oxidation may be correlated to a higher incidence of hepatocellular carcinoma (HCC) in AIP patients. However, the molecular mechanisms of this relationship have not been thoroughly elucidated to date. In this study, we investigated the effect of increasing levels of ALA on the expression of proteins related to DNA repair, oxidative stress, apoptosis, proliferation and lipid metabolism. Primary rat hepatocytes were isolated by the collagenase perfusion method, lipoperoxidation was evaluated by a TBA fluorimetric assay and Western blotting was used to assess protein abundance. The data showed that ALA treatment promoted a dose-dependent increase of p53 expression, downregulation of Bcl-2, HMG-CoA reductase and OGG1 and an increase in lipoperoxidation. There was no alteration in the expression of the transcription factor NF-κB, catalase and superoxide dismutase. ALA oxidation products induced protein regulation patterns, suggesting the interconnection of cellular processes, such as the intrinsic pathway of apoptosis, redox homeostasis, cell proliferation, lipid metabolism and DNA repair. This study helps to elucidate the molecular mechanisms of hepatotoxicity mediated by ALA pro-oxidant effects and supports the hypothesis that ALA accumulation correlates with a higher incidence of hepatic carcinogenic events.


Subject(s)
Aminolevulinic Acid/pharmacology , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Animals , Apoptosis/drug effects , Carcinogenesis/drug effects , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/drug effects , DNA Repair/drug effects , Lipid Metabolism/drug effects , Liver/drug effects , Liver Neoplasms/metabolism , Male , Oxidative Stress/drug effects , Primary Cell Culture , Rats , Rats, Wistar , Reactive Oxygen Species , Superoxide Dismutase
17.
J Cell Biochem ; 119(4): 3554-3562, 2018 04.
Article in English | MEDLINE | ID: mdl-29227548

ABSTRACT

Photodynamic therapy (PDT) has been indicated for oral squamous cell carcinoma (OSCC) at early stages. Chemo and radio-resistance are frequently observed in OSCC, but it is unknown whether this tumor can develop resistance to PDT. It was investigated the process of acquiring resistance to multiple cycles of PDT by using OSCC cells. We also analyzed the expression of anti-apoptotic proteins and those related to Akt/mTOR pathway. Sub-lethal doses of PDT were applied, consisting of a constant concentration of 5-aminolevulinic acid (5-ALA) (1 mM, 4-h incubation) and increasing irradiation dose with LED (from 5.86 to 10.54 J/cm2 ). Cell viability, migration capacity, intracellular expression of protoporphyrin IX (PpIX), mitochondrial density, and pro-survival proteins were investigated in PDT-resistant cells. Six OSCC cell generations resistant to PDT were isolated. The resistant cells exhibited a survival phenotype characterized by a reduction in the expression of endogenous PpIX, increase in mitochondrial density, increase in migration capacity, and up-regulation of p-NFκB, p-survivin, iNOS, p-Akt Ser473 , cyclin D1, p-mTOR Ser2481 , and p-mTOR Ser2448 . OSCC cells are able to survive doses of 5-ALA-PDT by reducing PpIX synthesis and activating signaling pathways related to the inhibition of apoptosis and improvement of cell proliferation. Further studies are necessary to confirm whether this PDT-resistance phenotype can be clinically present, mainly in OSCC showing clinical recurrences after exposure to different PDT protocols.


Subject(s)
Aminolevulinic Acid/pharmacology , Photochemotherapy/methods , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Mouth Neoplasms/metabolism , Protoporphyrins/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
18.
Photodiagnosis Photodyn Ther ; 20: 21-27, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28860083

ABSTRACT

Ultraviolet (UV) radiation may induce skin alterations as observed in photoaging. Some recognized modifications are epidermal hyperplasia, amorphous deposition of degraded elastic fibers and reduction in the number of collagen fibers. They alter the tissue biochemical properties that can be interrogated by steady state fluorescence spectroscopy (SSFS). In this study, we monitored the changes in endogenous fluorescence emission from hairless mice skin during a protocol of photoaging using UVB irradiation. To perform the fluorescence spectroscopy, it was used a violet laser (408nm) to induce the native fluorescence that is emitted in the visible range. Under 408nm excitation, the emission spectrum showed bands with peaks centered around 510, 633 and 668nm for irradiated and control groups. A relative increase of the fluorescence at 633nm emission on the flank was observed with time when compared to the ventral skin at the same animal and the non-irradiated control group. We correlated the emission at 633nm with protoporphyrin IX (PpIX), and our hypothesis is that the PpIX metabolism in the photoaged and aged skin are different. PpIX fluorescence intensity in the photoaged skin is higher and more heterogeneous than in the aged skin. Notwithstanding, more spectroscopic and biochemistry studies investigating the 510 and 633nm emission are needed to confirm this hypothesis.


Subject(s)
Optical Imaging/methods , Skin/pathology , Skin/radiation effects , Spectrometry, Fluorescence/methods , Ultraviolet Rays/adverse effects , Aminolevulinic Acid/pharmacology , Animals , Elastin/radiation effects , Mice , Mice, Hairless , Photosensitizing Agents/pharmacology , Porphyrins/radiation effects
19.
Nat Commun ; 8: 15320, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28492282

ABSTRACT

The metalloid tellurite is highly toxic to microorganisms. Several mechanisms of action have been proposed, including thiol depletion and generation of hydrogen peroxide and superoxide, but none of them can fully explain its toxicity. Here we use a combination of directed evolution and chemical and biochemical approaches to demonstrate that tellurite inhibits heme biosynthesis, leading to the accumulation of intermediates of this pathway and hydroxyl radical. Unexpectedly, the development of tellurite resistance is accompanied by increased susceptibility to hydrogen peroxide. Furthermore, we show that the heme precursor 5-aminolevulinic acid, which is used as an antimicrobial agent in photodynamic therapy, potentiates tellurite toxicity. Our results define a mechanism of tellurite toxicity and warrant further research on the potential use of the combination of tellurite and 5-aminolevulinic acid in antimicrobial therapy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biosynthetic Pathways , Heme/biosynthesis , Metalloids/pharmacology , Tellurium/pharmacology , Aminolevulinic Acid/pharmacology , Biosynthetic Pathways/drug effects , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Genome, Bacterial , Iron Deficiencies , Microbial Sensitivity Tests , Models, Biological , Mutation/genetics , Protoporphyrins/pharmacology , Superoxides/metabolism , Tellurium/toxicity
20.
Photochem Photobiol ; 93(5): 1269-1275, 2017 10.
Article in English | MEDLINE | ID: mdl-28380684

ABSTRACT

This study aimed to determine the effectiveness of photodynamic therapy (PDT), using δ-aminolevulinic acid (5-ALA), in the elimination of premalignant cervical lesions in Mexican patients with human papillomavirus (HPV) infection and/or cervical intraepithelial neoplasia (CIN). Thirty women diagnosed with CIN I and/or positive for HPV participated in the study. Topical 6% 5-ALA in gel form was applied to the uterine cervix; after 4 h, the lesion area was irradiated with a light dose of 200 J cm-2 at 635 nm. This procedure was performed three times at 48-h intervals. Clinical follow-up was performed at 3, 6, and 12 months after the initial PDT administration, by colposcopy, cervical cytology, histopathological analysis, polymerase chain reaction, and hybrid capture. Of HPV-infected patients without evidence of CIN I, 80% cleared the infection, while HPV associated with CIN I was eliminated in 83% of patients (P < 0.05). At 12 months, CIN I had regressed in 57% of patients, although this response was not statistically significant. PDT using 6% 5-ALA is concluded to be effective in eliminating HPV infection associated or not with CIN I.


Subject(s)
Aminolevulinic Acid/therapeutic use , Human papillomavirus 16/drug effects , Human papillomavirus 18/drug effects , Papillomavirus Infections/drug therapy , Papillomavirus Infections/virology , Photochemotherapy/adverse effects , Photosensitizing Agents/therapeutic use , Uterine Cervical Dysplasia/drug therapy , Adult , Aminolevulinic Acid/pharmacology , Female , Humans , Mexico , Photosensitizing Agents/pharmacology , Treatment Outcome , Uterine Cervical Dysplasia/virology
SELECTION OF CITATIONS
SEARCH DETAIL