Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 608
Filter
1.
Trop Biomed ; 41(1): 52-63, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38852134

ABSTRACT

In tropical regions, numerous tick-borne pathogens (TBPs) play a crucial role as causative agents of infectious diseases in humans and animals. Recently, the population of companion and pet dogs has significantly increased in Vietnam; however, information on the occurrence of TBPs is still limited. The objectives of this investigation were to determine the occurrence rate, risk factors, and phylogenetic characteristics of TBPs in dogs from northern Vietnam. Of 341 blood samples tested by PCR, the total infection of TBPs was 73.9% (252/341). Babesia vogeli (18SrRNA gene - 30.5%) was detected most frequently in studied dogs followed by Rickettsia spp. (OmpA gene - 27%), Anaplasma platys (groEL gene - 22%), Bartonella spp. (16SrRNA - 18.8%), Mycoplasma haemocanis (16SrRNA - 9.4%) and Hepatozoon canis (18SrRNA gene - 1.2%), respectively. All samples were negative for Ehrlichia canis and Anaplasma phagocytophylum. Co-infection was detected in 31.4% of the samples (107/341) of which, A. platys/Bartonella spp. (34/94,10%), Rickettsia spp./B. vogeli (19/94, 5.6%), and M. haemocanis/B. vogeli (19/94, 5.6%) were recorded as the three most frequent two species of co-infection types. Statistical analysis revealed a significant correlation between TBP infection and several host variables regarding age, breed, and living area in the current study. The recent findings reported herein, for the first time in Vietnam, are essential for local veterinarians when considering the appropriate approaches for diagnosing these diseases. Furthermore, this data can be used to establish control measures for future surveillance and prevention strategies against canine TBPs in Vietnam.


Subject(s)
Anaplasma , Babesia , Dog Diseases , Phylogeny , Tick-Borne Diseases , Animals , Dogs , Vietnam/epidemiology , Dog Diseases/parasitology , Dog Diseases/epidemiology , Dog Diseases/microbiology , Risk Factors , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Anaplasma/genetics , Anaplasma/isolation & purification , Babesia/genetics , Babesia/isolation & purification , Male , Female , Rickettsia/genetics , Rickettsia/isolation & purification , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , Mycoplasma/genetics , Mycoplasma/isolation & purification , Mycoplasma/classification , Coinfection/veterinary , Coinfection/epidemiology , Coinfection/parasitology , Coinfection/microbiology
2.
PLoS Negl Trop Dis ; 18(6): e0012185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837987

ABSTRACT

BACKGROUND: The Middle East and North Africa (MENA) offer optimal climatic conditions for tick reproduction and dispersal. Research on tick-borne pathogens in this region is scarce. Despite recent advances in the characterization and taxonomic explanation of various tick-borne illnesses affecting animals in Egypt, no comprehensive examination of TBP (tick-borne pathogen) statuses has been performed. Therefore, the present study aims to detect the prevalence of pathogens harbored by ticks in Egypt. METHODOLOGY/PRINCIPAL FINDINGS: A four-year PCR-based study was conducted to detect a wide range of tick-borne pathogens (TBPs) harbored by three economically important tick species in Egypt. Approximately 86.7% (902/1,040) of the investigated Hyalomma dromedarii ticks from camels were found positive with Candidatus Anaplasma camelii (18.8%), Ehrlichia ruminantium (16.5%), Rickettsia africae (12.6%), Theileria annulata (11.9%), Mycoplasma arginini (9.9%), Borrelia burgdorferi (7.7%), Spiroplasma-like endosymbiont (4.0%), Hepatozoon canis (2.4%), Coxiella burnetii (1.6%) and Leishmania infantum (1.3%). Double co-infections were recorded in 3.0% (27/902) of Hy. dromedarii ticks, triple co-infections (simultaneous infection of the tick by three pathogen species) were found in 9.6% (87/902) of Hy. dromedarii ticks, whereas multiple co-infections (simultaneous infection of the tick by ≥ four pathogen species) comprised 12% (108/902). Out of 1,435 investigated Rhipicephalus rutilus ticks collected from dogs and sheep, 816 (56.9%) ticks harbored Babesia canis vogeli (17.1%), Rickettsia conorii (16.2%), Ehrlichia canis (15.4%), H. canis (13.6%), Bo. burgdorferi (9.7%), L. infantum (8.4%), C. burnetii (7.3%) and Trypanosoma evansi (6.6%) in dogs, and 242 (16.9%) ticks harbored Theileria lestoquardi (21.6%), Theileria ovis (20.0%) and Eh. ruminantium (0.3%) in sheep. Double, triple, and multiple co-infections represented 11% (90/816), 7.6% (62/816), and 10.3% (84/816), respectively in Rh. rutilus from dogs, whereas double and triple co-infections represented 30.2% (73/242) and 2.1% (5/242), respectively in Rh. rutilus from sheep. Approximately 92.5% (1,355/1,465) of Rhipicephalus annulatus ticks of cattle carried a burden of Anaplasma marginale (21.3%), Babesia bigemina (18.2%), Babesia bovis (14.0%), Borrelia theleri (12.8%), R. africae (12.4%), Th. annulata (8.7%), Bo. burgdorferi (2.7%), and Eh. ruminantium (2.5%). Double, triple, and multiple co-infections represented 1.8% (25/1,355), 11.5% (156/1,355), and 12.9% (175/1,355), respectively. The detected pathogens' sequences had 98.76-100% similarity to the available database with genetic divergence ranged between 0.0001 to 0.0009% to closest sequences from other African, Asian, and European countries. Phylogenetic analysis revealed close similarities between the detected pathogens and other isolates mostly from African and Asian countries. CONCLUSIONS/SIGNIFICANCE: Continuous PCR-detection of pathogens transmitted by ticks is necessary to overcome the consequences of these infection to the hosts. More restrictions should be applied from the Egyptian authorities on animal importations to limit the emergence and re-emergence of tick-borne pathogens in the country. This is the first in-depth investigation of TBPs in Egypt.


Subject(s)
Camelus , Dog Diseases , Genetic Variation , Ixodidae , Tick-Borne Diseases , Animals , Egypt/epidemiology , Dogs , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/parasitology , Dog Diseases/parasitology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Ixodidae/microbiology , Ixodidae/parasitology , Camelus/parasitology , Camelus/microbiology , Sheep , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Ticks/microbiology , Ticks/parasitology , Livestock/parasitology , Livestock/microbiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Female , Anaplasma/isolation & purification , Anaplasma/genetics , Anaplasma/classification , Male , Prevalence
3.
Sci Rep ; 14(1): 12621, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824201

ABSTRACT

Anaplasma and Ehrlichia are tick-borne bacterial pathogens that cause anaplasmoses and ehrlichioses in humans and animals. In this study, we examined the prevalence of Anaplasma and Ehrlichia species in ticks and domesticated animals in Suizhou County, Hubei Province in the central China. We used PCR amplification and DNA sequencing of the 16S rRNA, groEL, and gltA genes to analyze. We collected 1900 ticks, including 1981 Haemaphysalis longicornis and 9 Rhipicephalus microplus, 159 blood samples of goats (n = 152), cattle (n = 4), and dogs (n = 3) from May to August of 2023. PCR products demonstrated that Anaplasma bovis, Anaplasma capra, and an Ehrlichia species were detected in the H. longicornis with the minimum infection rates (MIR) of 1.11%, 1.32%, and 0.05%, respectively; A. bovis, A. capra, and unnamed Anaplasma sp. were detected in goats with an infection rate of 26.31%, 1.31% and 1.97%, respectively. Anaplasma and Ehrlichia species were not detected from cattle, dogs and R. microplus ticks. The genetic differences in the groEL gene sequences of the Anaplasma in the current study were large, whereas the 16S rRNA and gltA gene sequences were less disparate. This study shows that ticks and goats in Suizhou County, Hubei Province carry multiple Anaplasma species and an Ehrlichia species, with relatively higher infection rate of A. bovis in goats. Our study indicates that multiple Anaplasma and Ehrlichia species exist in ticks and goats in the central China with potential to cause human infection.


Subject(s)
Anaplasma , Anaplasmosis , Animals, Domestic , Ehrlichia , Genetic Variation , Goats , RNA, Ribosomal, 16S , Animals , Anaplasma/genetics , Anaplasma/isolation & purification , China/epidemiology , Ehrlichia/genetics , Ehrlichia/isolation & purification , Goats/microbiology , Dogs , Cattle , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Prevalence , Animals, Domestic/microbiology , RNA, Ribosomal, 16S/genetics , Ticks/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/microbiology , Phylogeny
4.
Trop Anim Health Prod ; 56(4): 164, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38740638

ABSTRACT

Anaplasmosis is an emerging infectious disease that is being recognised all over the world, with impact on animal health.This systematic review and meta-analysis aimed to assess the rate infection of Anaplasma spp. infection in Algerian ruminants. Three databases were searched to identify eligible studies for the final systematic review and meta-analysis. The 'meta' package in the R software was used for the meta-analysis, and the random effects model was chosen to pool the data. Meta-analysis encompasses 14 research papers spanning 19 years (2004-2023), out of an initial pool of 737 articles retrieved from various databases. The study included a total of 1515 cattle, 190 sheep, and 310 goats, and the overall Anaplasma infection rate was estimated at 28% (95% CI, 17-41%). The analysis revealed varying infection rates among species, with cattle at 20%, sheep at 30%, and goats at 61%. Five classified species and two unclassified strains belonging to Anaplasma genus were identified in ruminants, which are A. marginale, A. centrale, A. bovis, A. ovis, A. phagocytophilum, A. phagocytophilum-like strains, and A. platys-like strains. Among these, A. marginale was prevalent in ten out of eleven cattle studies. The data also revealed regional variations, with Northeastern Algeria showing a higher infection rate (26%) compared to North-central Algeria (9%). In the subgroup analysis, clinically healthy cattle had a higher infection rate (28%) compared to suspected disease cattle (16%). Molecular biology screening methods yielded a significantly higher infection rate (33%) than microscopy (12%). Gender analysis suggested slightly higher infection rates among male cattle (19%) compared to females (16%). Age analysis indicated that Anaplasma infection was more common in cattle less than 12 months (14%) compared to those over 12 months (9%). This systematic review provides valuable insights, highlighting the need for continued surveillance and potential preventive strategies in different regions and among different animal populations in Algeria.


Subject(s)
Anaplasma , Anaplasmosis , Cattle Diseases , Goat Diseases , Goats , Sheep Diseases , Animals , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Algeria/epidemiology , Goat Diseases/epidemiology , Goat Diseases/microbiology , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Cattle , Cattle Diseases/microbiology , Cattle Diseases/epidemiology , Anaplasma/isolation & purification , Prevalence , Female , Male
5.
Acta Trop ; 256: 107244, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762942

ABSTRACT

Questing ticks carry various tick-borne pathogens (TBPs) that are responsible for causing tick-borne diseases (TBDs) in humans and animals around the globe, especially in the tropics and sub-tropics. Information on the distribution of ticks and TBPs in a specific geography is crucial for the formulation of mitigation measures against TBDs. Therefore, this study aimed to survey the TBPs in the questing tick population in Bangladesh. A total of 2748 questing hard ticks were collected from the pastures in Sylhet, Bandarban, Sirajganj, Dhaka, and Mymensingh districts through the flagging method. After morphological identification, the ticks were grouped into 142 pools based on their species, sexes, life stages, and collection sites. The genomic DNA extracted from tick specimens was screened for 14 pathogens, namely Babesia bigemina (AMA-1), Babesia bovis (RAP-1), Babesia naoakii (AMA-1), Babesia ovis (18S rRNA), Theileria luwenshuni (18S rRNA), Theileria annulata (Tams-1), Theileria orientalis (MPSP), Anaplasma marginale (groEL), Anaplasma phagocytophilum (16S rRNA), Anaplasma bovis (16S rRNA), Anaplasma platys (16S rRNA), Ehrlichia spp. (16S rRNA), Rickettsia spp. (gltA), and Borrelia (Bo.) spp. (flagellin B) using genus and species-specific polymerase chain reaction (PCR) assays. The prevalence of the detected pathogens was calculated using the maximum likelihood method (MLE) with 95 % confidence interval (CI). Among 2748 ixodid ticks, 2332 (84.86 %) and 416 (15.14 %) were identified as Haemaphysalis bispinosa and Rhipicephalus microplus, respectively. Haemaphysalis bispinosa was found to carry all the seven detected pathogens, while larvae of R. microplus were found to carry only Bo. theileri. Among the TBPs, the highest detection rate was observed in A. bovis (20/142 pools, 0.81 %, CI: 0.51-1.20), followed by T. orientalis (19/142 pools, 0.72 %, CI: 0.44-1.09), T. luwenshuni (9/142 pools, 0.34 %, CI: 0.16-0.62), B. ovis (4/142 pools, 0.15 %, CI: 0.05 - 0.34) and Bo. theileri (4/142 pools, 0.15 %, CI: 0.05-0.34), Ehrlichia ewingii (3/142 pools, 0.11 %, CI: 0.03-0.29), and Babesia bigemina (1/142, 0.04 %, CI: 0.00 - 0.16). This study reports the existence of T. luwenshuni, E. ewingii, and Bo. theileri in Bangladesh for the first time. The novel findings of this study are the foremost documentation of transovarian transmission of B. bigemina and E. ewingii in H. bispinosa and also provide primary molecular evidence on the presence of E. ewingii and Bo. theileri in H. bispinosa. Therefore, this study may shed light on the circulating TBPs in ticks in the natural environment and thereby advocate awareness among physicians and veterinarians to control and prevent TBDs in Bangladesh.


Subject(s)
Babesia , Tick-Borne Diseases , Animals , Bangladesh/epidemiology , Babesia/isolation & purification , Babesia/genetics , Female , Male , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Theileria/isolation & purification , Theileria/genetics , Theileria/classification , Ixodidae/microbiology , Ixodidae/parasitology , Anaplasma/isolation & purification , Anaplasma/genetics , Ehrlichia/isolation & purification , Ehrlichia/genetics , Ticks/microbiology , Ticks/parasitology , DNA, Bacterial/genetics , Humans
6.
Prev Vet Med ; 228: 106214, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733736

ABSTRACT

Tick-borne pathogens of the genus Anaplasma cause anaplasmosis in livestock and humans, impacting health and livelihoods, particularly in Africa. A comprehensive review on the epidemiology of Anaplasma species is important to guide further research and for implementation of control approaches. We reviewed observational studies concerning Anaplasma species amongst cattle in Africa. Peer-reviewed studies published in PubMed, Google Scholar, and Web of Science - from database inception to 2022 - were searched. The quality of individual studies was assessed using the Joanna Briggs Institute Critical Appraisal Tool and the pooled prevalences by diagnostic method were estimated using random-effects models. Heterogeneity across the studies was tested and quantified using the Cochran's Q statistic and the I2 statistic. Potential sources of heterogeneity were investigated by subgroup analysis. A total of 1117 records were retrieved and at the end of the screening, 149 records (155 studies) were eligible for this meta-analysis. The occurrence of Anaplasma species was reported in 31/54 countries in all regions. Seven recognised species (A. marginale, A. centrale, A. phagocytophilum, A. platys, A. capra, A. bovis, A. ovis) and nine uncharacterised genotypes (Anaplasma sp. Hadesa; Anaplasma sp. Saso; Anaplasma sp. Dedessa; Anaplasma sp. Mymensingh; Anaplasma sp. Lambwe-1; Candidatus Anaplasma africae; Anaplasma sp.; Candidatus Anaplasma boleense) were reported in African cattle. Anaplasma marginale was the most frequently reported (n=144/155 studies) and the most prevalent species (serology methods 56.1%, 45.9-66.1; direct detection methods 19.9%, 15.4-24.7), followed by A. centrale (n=26 studies) with a prevalence of 8.0% (95% CI: 4.8-11.9) and A. platys (n=19 studies) with prevalence of 9.7% (95% CI: 5.4-15.2). Anaplasma marginale, A. centrale and A. platys were reported in all Africa's regions, while A. ovis and A. capra were reported only in the northern and central regions. The uncharacterised Anaplasma taxa were mostly detected in the eastern and southern regions. Subgroup analysis showed that significant determinants for A. marginale exposure (serology) were geographical region (p=0.0219), and longitude (p=0.0336), while the technique employed influenced (p<0.0001) prevalence in direct detection approaches. Temperature was the only significant variable (p=0.0269) for A. centrale. These findings show that various Anaplasma species, including those that are zoonotic, circulate in African cattle. There is need for more genetic and genome data, especially for unrecognised species, to facilitate effective identification, improve livestock and minimise the health risk in human populations. Additional epidemiological data including pathogen occurrence, tick vectors and host range, as well as pathogenicity are essential.


Subject(s)
Anaplasma , Anaplasmosis , Cattle Diseases , Animals , Cattle , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Anaplasma/isolation & purification , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Africa/epidemiology , Prevalence
7.
Nat Commun ; 15(1): 3988, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734682

ABSTRACT

Tick-borne bacteria of the genera Ehrlichia and Anaplasma cause several emerging human infectious diseases worldwide. In this study, we conduct an extensive survey for Ehrlichia and Anaplasma infections in the rainforests of the Amazon biome of French Guiana. Through molecular genetics and metagenomics reconstruction, we observe a high indigenous biodiversity of infections circulating among humans, wildlife, and ticks inhabiting these ecosystems. Molecular typing identifies these infections as highly endemic, with a majority of new strains and putative species specific to French Guiana. They are detected in unusual rainforest wild animals, suggesting they have distinctive sylvatic transmission cycles. They also present potential health hazards, as revealed by the detection of Candidatus Anaplasma sparouinense in human red blood cells and that of a new close relative of the human pathogen Ehrlichia ewingii, Candidatus Ehrlichia cajennense, in the tick species that most frequently bite humans in South America. The genome assembly of three new putative species obtained from human, sloth, and tick metagenomes further reveals the presence of major homologs of Ehrlichia and Anaplasma virulence factors. These observations converge to classify health hazards associated with Ehrlichia and Anaplasma infections in the Amazon biome as distinct from those in the Northern Hemisphere.


Subject(s)
Anaplasma , Animals, Wild , Ehrlichia , Phylogeny , Rainforest , Ticks , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/pathogenicity , Anaplasma/classification , Ehrlichia/genetics , Ehrlichia/isolation & purification , Ehrlichia/classification , Humans , Animals , Ticks/microbiology , Animals, Wild/microbiology , Anaplasmosis/microbiology , Anaplasmosis/epidemiology , Anaplasmosis/transmission , French Guiana , Ehrlichiosis/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/transmission , Metagenomics/methods , Genome, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
8.
Front Cell Infect Microbiol ; 14: 1382228, 2024.
Article in English | MEDLINE | ID: mdl-38698904

ABSTRACT

Background: Tick-borne pathogen (TBP) surveillance studies often use whole-tick homogenates when inferring tick-pathogen associations. However, localized TBP infections within tick tissues (saliva, hemolymph, salivary glands, and midgut) can inform pathogen transmission mechanisms and are key to disentangling pathogen detection from vector competence. Methods: We screened 278 camel blood samples and 504 tick tissue samples derived from 126 camel ticks sampled in two Kenyan counties (Laikipia and Marsabit) for Anaplasma, Ehrlichia, Coxiella, Rickettsia, Theileria, and Babesia by PCR-HRM analysis. Results: Candidatus Anaplasma camelii infections were common in camels (91%), but absent in all samples from Rhipicephalus pulchellus, Amblyomma gemma, Hyalomma dromedarii, and Hyalomma rufipes ticks. We detected Ehrlichia ruminantium in all tissues of the four tick species, but Rickettsia aeschlimannii was only found in Hy. rufipes (all tissues). Rickettsia africae was highest in Am. gemma (62.5%), mainly in the hemolymph (45%) and less frequently in the midgut (27.5%) and lowest in Rh. pulchellus (29.4%), where midgut and hemolymph detection rates were 17.6% and 11.8%, respectively. Similarly, in Hy. dromedarii, R. africae was mainly detected in the midgut (41.7%) but was absent in the hemolymph. Rickettsia africae was not detected in Hy. rufipes. No Coxiella, Theileria, or Babesia spp. were detected in this study. Conclusions: The tissue-specific localization of R. africae, found mainly in the hemolymph of Am. gemma, is congruent with the role of this tick species as its transmission vector. Thus, occurrence of TBPs in the hemolymph could serve as a predictor of vector competence of TBP transmission, especially in comparison to detection rates in the midgut, from which they must cross tissue barriers to effectively replicate and disseminate across tick tissues. Further studies should focus on exploring the distribution of TBPs within tick tissues to enhance knowledge of TBP epidemiology and to distinguish competent vectors from dead-end hosts.


Subject(s)
Babesia , Camelus , Ehrlichia , Theileria , Ticks , Animals , Kenya/epidemiology , Camelus/parasitology , Camelus/microbiology , Theileria/isolation & purification , Theileria/genetics , Babesia/isolation & purification , Babesia/genetics , Ehrlichia/isolation & purification , Ehrlichia/genetics , Ticks/microbiology , Ticks/parasitology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/parasitology , Anaplasma/isolation & purification , Anaplasma/genetics , Rickettsia/isolation & purification , Rickettsia/genetics , Coxiella/isolation & purification , Coxiella/genetics , Hemolymph/microbiology , Hemolymph/parasitology , Salivary Glands/microbiology , Salivary Glands/parasitology
9.
Vet Parasitol Reg Stud Reports ; 51: 101027, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772643

ABSTRACT

Canine tick-borne diseases, such as babesiosis, rangeliosis, hepatozoonosis, anaplasmosis and ehrlichiosis, are of veterinarian relevance, causing mild or severe clinical cases that can lead to the death of the dog. The aim of this study was detecting tick-borne protozoan and rickettsial infections in dogs with anemia and/or thrombocytopenia in Uruguay. A total of 803 domestic dogs were evaluated, and 10% were found positive (detected by PCR) at least for one hemoparasite. Sequence analysis confirmed the presence of four hemoprotozoan species: Rangelia vitalii, Babesia vogeli, Hepatozoon canis and Hepatozoon americanum, and the rickettsial Anaplasma platys. The most detected hemoparasite was R. vitalii, followed by H. canis and A. platys. This is the first report of B. vogeli in Uruguay and the second report of H. americanum in dogs from South America. The results highlight the importance for veterinarians to include hemoparasitic diseases in their differential diagnosis of agents causing anemia and thrombocytopenia.


Subject(s)
Anemia , Dog Diseases , Piroplasmida , Thrombocytopenia , Animals , Uruguay , Dogs , Dog Diseases/parasitology , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Thrombocytopenia/veterinary , Thrombocytopenia/parasitology , Anemia/veterinary , Anemia/parasitology , Piroplasmida/isolation & purification , Piroplasmida/genetics , Female , Anaplasmataceae/isolation & purification , Anaplasmataceae/genetics , Male , Anaplasmataceae Infections/veterinary , Anaplasmataceae Infections/epidemiology , Anaplasma/isolation & purification , Anaplasma/genetics , Babesiosis/parasitology , Babesiosis/diagnosis , Coccidiosis/veterinary , Coccidiosis/parasitology , Eucoccidiida/isolation & purification , Eucoccidiida/genetics , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Babesia/isolation & purification , Protozoan Infections, Animal/parasitology , Protozoan Infections, Animal/epidemiology , Polymerase Chain Reaction/veterinary
10.
Vet Parasitol Reg Stud Reports ; 51: 101033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772649

ABSTRACT

The Garrano is a semi-feral horse breed native to several mountains in the northern Iberian Peninsula. Despite being endangered, this unique breed of pony has managed to survive in the wild and continues to be selectively bred, highlighting their remarkable resilience and adaptability to harsh environments. Wildlife plays a critical role in the survival of tick vectors in their natural habitats and the transfer of tick-borne pathogens, as they can serve as reservoir hosts for many agents and amplifiers for these vectors. The semi-feral lifestyle of the Garrano horses makes them particularly vulnerable to exposure to numerous tick species throughout the year. Therefore, the aim of this study was to investigate the occurrence of Anaplasma, Ehrlichia, Babesia, Theileria, and spotted fever rickettsiae in the Garrano horse ticks to obtain a knowledge of circulating agents in this host population. The collected ticks (n = 455) were identified as Rhipicephalus bursa. DNA specimens were organized in pools of 5 ticks, for molecular screening. Pools PCR results confirmed the presence of Candidatus Rickettsia barbariae (n = 12 for the ompB gene, n = 11 for the ompA gene and n = 6 for the gltA gene), Babesia bigemina (n = 1), Babesia caballi (n = 3), Theileria equi (n = 15) and Theileria haneyi (n = 1).These results confirm the circulation of an emerging rickettsial spotted fever group member, Candidatus R. barbariae, in R. bursa ticks. Our findings demonstrated that Candidatus R. barbariae co-circulates with B. bigemina and T. equi, which are vectored by R. bursa. We are reporting for the first time, the detection of T. haneyi among R. bursa ticks feeding in the Garrano horses in Portugal. Surveillance studies for tick-borne infections are essential to provide information that can facilitate the implementation of preventive and control strategies.


Subject(s)
Babesia , Horse Diseases , Rhipicephalus , Theileria , Animals , Horses/parasitology , Portugal/epidemiology , Rhipicephalus/microbiology , Rhipicephalus/parasitology , Horse Diseases/parasitology , Horse Diseases/epidemiology , Theileria/isolation & purification , Theileria/genetics , Babesia/isolation & purification , Babesia/genetics , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Female , Anaplasma/isolation & purification , Anaplasma/genetics , Theileriasis/epidemiology , Theileriasis/parasitology , Rickettsia/isolation & purification , Rickettsia/genetics , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/epidemiology , Ehrlichia/isolation & purification , Ehrlichia/genetics , Babesiosis/epidemiology , Babesiosis/parasitology
11.
PLoS Negl Trop Dis ; 18(5): e0012159, 2024 May.
Article in English | MEDLINE | ID: mdl-38739673

ABSTRACT

BACKGROUND: Rodents are recognized as the hosts of many vector-borne bacteria and protozoan parasites and play an important role in their transmission and maintenance. Intensive studies have focused on their infections in vectors, especially in ticks, however, vector-borne bacterial and protozoan infections in rodents are poorly understood although human cases presenting with fever may due to their infection have been found. METHODS: From May to October 2019, 192 wild rodents were trapped in wild environment of Guangxi Province, and the spleen samples were collected to reveal the presence of vector-borne bacterial and protozoan infections in them. The microorganisms in rodents were identified by detecting their DNA using (semi-)nested PCR. All the PCR products of the expected size were subjected to sequencing, and then analyzed by BLASTn. Furthermore, all the recovered sequences were subjected to nucleotide identity and phylogenetic analyses. RESULTS: As a result, 192 rodents representing seven species were captured, and Bandicota indica were the dominant species, followed by Rattus andamanensis. Based on the (semi-)nested PCR, our results suggested that Anaplasma bovis, Anaplasma capra, Anaplasma ovis, Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis", "Candidatus E. hainanensis", "Candidatus E. zunyiensis", three uncultured Ehrlichia spp., Bartonella coopersplainsensis, Bartonella tribocorum, Bartonella rattimassiliensis, Bartonella silvatica, two uncultured Bartonella spp., Babesia microti and diverse Hepatozoon were identified in six rodent species. More importantly, six species (including two Anaplasma, two Bartonella, "Ca. N. mikurensis" and Bab. microti) are zoonotic pathogens except Anaplasma bovis and Anaplasma ovis with zoonotic potential. Furthermore, dual infection was observed between different microorganisms, and the most common type of co-infection is between "Ca. N. mikurensis" and other microorganisms. Additionally, potential novel Bartonella species and Hepatozoon species demonstrated the presence of more diverse rodent-associated Bartonella and Hepatozoon. CONCLUSIONS: The results in this work indicated great genetic diversity of vector-borne infections in wild rodents, and highlighted the potential risk of human pathogens transmitted from rodents to humans through vectors.


Subject(s)
Genetic Variation , Rodentia , Animals , China/epidemiology , Rodentia/microbiology , Rodentia/parasitology , Phylogeny , Animals, Wild/parasitology , Animals, Wild/microbiology , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/classification , Vector Borne Diseases/transmission , Vector Borne Diseases/microbiology , Vector Borne Diseases/parasitology , Vector Borne Diseases/epidemiology , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Rats
12.
Ticks Tick Borne Dis ; 15(5): 102351, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38788485

ABSTRACT

The transplacental transmission of parasites and hemoparasites is crucial for understanding the epidemiology of diseases. This study aimed to assess the prevalence of hemopathogens in bovine fetuses at various gestational periods. Samples were obtained from a slaughterhouse in the state of Minas Gerais, Brazil, and a total of 236 fetuses were collected. DNA extracted from blood samples (145) and organ samples (a pool of brain and spleen) (236) underwent a nested PCR (nPCR) assay to detect Babesia spp., Theileria spp., Trypanosoma vivax, Anaplasma marginale, Anaplasma bovis, Anaplasma phagocytophilum, Ehrlichia minasensis, and hemotropic Mycoplasma spp. Additionally, serological analysis of 145 plasma samples was conducted using the indirect fluorescent antibody test-IFAT to detect IgG against Babesia bovis, Babesia bigemina, A. marginale, and Trypanosoma vivax. The observed prevalence of transplacental transmission was 19.3 %, 6.2 %, 42.7 % and 2.7 %, for A. marginale, B. bigemina, 'Candidatus M. haemobos', and Mycoplasma wenyonii, respectively. The prevalence of A. marginale by gestational trimester was 16 % (13/81) in the second trimester and 23 % (14/60) in the third trimester, with no positive samples in the first trimester. Regarding the species B. bovis and B. bigemina, all evaluated animals tested negative by nPCR, and no serological evidence for B. bovis was found by the IFAT. Babesia bigemina demonstrated an overall seroprevalence of 6.2 % (9/145), with 4.8 % (7/145) in the last trimester and 1.3 % (2/145) in the second trimester of pregnancy. In total, 42.7 % (62/145) of blood samples were positive for 'Candidatus M. haemobos', with 42 % (34/81) in the middle trimester, and 43 % (26/60) in the final trimester of pregnancy. Mycoplasma wenyonni was detected in 2.7 % (4/145) blood samples, all in coinfection with 'C. M. haemobos'. The prevalence by pregnancy trimester was 25 % (1/4) in the first trimester; 1.2 % (1/81) in the second trimester and 3.3 % (2/60) in the third trimester of pregnancy. Hemopathogen DNA was detected in fetus blood samples but not the brain or spleen samples. All the samples were negative for T. vivax, Theileria spp., Anaplasma spp. and Ehrlichia spp. Overall, in this study, approximately 70 % of fetuses were positive for one or more of the studied parasites. No significant associations were observed between pairs of pathogens, except 'C. M. haemobos' and A. marginale.


Subject(s)
Cattle Diseases , Mycoplasma , Animals , Brazil/epidemiology , Cattle , Female , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Cattle Diseases/parasitology , Mycoplasma/isolation & purification , Pregnancy , Prevalence , Babesia/isolation & purification , Fetus/microbiology , Fetus/parasitology , Mycoplasma Infections/epidemiology , Mycoplasma Infections/veterinary , Mycoplasma Infections/microbiology , Theileria/isolation & purification , Trypanosoma vivax/isolation & purification , Infectious Disease Transmission, Vertical/veterinary , Anaplasma/isolation & purification , Babesiosis/epidemiology , Babesiosis/parasitology , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Ehrlichia/isolation & purification
13.
J Wildl Dis ; 60(3): 792-794, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38659240

ABSTRACT

Anaplasma bovis (1), Bartonella krasnovii (3), and Bartonella sp. (17) were detected in 80 Libyan jirds (Meriones libycus) from China. These findings extend the known host and geographic ranges of these pathogens, with neither A. bovis nor B. krasnovii previously confirmed in Libyan jirds.


Subject(s)
Anaplasma , Anaplasmosis , Bartonella Infections , Bartonella , Animals , China/epidemiology , Anaplasma/isolation & purification , Bartonella/isolation & purification , Bartonella Infections/veterinary , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Rodentia/microbiology , Female , Male
14.
Acta Trop ; 254: 107210, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599442

ABSTRACT

Several species of hard ticks, including those of the genera Ixodes, Haemaphysalis, Amblyomma, and Rhipicephalus, are of medical and veterinary importance and have been reported in association with Neotropical wild birds. Colombia, known for its great bird diversity, has 57 confirmed tick species. However, there are few studies on the association between wild birds and ticks in Colombia. The Orinoquia region, a migratory center in Colombia, provides a unique opportunity to study wild bird-tick associations and their implications for tick-borne disease dynamics. Our study, conducted between October and December 2021, aimed to identify hard ticks infesting resident and migratory wild birds in the department of Arauca and to assess the presence of bacteria from the genera Anaplasma, Borrelia, Ehrlichia, Rickettsia, and piroplasms. A total of 383 birds were examined, of which 21 were infested. We collected 147 ticks, including Amblyomma dissimile (larvae), Amblyomma longirostre (nymphs), Amblyomma mixtum (adults), and Amblyomma nodosum (larvae and nymphs). We did not detect bacterial DNA in the tested ticks; however, piroplasm DNA was detected in ticks from three of the infested birds. Of the 21 bird-tick associations, six are new to the Americas, and interesting documentation of piroplasm DNA in A. longirostre, A. nodosum, and A. dissimile ticks from wild birds in the region. This study provides valuable insights into the ticks associated with wild birds and their role in the dispersal of ticks and pathogens in Colombia, enhancing our understanding of tick life cycles and tick-borne disease dynamics.


Subject(s)
Animals, Wild , Bird Diseases , Birds , Ixodidae , Tick Infestations , Animals , Colombia , Tick Infestations/veterinary , Tick Infestations/epidemiology , Birds/parasitology , Ixodidae/microbiology , Ixodidae/growth & development , Ixodidae/classification , Animals, Wild/parasitology , Animals, Wild/microbiology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Borrelia/isolation & purification , Ehrlichia/isolation & purification , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Animal Migration , Anaplasma/isolation & purification , Anaplasma/genetics , Nymph/microbiology , Nymph/growth & development , Female , Male , Larva/microbiology , Amblyomma/microbiology
15.
Acta Trop ; 254: 107202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565332

ABSTRACT

Cervids are highly exposed to ticks, however, their role in the life cycle of these rickettsiae has not been fully elucidated. Given the expanding distribution and growing population of deer species in Portugal, coupled with their direct and indirect interactions with humans during hunting, it becomes crucial to explore their role as sentinels and potential reservoirs of Rickettsia. The present investigation aimed to detect and evaluate exposure to Rickettsia in free-living deer from Portugal. Blood samples (n = 77) were collected from hunted game animals (red deer and fallow deer) from different areas throughout Portugal (Idanha-a-Nova, Monte Fidalgo, Montalvão and Arraiolos) and sera were tested by immunofluorescence assay, to detect antibodies. Additionally, blood DNA samples were screened for SFGR by nested-polymerase chain reaction targeting a fragment of the outer membrane protein B (ompB) gene, as well as for Anaplasma and Ehrlichia spp. targeting the 16S rRNA gene. Thirty-five per cent (25 deer and two fallow deer) tested positive (sera with a titer ≥1:64) for IgG antibodies against Rickettsia conorii. No rickettsial DNA was detected by PCR for the ompB gene, and all DNA samples tested negative for Anaplasma and Ehrlichia. As far as we know, this study is the first screening of cervid species in Portugal for Rickettsia antibodies. The findings suggest that these animals serve as useful sentinel indicators for the circulation of rickettsiae, offering a complementary perspective to studies focused on ticks. The increasing numbers of hunted deer in Portugal and the potential zoonotic features of Rickettsia spp. highlight the importance of continued surveillance directed at tick-borne diseases, especially those involving wild animals.


Subject(s)
Antibodies, Bacterial , Deer , Rickettsia , Animals , Portugal , Deer/microbiology , Antibodies, Bacterial/blood , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/immunology , Rickettsia Infections/veterinary , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Sentinel Species/microbiology , DNA, Bacterial/genetics , Immunoglobulin G/blood , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Anaplasma/isolation & purification , Anaplasma/genetics , Anaplasma/immunology , Ehrlichia/isolation & purification , Ehrlichia/genetics , Ehrlichia/immunology , Rickettsia conorii/genetics , Rickettsia conorii/isolation & purification , Rickettsia conorii/immunology , Bacterial Outer Membrane Proteins/genetics , Male
16.
Comp Immunol Microbiol Infect Dis ; 109: 102181, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636298

ABSTRACT

Ticks and tick-borne pathogens (TTBP) pose a serious threat to animal and human health globally. Anaplasma bovis, an obligatory intracellular bacterium, is one of the more recent species of the Family Anaplasmaceae to be formally described. Owing to its diminutive size, microscopic detection presents a formidable challenge, leading to it being overlooked in laboratory settings lacking advanced equipment or resources, as observed in various regions, including Thailand. This study aimed to undertake a genetic analysis of A. bovis and determine its prevalence in goats and ticks utilizing three genetic markers (16S rRNA, gltA, groEL). A total of 601 goat blood and 118 tick samples were collected from 12 sampling sites throughout Thailand. Two tick species, Haemaphysalis bispinosa (n = 109), and Rhipicephalus microplus (n = 9) were identified. The results herein showed that 13.8 % (83/601) of goats at several farms and 5 % (1/20) of ticks were infected with A. bovis. Among infected ticks, A. bovis and an uncultured Anaplasma sp. which are closely related to A. phagocytophilum-like 1, were detected in each of H. bispinosa ticks. The remaining R. microplus ticks tested positive for the Anaplasma genus. A nucleotide sequence type network showed that A. bovis originated from Nan and Narathiwat were positioned within the same cluster and closely related to China isolates. This observation suggests the potential dispersal of A. bovis over considerable distances, likely facilitated by activities such as live animal trade or the transportation of infected ticks via migratory birds. The authors believe that the findings from this study will provide valuable information about TTBP in animals.


Subject(s)
Anaplasma , Anaplasmosis , Goat Diseases , Goats , Multilocus Sequence Typing , Phylogeny , RNA, Ribosomal, 16S , Animals , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/classification , Thailand/epidemiology , Anaplasmosis/microbiology , Anaplasmosis/epidemiology , Goat Diseases/microbiology , Goat Diseases/epidemiology , RNA, Ribosomal, 16S/genetics , Anaplasma phagocytophilum/genetics , Anaplasma phagocytophilum/isolation & purification , Ticks/microbiology , DNA, Bacterial/genetics
17.
Vet Res Commun ; 48(3): 1727-1740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38536514

ABSTRACT

Anaplasma phagocytophilum, Anaplasma platys and Ehrlichia canis, responsible of diseases in dogs, are tick-borne pathogens with a proven or potential zoonotic role that have shown increasing prevalence worldwide. The aims of this retrospective study were to assess the frequency of Anaplasma spp. and Ehrlichia spp. exposure in dogs tested in a veterinary teaching hospital in Italy over a 9-year period, to compare the performance of the diagnostic tests used, to evaluate correlations with clinical data, and to genetically analyse the identified bacteria. During the study period, 1322 dogs tested by at least one of the rapid immunoenzymatic test, indirect immunofluorescent antibody test or end-point PCR assay for Anaplasmataceae detection were included. Dogs were tested if they had clinical signs or clinicopathological alteration or risk factors related to infection, and if they were potential blood-donor animals. Ninety-four of 1322 (7.1%) dogs tested positive for at least one pathogen: 53 (4.3%) for A. phagocytophilum, one (0.1%) for A. platys and 63 (4.6%) for E. canis. The number of dogs tested increased and the positivity rate progressively declined over the years. Comparison of tests showed a near-perfect agreement between serological tests and a poor agreement between PCR and indirect assays. A breed predisposition has been highlighted for A. phagocytophilum infection in hunting breed dogs and for E. canis infection in mixed breed dogs. Phylogeny confirmed potential zoonotic implications for A. phagocytophilum and showed no correlation of the identified bacteria with the geographical origin. Our study provides new insights into possible risk factors in dogs and evidenced discordant results between different tests, suggesting that a combination of serological and molecular assays is preferable for a correct diagnosis.


Subject(s)
Anaplasma , Anaplasmosis , Dog Diseases , Ehrlichiosis , Hospitals, Animal , Animals , Dogs , Italy/epidemiology , Retrospective Studies , Dog Diseases/microbiology , Dog Diseases/epidemiology , Dog Diseases/diagnosis , Anaplasma/isolation & purification , Anaplasma/genetics , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Anaplasmosis/diagnosis , Ehrlichiosis/veterinary , Ehrlichiosis/epidemiology , Ehrlichiosis/diagnosis , Ehrlichiosis/microbiology , Male , Female , Ehrlichia/isolation & purification , Ehrlichia/genetics , Ehrlichia canis/genetics , Ehrlichia canis/isolation & purification , Hospitals, Teaching , Prevalence
18.
Vet Res Commun ; 48(3): 1329-1340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38424380

ABSTRACT

The genus Anaplasma includes A. marginale, A. centrale, A. bovis, A. ovis, A. platys, and A. phagocytophilum transmitted by ticks, some of which are zoonotic and cause anaplasmosis in humans and animals. In 2012, a new species was discovered in goats in China. In 2015, the same agent was detected in humans in China, and it was provisionally named Anaplasma capra, referring to 2012. The studies conducted to date have revealed the existence of A. capra in humans, domestic animals, wild animals, and ticks from three different continents (Asia, Europe, and Africa). Phylogenetic analyses based on gltA and groEL sequences show that A. capra clearly includes two different genotypes (A. capra genotype-1 and A. capra genotype-2). Although A. capra human isolates are in the genotype-2 group, goat, sheep, and cattle isolates are in both groups, making it difficult to establish a host genotype-relationship. According to current data, it can be thought that human isolates are genotype-2 and while only genotype-1 is found in Europe, both genotypes are found in Asia. Anaplasma capra causes clinical disease in humans, but the situation is not yet sufficient to understand the zoonotic importance and pathogenicity in animals. In the present review, the history, hosts (vertebrates and ticks), molecular prevalence, pathogenic properties, and genetic diversity of A. capra were evaluated from a broad perspective.


Subject(s)
Anaplasma , Anaplasmosis , Animals , Anaplasmosis/microbiology , Anaplasmosis/epidemiology , Anaplasmosis/transmission , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/classification , Anaplasma/pathogenicity , Humans , Goats , Zoonoses/microbiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/transmission , Phylogeny , Goat Diseases/microbiology , Goat Diseases/epidemiology , Ticks/microbiology , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/veterinary , Communicable Diseases, Emerging/epidemiology
19.
Vector Borne Zoonotic Dis ; 24(5): 265-273, 2024 May.
Article in English | MEDLINE | ID: mdl-38227393

ABSTRACT

Background: Genus Anaplasma of the family Anaplasmataceae possesses bacteria of hematopoietic origin, which are obligate intracellular Gram-negative bacteria transmitted mainly by tick vectors. The members of this group of infectious agents are not new as etiological agents of animal diseases worldwide. However, now, reports of their zoonotic potential have gained currency to study these pathogens. The emergence of new species of Anaplasma and the spread of existing species to new areas and hosts highlight the importance of monitoring and improving diagnostic and treatment options for zoonotic diseases caused by Anaplasma. Conclusion: This review focuses on the general and distinctive characteristics of Anaplasma spp., with particular emphasis on the novel species and their diverse spectrum of hosts as potential risk factors impacting its emerging zoonosis.


Subject(s)
Anaplasma , Anaplasmosis , Genetic Variation , Host Specificity , Zoonoses , Anaplasma/genetics , Anaplasma/isolation & purification , Animals , Anaplasmosis/microbiology , Humans
20.
Acta Parasitol ; 69(1): 370-374, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38112913

ABSTRACT

BACKGROUND: A newly discovered zoonotic infection carried by ixodid ticks, Anaplasma capra, affects a wide variety of hosts, including numerous mammals. A. capra most likely infects erythrocytes or endothelial cells in mammals. This study aimed to investigate the A. capra pathogen in goats in Türkiye's Van province. METHODS: A total of 200 goat blood samples were examined. Goat samples were subjected to partial amplification of the gltA gene fragment using a nested polymerase chain reaction. RESULTS: A. capra DNA was detected in 0.5% of goat blood samples. Phylogenetic analysis of a partial gltA gene fragment showed that the Eastern Türkiye isolate, closely grouped with A. capra isolates reported from wild and domestic ruminants in France, Türkiye, and Kyrgyzstan, formed a distinct clade. CONCLUSIONS: This is the first report of A. capra in goats in Van province, Eastern Türkiye.


Subject(s)
Anaplasma , Anaplasmosis , Goat Diseases , Goats , Phylogeny , Animals , Goat Diseases/microbiology , Goat Diseases/epidemiology , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Polymerase Chain Reaction/veterinary , DNA, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...