Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.550
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000445

ABSTRACT

Both hypertension and aging are known to increase the vulnerability of the brain to neurovascular damage, resulting in cognitive impairment. The present study investigated the efficacy of the antihypertensive drug losartan on age- and hypertension-associated cognitive decline and the possible mechanism underlying its effect in spontaneously hypertensive rats (SHRs). Losartan was administered (10 mg/kg, i.p. for 19 days) to 3- and 14-month-old SHRs. Age-matched Wistar rats were used as controls. Working memory, short-term object recognition, and spatial memory were assessed using the Y-maze, object recognition test (ORT) and radial arm maze (RAM) test. The expression of markers associated with aging, oxidative stress, and memory-related signaling was assessed in the frontal cortex (FC) and hippocampus. Motor activity measured over 24 h was not different between groups. Middle-aged vehicle-treated SHRs showed poorer performance in spontaneous alternation behavior (SAB) and activity in the first Y-maze test than their younger counterparts, suggesting age-related reduced "decision making" and reactivity in a novel environment. Losartan improved the age- and hypertension-induced decline in short-term recognition and spatial memory measured in the ORT and the second Y-maze test, particularly in the middle-aged rats, but was ineffective in the young adult rats. Changes in memory and age-related markers such as cAMP response element-binding protein (CREB) and amyloid-ß1-42 (Aß1-42) and increased oxidative stress were observed in the hippocampus but not in the FC between young adult and middle-aged vehicle-treated SHRs. Losartan increased CREB expression while reducing Aß1-42 levels and concomitant oxidative stress in middle-aged SHRs compared with vehicle-treated SHRs. In conclusion, our study highlights the complex interplay between hypertension, aging, and cognitive impairment. It suggests that there is a critical time window for therapeutic intervention with angiotensin II type 1 receptor blockers.


Subject(s)
Aging , Angiotensin II Type 1 Receptor Blockers , Cognitive Dysfunction , Hypertension , Losartan , Maze Learning , Oxidative Stress , Rats, Inbred SHR , Animals , Losartan/pharmacology , Losartan/therapeutic use , Rats , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Male , Aging/drug effects , Oxidative Stress/drug effects , Hypertension/drug therapy , Hypertension/metabolism , Maze Learning/drug effects , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Rats, Wistar , Hippocampus/metabolism , Hippocampus/drug effects , Spatial Memory/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use
2.
J Nippon Med Sch ; 91(3): 285-295, 2024.
Article in English | MEDLINE | ID: mdl-38972741

ABSTRACT

BACKGROUND: The standard treatment for Kawasaki disease is immunoglobulin therapy, but the high frequency of coronary sequelae in immunoglobulin-refractory cases indicates a need for further improvement in treatment. METHODS: Kawasaki disease-like vasculitis was induced in 5-week-old DBA/2 mice by intraperitoneal administration of 0.5 mg Candida albicans water-soluble fraction (CAWS) daily for 5 days followed by daily administration of candesartan, an angiotensin receptor blocker. The vasculitis suppression effect was confirmed histologically and serologically in mice sacrificed at 28 days after the start of candesartan. RESULTS: The area of inflammatory cell infiltration at the aortic root was 2.4±1.4% in the Control group, 18.1±1.9% in the CAWS group, and 7.1±2.3%, 5.8±1.4%, 7.6±2.4%, and 7.9±5.0% in the CAWS+candesartan 0.125-mg/kg, 0.25-mg/kg, 0.5-mg/kg, and 1.0-mg/kg groups, respectively (p=0.0200, p=0.0122, p=0.0122, and p=0.0200 vs. CAWS, respectively). The low-dose candesartan group also showed significantly reduced inflammatory cell infiltration. A similar trend was confirmed by immunostaining of macrophages and TGFß receptors. Measurement of the inflammatory cytokines IL-1ß, IL-6, and TNF-α confirmed the anti-vasculitis effect of candesartan. CONCLUSIONS: Candesartan inhibited vasculitis even at clinical doses used in children, making it a strong future candidate as an additional treatment for immunoglobulin-refractory Kawasaki disease.


Subject(s)
Benzimidazoles , Biphenyl Compounds , Candida albicans , Disease Models, Animal , Mucocutaneous Lymph Node Syndrome , Tetrazoles , Animals , Benzimidazoles/pharmacology , Benzimidazoles/administration & dosage , Mucocutaneous Lymph Node Syndrome/drug therapy , Tetrazoles/pharmacology , Tetrazoles/administration & dosage , Candida albicans/drug effects , Biphenyl Compounds/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Mice, Inbred DBA , Solubility , Water , Vasculitis/drug therapy , Male , Mice , Cytokines/metabolism , Interleukin-6/metabolism
3.
Bioorg Med Chem Lett ; 110: 129879, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38977106

ABSTRACT

In this study, we synthesized a series of seven benzimidazole derivatives incorporating the structural acidic framework of angiotensin II (Ang II) type 1 receptor (AT1R) antagonists (ARA-II) employing a three-step reaction sequence. The chemical structures were confirmed by 1H NMR, 13C NMR and mass spectral data. Through biosimulation, compounds 1-7 were identified as computational safe hits, thus, best candidates underwent ex vivo testing against two distinct mechanisms implicated in hypertension: antagonism of the Ang II type 1 receptor and the blockade of calcium channel. Molecular docking studies helped to understand at the molecular level the dual vasorelaxant effects with the recognition sites of the AT1R and the L-type calcium channel. In an in vivo spontaneously hypertensive rat model (SHR), intraperitoneally administration of compound 1 at 20 mg/kg resulted in a 25 % reduction in systolic blood pressure, demonstrating both ex vivo vasorelaxant action and in vivo antihypertensive multitarget efficacy. ©2024 Elsevier.


Subject(s)
Antihypertensive Agents , Benzimidazoles , Molecular Docking Simulation , Rats, Inbred SHR , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemical synthesis , Antihypertensive Agents/chemistry , Rats , Structure-Activity Relationship , Blood Pressure/drug effects , Hypertension/drug therapy , Receptor, Angiotensin, Type 1/metabolism , Molecular Structure , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/chemical synthesis , Angiotensin II Type 1 Receptor Blockers/chemistry , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/chemistry , Calcium Channels, L-Type/metabolism
4.
BMC Neurosci ; 25(1): 29, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926677

ABSTRACT

BACKGROUND: Astrocytes are the most abundant cell type of the central nervous system and are fundamentally involved in homeostasis, neuroprotection, and synaptic plasticity. This regulatory function of astrocytes on their neighboring cells in the healthy brain is subject of current research. In the ischemic brain we assume disease specific differences in astrocytic acting. The renin-angiotensin-aldosterone system regulates arterial blood pressure through endothelial cells and perivascular musculature. Moreover, astrocytes express angiotensin II type 1 and 2 receptors. However, their role in astrocytic function has not yet been fully elucidated. We hypothesized that the angiotensin II receptors impact astrocyte function as revealed in an in vitro system mimicking cerebral ischemia. Astrocytes derived from neonatal wistar rats were exposed to telmisartan (angiotensin II type 1 receptor-blocker) or PD123319 (angiotensin II type 2 receptor-blocker) under normal conditions (control) or deprivation from oxygen and glucose. Conditioned medium (CM) of astrocytes was harvested to elucidate astrocyte-mediated indirect effects on microglia and cortical neurons. RESULT: The blockade of angiotensin II type 1 receptor by telmisartan increased the survival of astrocytes during ischemic conditions in vitro without affecting their proliferation rate or disturbing their expression of S100A10, a marker of activation. The inhibition of the angiotensin II type 2 receptor pathway by PD123319 resulted in both increased expression of S100A10 and proliferation rate. The CM of telmisartan-treated astrocytes reduced the expression of pro-inflammatory mediators with simultaneous increase of anti-inflammatory markers in microglia. Increased neuronal activity was observed after treatment of neurons with CM of telmisartan- as well as PD123319-stimulated astrocytes. CONCLUSION: Data show that angiotensin II receptors have functional relevance for astrocytes that differs in healthy and ischemic conditions and effects surrounding microglia and neuronal activity via secretory signals. Above that, this work emphasizes the strong interference of the different cells in the CNS and that targeting astrocytes might serve as a therapeutic strategy to influence the acting of glia-neuronal network in de- and regenerative context.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Angiotensin II Type 2 Receptor Blockers , Astrocytes , Ischemic Stroke , Microglia , Neurons , Rats, Wistar , Receptor, Angiotensin, Type 1 , Receptor, Angiotensin, Type 2 , Telmisartan , Animals , Rats , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 2 Receptor Blockers/pharmacology , Animals, Newborn , Astrocytes/metabolism , Astrocytes/drug effects , Benzimidazoles/pharmacology , Cell Communication/physiology , Cell Communication/drug effects , Cells, Cultured , Imidazoles/pharmacology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Microglia/metabolism , Microglia/drug effects , Neurons/metabolism , Neurons/drug effects , Pyridines/pharmacology , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Telmisartan/pharmacology
5.
Clin Sci (Lond) ; 138(11): 645-662, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38808486

ABSTRACT

Simultaneous inhibition of angiotensin II AT1 and endothelin ETA receptors has emerged as a promising approach for treatment of chronic progressive kidney disease. This therapeutic approach has been advanced by the introduction of sparsentan, the first dual AT1 and ETA receptor antagonist. Sparsentan is a single molecule with high affinity for both receptors. It is US Food and Drug Administration approved for immunoglobulin A nephropathy (IgAN) and is currently being developed as a treatment for rare kidney diseases, such as focal segmental glomerulosclerosis. Clinical studies have demonstrated the efficacy and safety of sparsentan in these conditions. In parallel with clinical development, studies have been conducted to elucidate the mechanisms of action of sparsentan and its position in the context of published evidence characterizing the nephroprotective effects of dual ETA and AT1 receptor inhibition. This review summarizes this evidence, documenting beneficial anti-inflammatory, antifibrotic, and hemodynamic actions of sparsentan in the kidney and protective actions in glomerular endothelial cells, mesangial cells, the tubulointerstitium, and podocytes, thus providing the rationale for the use of sparsentan as therapy for focal segmental glomerulosclerosis and IgAN and suggesting potential benefits in other renal diseases, such as Alport syndrome.


Subject(s)
Kidney , Renal Insufficiency, Chronic , Humans , Animals , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Kidney/drug effects , Kidney/metabolism , Endothelin A Receptor Antagonists/therapeutic use , Endothelin A Receptor Antagonists/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin II Type 1 Receptor Blockers/pharmacology , Disease Models, Animal
6.
Tissue Cell ; 88: 102420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795506

ABSTRACT

Peripheral and central neuropathies frequently complicate worldwide diabetes. Compared to peripheral neuropathy, central neuropathy didn`t gain a major research interest. Angiotensin II is reported to be involved in diabetic neuropathic pain but its role in the central pathological changes in the spinal cord is not clear. Here, we study the role of Losartan; an Angiotensin II receptor 1 (AT1) antagonist in suppression of the diabetes-induced changes in the spinal cord. Three groups of rats were applied; a negative control group, a streptozotocin (STZ) diabetic group, and a group receiving STZ and Losartan. After two months, the pathological alteration in the spinal cord was investigated, and an immunohistochemical study was performed for neuronal, astrocytic, and microglial markers; nuclear protein (NeuN), Glial fibrillary acidic protein (GFAP), and Ionized calcium-binding adaptor molecule 1 (Iba1), respectively, and for an apoptosis marker; caspase-3, and the inflammatory marker; nuclear factor kappa B (NF-kB) signaling, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2); physiological antioxidant system. The results showed that Losartan caused recovery of spinal cord changes, by inhibiting the microglial and astrocytic activation, suppressing neuronal apoptosis and NF-kB expression with activation of Nrf2/HO-1 (P<0.0005). It is suggested, herein, that Losartan can suppress diabetes-induced glial activation, inflammation, neuronal apoptosis, and oxidative stress in the spinal cord; the mechanisms that may underlie the role of AT1 antagonism in suppressing diabetic neuropathic pain.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Diabetes Mellitus, Experimental , Losartan , NF-E2-Related Factor 2 , Spinal Cord , Animals , Spinal Cord/pathology , Spinal Cord/metabolism , Spinal Cord/drug effects , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , NF-E2-Related Factor 2/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Rats , Male , Losartan/pharmacology , Heme Oxygenase-1/metabolism , Diabetic Neuropathies/pathology , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/drug therapy , Signal Transduction/drug effects , Rats, Wistar , Apoptosis/drug effects , NF-kappa B/metabolism , Oxidative Stress/drug effects
7.
CPT Pharmacometrics Syst Pharmacol ; 13(7): 1224-1237, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38745377

ABSTRACT

Telmisartan, a selective inhibitor of angiotensin II receptor type 1 (AT1), demonstrates nonlinear pharmacokinetics (PK) when orally administered in ascending doses to healthy volunteers, but the underlying mechanisms remain unclear. This study presents a physiologically based pharmacokinetic model integrated with target-mediated drug disposition (TMDD-PBPK model) to explore the mechanism of its nonlinear PK. We employed the Cluster-Gauss Newton method for top-down analysis, estimating the in vivo Km,OATP1B3 (Michaelis-Menten constant for telmisartan hepatic uptake via Organic Anion Transporting Polypeptide 1B3) to be 2.0-5.7 nM. This range is significantly lower than the reported in vitro value of 810 nM, obtained in 0.3% human serum albumin (HSA) conditions. Further validation was achieved through in vitro assessment in plated human hepatocytes with 4.5% HSA, showing a Km of 4.5 nM. These results underscore the importance of albumin-mediated uptake effect for the hepatic uptake of telmisartan. Our TMDD-PBPK model, developed through a "middle-out" approach, underwent sensitivity analysis to identify key factors in the nonlinear PK of telmisartan. We found that the nonlinearity in the area under the concentration-time curve (AUC) and/or maximum concentration (Cmax) of telmisartan is sensitive to Km,OATP1B3 across all dosages. Additionally, the dissociation constant (Kd) for telmisartan binding to the AT1 receptor, along with its receptor abundance, notably influences PK at lower doses (below 20 mg). In conclusion, the nonlinear PK of telmisartan appears primarily driven by hepatic uptake saturation across all dose ranges and by AT1-receptor binding saturation, notably at lower doses.


Subject(s)
Hepatocytes , Models, Biological , Solute Carrier Organic Anion Transporter Family Member 1B3 , Telmisartan , Telmisartan/pharmacokinetics , Telmisartan/administration & dosage , Humans , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/antagonists & inhibitors , Hepatocytes/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacokinetics , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Angiotensin II Type 1 Receptor Blockers/pharmacology , Liver/metabolism , Nonlinear Dynamics , Benzimidazoles/pharmacokinetics , Benzimidazoles/administration & dosage , Benzoates/pharmacokinetics , Benzoates/administration & dosage , Healthy Volunteers , Administration, Oral
8.
Eur J Pharmacol ; 977: 176663, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38815786

ABSTRACT

BACKGROUND: We have documented profound release of nitric oxide (NO) and endothelium-derived hyperpolarization factor (EDHF) by angiotensin II (ANGII) receptor 1 (AT1) blocker (ARB) losartan and its unique metabolite EXP3179, a pleiotropic effect that may help rationalize the protective properties of ARBs. Since blood pressure (BP) lowering by ARBs likely require an ANGII-dependent switch from AT1 to ANGII receptor 2 (AT2) signaling, a receptor known to stimulate endothelial NO release, we investigated the contribution of AT1 and AT2 to losartan and EXP3179's endothelial function-activating properties. EXPERIMENTAL APPROACH: Two AT1 ligands were used in an attempt to block the AT1-dependent endothelium-enhancing effects of EXP3179. AT2-null mice were used to evaluate the acute ex vivo and chronic in vivo effects of EXP3179 (20µM) and losartan (0.6 g/l), respectively, on endothelial function, BP and aortic stiffness. KEY RESULTS: Ex vivo blockade of AT1 receptors did not attenuate EXP3179's effects on NO and EDHF-dependent endothelial function activation. We observed significant reductions in PE-induced contractility with EXP3179 in both WT and AT2 knockout (KO) aortic rings. In vivo, a 1-month chronic treatment with losartan did not affect pulse wave velocity (PWV) but decreased PE-induced contraction by 74.9 % in WT (p < 0.0001) and 47.3 % in AT2 KO (p < 0.05). Presence of AT2 was critical to losartan's BP lowering activity. CONCLUSION: In contrast to BP lowering, the endothelial function-enhancing effects of losartan and EXP3179 are mostly independent of the classic ANGII/AT1/AT2 pathway, which sheds light on ARB pleiotropism.


Subject(s)
Blood Pressure , Endothelium, Vascular , Losartan , Mice, Knockout , Receptor, Angiotensin, Type 2 , Animals , Losartan/pharmacology , Blood Pressure/drug effects , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Mice , Receptor, Angiotensin, Type 2/metabolism , Receptor, Angiotensin, Type 2/genetics , Male , Nitric Oxide/metabolism , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics , Imidazoles/pharmacology , Mice, Inbred C57BL , Angiotensin II Type 1 Receptor Blockers/pharmacology , Vascular Stiffness/drug effects , Sulfonamides , Thiophenes
9.
Stem Cell Res Ther ; 15(1): 138, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735991

ABSTRACT

BACKGROUND: Clinical trials have provided evidence that transplants of dopaminergic precursors, which may be replaced by new in vitro stem cell sources, can integrate into the host tissue, and alleviate motor symptoms in Parkinson´s disease (PD). In some patients, deterioration of graft function occurred several months after observing a graft-derived functional improvement. Rejection of peripheral organs was initially related to HLA-specific antibodies. However, the role of non-HLA antibodies is now considered also relevant for rejection. Angiotensin-II type-1 receptor autoantibodies (AT1-AA) act as agonists of the AT1 receptors. AT1-AA are the non-HLA antibodies most widely associated with graft dysfunction or rejection after transplantation of different solid organs and hematopoietic stem cells. However, it is not known about the presence and possible functional effects of AT1-AA in dopaminergic grafts, and the effects of treatment with AT1 receptor blockers (ARBs) such as candesartan on graft survival. METHODS: In a 6-hydroxydopamine PD rat model, we studied the short-term (10 days)- and long-term (3 months) effects of chronic treatment with the ARB candesartan on survival of grafted dopaminergic neurons and microglial graft infiltration, as well as the effects of dopaminergic denervation and grafting on serum and CSF AT1-AA levels. The expression of AT1 receptors in grafted neurons was determined by laser capture microdissection. RESULTS: At the early period post-grafting, the number of grafted dopaminergic neurons that survived was not significantly different between treated and untreated hosts (i.e., control rats and rats treated with candesartan), probably because, just after grafting, other deleterious factors are predominant for dopaminergic cell death, such as mechanical trauma, lack of growth factors/nutrients and ischemia. However, several months post-grafting, we observed a significantly higher number of surviving dopaminergic neurons and a higher density of striatal dopaminergic terminals in the candesartan-treated group. For several months, grafted rats showed blood and cerebrospinal fluid levels of AT1-AA higher than normal controls, and also higher AT1-AA levels than non-grafted parkinsonian rats. CONCLUSIONS: The results suggest the use of ARBs such as candesartan in PD patients, particularly before and after dopaminergic grafts, and the need to monitor AT1-AA levels in PD patients, particularly in those candidates for dopaminergic grafting.


Subject(s)
Autoantibodies , Dopaminergic Neurons , Parkinson Disease , Receptor, Angiotensin, Type 1 , Animals , Rats , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Autoantibodies/immunology , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Disease Models, Animal , Dopaminergic Neurons/metabolism , Oxidopamine/pharmacology , Parkinson Disease/therapy , Parkinson Disease/pathology , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/immunology , Tetrazoles/pharmacology , Tetrazoles/therapeutic use
10.
Microbes Infect ; 26(4): 105333, 2024.
Article in English | MEDLINE | ID: mdl-38570086

ABSTRACT

Cerebral malaria (CM) induced by Plasmodium falciparum is a devastating neurological complication that may lead the patient to coma and death. This study aimed to protect Plasmodium-infected C57BL6 mice from CM by targeting the angiotensin II type 1 (AT1) receptor, which is considered the common connecting link between hypertension and CM. In CM, AT-1 mediates blood-brain barrier (BBB) damage through the overexpression of ß-catenin. The AT-1-inhibiting drugs, such as irbesartan and losartan, were evaluated for the prevention of CM. The effectiveness of these drugs was determined by the down regulation of ß-catenin, TCF, LEF, ICAM-1, and VCAM-1 in the drug-treated groups. The expression levels of VE-cadherin and vinculin, essential for the maintenance of BBB integrity, were found to be restored in the drug-treated groups. The pro-inflammatory cytokine levels were decreased, and the anti-inflammatory cytokine levels increased with the treatment. As a major highlight, the mean survival time of treated mice was found to be increased even in the absence of treatment with an anti-malarial agent. The combination of irbesartan or losartan with the anti-malarial agent α/ß-arteether has contributed to an 80% cure rate, which is higher than the 60% cure rate observed with α/ß-arteether alone treatment.


Subject(s)
Disease Models, Animal , Irbesartan , Malaria, Cerebral , Mice, Inbred C57BL , Animals , Mice , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/parasitology , Blood-Brain Barrier/drug effects , Cytokines/metabolism , Irbesartan/pharmacology , Irbesartan/therapeutic use , Losartan/pharmacology , Losartan/therapeutic use , Malaria, Cerebral/drug therapy , Malaria, Cerebral/parasitology , Receptor, Angiotensin, Type 1/metabolism , Angiotensins/metabolism
11.
Pharm Res ; 41(5): 849-861, 2024 May.
Article in English | MEDLINE | ID: mdl-38485855

ABSTRACT

PURPOSE: Olmesartan medoxomil (olmesartan-MX), an ester-type prodrug of the angiotensin II receptor blocker (ARB) olmesartan, is predominantly anionic at intestinal pH. Human organic anion transporting polypeptide 2B1 (OATP2B1) is expressed in the small intestine and is involved in the absorption of various acidic drugs. This study was designed to test the hypothesis that OATP2B1-mediated uptake contributes to the enhanced intestinal absorption of olmesartan-MX, even though olmesartan itself is not a substrate of OATP2B1. METHODS: Tetracycline-inducible human OATP2B1- and rat Oatp2b1-overexpressing HEK 293 cell lines (hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293, respectively) were established to characterize OATP2B1-mediated uptake. Rat jejunal permeability was measured using Ussing chambers. ARBs were quantified by liquid chromatography-tandem mass spectrometry. RESULTS: Significant olmesartan-MX uptake was observed in hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293 cells, whereas olmesartan uptake was undetectable or much lower than olmesartan-MX uptake, respectively. Furthermore, olmesartan-MX exhibited several-fold higher uptake in Caco-2 cells and greater permeability in rat jejunum compared to olmesartan. Olmesartan-MX uptake in hOATP2B1/T-REx-293 cells and in Caco-2 cells was significantly decreased by OATP2B1 substrates/inhibitors such as 1 mM estrone-3-sulfate, 100 µM rifamycin SV, and 100 µM fluvastatin. Rat Oatp2b1-mediated uptake and rat jejunal permeability of olmesartan-MX were significantly decreased by 50 µM naringin, an OATP2B1 inhibitor. Oral administration of olmesartan-MX with 50 µM naringin to rats significantly reduced the area under the plasma concentration-time curve of olmesartan to 76.9%. CONCLUSION: Olmesartan-MX is a substrate for OATP2B1, and the naringin-sensitive transport system contributes to the improved intestinal absorption of olmesartan-MX compared with its parent drug, olmesartan.


Subject(s)
Imidazoles , Intestinal Absorption , Olmesartan Medoxomil , Organic Anion Transporters , Prodrugs , Tetrazoles , Animals , Humans , Intestinal Absorption/drug effects , Olmesartan Medoxomil/metabolism , Prodrugs/pharmacokinetics , Prodrugs/metabolism , HEK293 Cells , Tetrazoles/pharmacokinetics , Tetrazoles/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/antagonists & inhibitors , Male , Imidazoles/pharmacokinetics , Imidazoles/metabolism , Rats , Rats, Sprague-Dawley , Jejunum/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacokinetics , Angiotensin II Type 1 Receptor Blockers/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Permeability/drug effects , Caco-2 Cells
12.
Eur J Neurosci ; 59(10): 2450-2464, 2024 May.
Article in English | MEDLINE | ID: mdl-38480476

ABSTRACT

Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1-R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1-R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1-R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1-R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1-R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1-R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1-R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1-R blockade altered the performance of social interaction. Our results highlight the AT1-R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1-R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1-R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.


Subject(s)
Amphetamine , Angiotensin II Type 1 Receptor Blockers , Angiotensin II , Benzimidazoles , Biphenyl Compounds , Corpus Striatum , Dopamine , Animals , Amphetamine/pharmacology , Male , Dopamine/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Angiotensin II/pharmacology , Biphenyl Compounds/pharmacology , Benzimidazoles/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Rats, Wistar , Rats , Receptor, Angiotensin, Type 1/metabolism , Tetrazoles/pharmacology , Central Nervous System Stimulants/pharmacology , Social Interaction/drug effects , Motor Activity/drug effects , Proto-Oncogene Proteins c-fos/metabolism
13.
Cardiovasc Res ; 120(7): 769-781, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38501595

ABSTRACT

AIMS: Prevention of human hypertension is an important challenge and has been achieved in experimental models. Brief treatment with renin-angiotensin system (RAS) inhibitors permanently reduces the genetic hypertension of the spontaneously hypertensive rat (SHR). The kidney is involved in this fascinating phenomenon, but relevant changes in gene expression are unknown. METHODS AND RESULTS: In SHR, we studied the effect of treatment between 10 and 14 weeks of age with the angiotensin receptor blocker, losartan, or the angiotensin-converting enzyme inhibitor, perindopril [with controls for non-specific effects of lowering blood pressure (BP)], on differential RNA expression, DNA methylation, and renin immunolabelling in the kidney at 20 weeks of age. RNA sequencing revealed a six-fold increase in renin gene (Ren) expression during losartan treatment (P < 0.0001). Six weeks after losartan, arterial pressure remained lower (P = 0.006), yet kidney Ren showed reduced expression by 23% after losartan (P = 0.03) and by 43% after perindopril (P = 1.4 × 10-6) associated with increased DNA methylation (P = 0.04). Immunolabelling confirmed reduced cortical renin after earlier RAS blockade (P = 0.002). RNA sequencing identified differential expression of mRNAs, miRNAs, and lncRNAs with evidence of networking and co-regulation. These included 13 candidate genes (Grhl1, Ammecr1l, Hs6st1, Nfil3, Fam221a, Lmo4, Adamts1, Cish, Hif3a, Bcl6, Rad54l2, Adap1, Dok4), the miRNA miR-145-3p, and the lncRNA AC115371. Gene ontogeny analyses revealed that these networks were enriched with genes relevant to BP, RAS, and the kidneys. CONCLUSION: Early RAS inhibition in SHR resets genetic pathways and networks resulting in a legacy of reduced Ren expression and BP persisting for a minimum of 6 weeks.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Angiotensin-Converting Enzyme Inhibitors , Antihypertensive Agents , DNA Methylation , Disease Models, Animal , Gene Regulatory Networks , Hypertension , Kidney , Losartan , Perindopril , Rats, Inbred SHR , Renin-Angiotensin System , Renin , Animals , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/genetics , Kidney/metabolism , Kidney/drug effects , Losartan/pharmacology , Hypertension/physiopathology , Hypertension/genetics , Hypertension/drug therapy , Hypertension/metabolism , DNA Methylation/drug effects , Male , Antihypertensive Agents/pharmacology , Renin/genetics , Renin/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Perindopril/pharmacology , Time Factors , Epigenesis, Genetic/drug effects , Gene Expression Regulation , Arterial Pressure/drug effects , Transcriptome , Rats , Blood Pressure/drug effects , Blood Pressure/genetics
14.
Biol Psychiatry ; 96(4): 247-255, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38309320

ABSTRACT

BACKGROUND: Angiotensin receptor blockade has been linked to aspects of aversive learning and memory formation and to the prevention of posttraumatic stress disorder symptom development. METHODS: We investigated the influence of the angiotensin receptor blocker losartan on aversive Pavlovian conditioning using a probabilistic learning paradigm. In a double-blind, randomized, placebo-controlled design, we tested 45 (18 female) healthy volunteers during a baseline session, after application of losartan or placebo (drug session), and during a follow-up session. During each session, participants engaged in a task in which they had to predict the probability of an electrical stimulation on every trial while the true shock contingencies switched repeatedly between phases of high and low shock threat. Computational reinforcement learning models were used to investigate learning dynamics. RESULTS: Acute administration of losartan significantly reduced participants' adjustment during both low-to-high and high-to-low threat changes. This was driven by reduced aversive learning rates in the losartan group during the drug session compared with baseline. The 50-mg drug dose did not induce reduction of blood pressure or change in reaction times, ruling out a general reduction in attention and engagement. Decreased adjustment of aversive expectations was maintained at a follow-up session 24 hours later. CONCLUSIONS: This study shows that losartan acutely reduces Pavlovian learning in aversive environments, thereby highlighting a potential role of the renin-angiotensin system in anxiety development.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Conditioning, Classical , Losartan , Losartan/pharmacology , Losartan/administration & dosage , Humans , Male , Conditioning, Classical/drug effects , Female , Double-Blind Method , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Adult , Young Adult , Avoidance Learning/drug effects , Blood Pressure/drug effects
15.
Proc Natl Acad Sci U S A ; 121(8): e2306936121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38349873

ABSTRACT

Accumulating evidence suggests that the brain renin angiotensin system (RAS) plays a pivotal role in the regulation of cognition and behavior as well as in the neuropathology of neurological and mental disorders. The angiotensin II type 1 receptor (AT1R) mediates most functional and neuropathology-relevant actions associated with the central RAS. However, an overarching comprehension to guide translation and utilize the therapeutic potential of the central RAS in humans is currently lacking. We conducted a comprehensive characterization of the RAS using an innovative combination of transcriptomic gene expression mapping, image-based behavioral decoding, and pre-registered randomized controlled discovery-replication pharmacological resting-state functional magnetic resonance imaging (fMRI) trials (N = 132) with a selective AT1R antagonist. The AT1R exhibited a particular dense expression in a subcortical network encompassing the thalamus, striatum, and amygdalo-hippocampal formation. Behavioral decoding of the AT1R gene expression brain map showed an association with memory, stress, reward, and motivational processes. Transient pharmacological blockade of the AT1R further decreased neural activity in subcortical systems characterized by a high AT1R expression, while increasing functional connectivity in the cortico-basal ganglia-thalamo-cortical circuitry. Effects of AT1R blockade on the network level were specifically associated with the transcriptomic signatures of the dopaminergic, opioid, acetylcholine, and corticotropin-releasing hormone signaling systems. The robustness of the results was supported in an independent pharmacological fMRI trial. These findings present a biologically informed comprehensive characterization of the central AT1R pathways and their functional relevance on the neural and behavioral level in humans.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Renin-Angiotensin System , Humans , Renin-Angiotensin System/genetics , Angiotensin II Type 1 Receptor Blockers/pharmacology , Signal Transduction , Blood Pressure , Gene Expression Profiling , Receptor, Angiotensin, Type 1/genetics , Angiotensin II/metabolism
16.
Biomed Pharmacother ; 171: 116169, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228033

ABSTRACT

Telmisartan is an antagonist of the angiotensin II receptor used in the management of hypertension (alone or in combination with other antihypertensive agents. It belongs to the drug class of angiotensin II receptor blockers (ARBs). Among drugs of this class, telmisartan shows particular pharmacologic properties, including a longer half-life than any other angiotensin II receptor blockers that bring higher and persistent antihypertensive activity. In hypertensive patients, telmisartan has superior efficacy than other antihypertensive drugs (losartan, valsartan, ramipril, atenolol, and perindopril) in controlling blood pressure, especially towards the end of the dosing interval. Telmisartan has a partial PPARγ-agonistic effect whilst does not have the safety concerns of full agonists of PPARγ receptors (thiazolidinediones). Moreover, telmisartan has an agonist activity on PPARα and PPARδ receptors and modulates the adipokine levels. Thus, telmisartan could be considered as a suitable alternative option, with multi-benefit for all components of metabolic syndrome including hypertension, diabetes mellitus, obesity, and hyperlipidemia. This review will highlight the role of telmisartan in metabolic syndrome and the main mechanisms of action of telmisartan are discussed and summarized. Many studies have demonstrated the useful properties of telmisartan in the prevention and improving of metabolic syndrome and this well-tolerated drug can be greatly proposed in the treatment of different components of metabolic syndrome. However, larger and long-duration studies are needed to confirm these findings in long-term observational studies and prospective trials and to determine the optimum dose of telmisartan in metabolic syndrome.


Subject(s)
Hypertension , Metabolic Syndrome , Humans , Telmisartan/pharmacology , Angiotensin Receptor Antagonists/pharmacology , Metabolic Syndrome/drug therapy , PPAR gamma/pharmacology , Prospective Studies , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Benzimidazoles/pharmacology , Hypertension/drug therapy , Antihypertensive Agents/pharmacology , Blood Pressure , Benzoates/pharmacology
17.
Biochem Pharmacol ; 220: 115978, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081369

ABSTRACT

Despite its known importance in the cardiovascular system, the specific role and impact of the angiotensin type 2 receptor (AT2R) in lung physiology and pathophysiology remain largely elusive. In this study, we highlight the distinct and specialized lung-specific roles of AT2R, primarily localized to an alveolar fibroblast subpopulation, in contrast to the angiotensin type 1 receptor (AT1R), which is almost exclusively expressed in lung pericytes. Evidence from our research demonstrates that the disruption of AT2R (AT2R-/y), is associated with a surge in oxidative stress and impaired lung permeability, which were further intensified by Hyperoxic Acute Lung Injury (HALI). With aging, AT2R-/y mice show an increase in oxidative stress, premature enlargement of airspaces, as well as increased mortality when exposed to hyperoxia as compared to age-matched WT mice. Our investigation into Losartan, an AT1R blocker, suggests that its primary HALI lung-protective effects are channeled through AT2R, as its protective benefits are absent in AT2R-/y mice. Importantly, a non-peptide AT2R agonist, Compound 21 (C21), successfully reverses lung oxidative stress and TGFß activation in wild-type (WT) mice exposed to HALI. These findings suggest a possible paradigm shift in the therapeutic approach for lung injury and age-associated pulmonary dysfunction, from targeting AT1R with angiotensin receptor blockers (ARBs) towards boosting the protective function of AT2R.


Subject(s)
Acute Lung Injury , Receptor, Angiotensin, Type 2 , Mice , Animals , Receptor, Angiotensin, Type 2/genetics , Receptor, Angiotensin, Type 2/agonists , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Receptor, Angiotensin, Type 1/genetics , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control
18.
Arch Biochem Biophys ; 751: 109851, 2024 01.
Article in English | MEDLINE | ID: mdl-38065251

ABSTRACT

In diabetes, increased oxidative stress and impaired trace element metabolism play an important role in the pathogenesis of diabetic nephropathy. The objective of this research was to examine the outcomes of blocking the renin-angiotensin system, using either the angiotensin-converting enzyme inhibitor (ACEI), perindopril, or the angiotensin II type 1 (AT1) receptor blocker, irbesartan, on oxidative stress and trace element levels such as Zn, Mg, Cu, and Fe in the kidneys of diabetic rats that had been induced with streptozotocin. Thirty-two Wistar albino male rats were equally divided into four groups. The first group was used as a control. The second group of rats developed diabetes after receiving a single intraperitoneal dose of STZ. The third and fourth groups of rats had STZ-induced diabetes and received daily dosages of irbesartan (15 mg/kg b.w/day) and perindopril (6 mg/kg b.w/day) treatment, respectively. Biochemical analysis of the kidneys showed a distinct increase in oxidative stress, indicated by heightened levels of malondialdehyde (MDA) and decreased superoxide dismutase (SOD) activities, as well as reduced glutathione (GSH) levels in the kidneys of diabetic rats. In the kidneys of diabetic rats, the mean levels of Fe and Cu were found to be significantly higher than those of the control group. Additionally, the mean levels of Zn and Mg were significantly lower in the diabetic rats compared to the control rats. Both perindopril and irbesartan decreased significantly MDA content and increased SOD activities and GSH levels in the kidneys of rats with diabetes. The Zn and Mg concentrations in the kidneys of diabetic rats treated with perindopril and irbesartan were markedly higher than in untreated STZ-diabetic rats, while the Cu and Fe concentrations were significantly lower. The urinary excretion of rats treated with perindopril and irbesartan showed a pronounced increase in Cu levels, along with a significant reduction in Zn and Mg levels. Although diabetic rats demonstrated degenerative morphological alterations in their kidneys, both therapies also improved diabetes-induced histopathological modifications in the kidneys. Finally, the present results suggest that manipulating the levels of Zn, Mg, Cu, and Fe - either through ACE inhibition or by blocking AT1 receptors - could be advantageous in reducing lipid peroxidation and increasing antioxidant concentration in the kidneys of diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Trace Elements , Rats , Animals , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/metabolism , Irbesartan/metabolism , Irbesartan/pharmacology , Irbesartan/therapeutic use , Angiotensin Receptor Antagonists/metabolism , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Perindopril/metabolism , Perindopril/pharmacology , Perindopril/therapeutic use , Streptozocin/metabolism , Streptozocin/pharmacology , Streptozocin/therapeutic use , Rats, Wistar , Diabetes Mellitus, Experimental/metabolism , Trace Elements/metabolism , Trace Elements/pharmacology , Trace Elements/therapeutic use , Kidney/pathology , Diabetic Nephropathies/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin II Type 1 Receptor Blockers/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism
19.
Ter Arkh ; 95(9): 810-817, 2023 Nov 03.
Article in Russian | MEDLINE | ID: mdl-38158926

ABSTRACT

The activity of the renin-angiotensin-aldosterone system is one of the main pathogenetic mechanisms underlying cardiovascular diseases at all stages of the cardiovascular continuum. This article discusses the role of telmisartan and azilsartan as the most powerful sartans in modern cardiology. Azilsartan and especially telmisartan have a significant organoprotection and are superior to other antihypertensive drugs in terms of lowering blood pressure. However, the effect of azilsartan on hard endpoints has not been studied while the efficacy of telmisartan on hard endpoints has been evaluated in plenty clinical trials including 3 large randomized clinical trials with several thousand patients. The article also presents calculations showing the better cost-effectiveness of telmisartan compared to azilsartan.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Hypertension , Humans , Telmisartan/pharmacology , Telmisartan/therapeutic use , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Hypertension/drug therapy , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Blood Pressure
20.
Chem Biodivers ; 20(11): e202301157, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37796134

ABSTRACT

There has been a significant shift in the perception of hypertension as an important contributor to the global disease burden. Approximately 6 % and 8 % of pregnancies are affected by hypertension, which can adversely affect the mother and the fetus. Furthermore, a hypertensive individual is at increased risk of developing kidney disease, arterial hardening, eye damage, and strokes. Using angiotensin receptor blockers (ARBs) is widespread in treating hypertension, heart failure, coronary artery disease, and diabetic nephropathy. Despite this, some ARBs have limited use due to their poor oral bioavailability and water solubility. To tackle this, a variety of nanoparticle (NP)-based systems, such as polymeric NPs (i. e., dendrimers), polymeric micelles, polymer-drug conjugates, lipid NPs, nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid NPs (SLNs), nanostructured lipid carriers (NLCs), carbon-based nanocarriers, inorganic NPs, and nanocrystals, have been recently developed for efficient delivery of losartan, Valsartan (Val), Olmesartan (OLM), Telmisartan (TEL), Candesartan, Eprosartan, Irbesartan, and Azilsartan to target cells. This review article provides a literature-based comparison of the various classes of ARBs, their mechanisms of action, and an overview of the nanoformulations developed for ARB delivery and successfully applied to managing hypertension, diabetic complications, and other conditions.


Subject(s)
Angiotensin Receptor Antagonists , Hypertension , Humans , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin-Converting Enzyme Inhibitors , Tetrazoles/therapeutic use , Hypertension/drug therapy , Nanotechnology , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL