Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.156
Filter
1.
Biol Lett ; 20(7): 20240217, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38955225

ABSTRACT

Whether avian migrants can adapt to their changing world depends on the relative importance of genetic and environmental variation for the timing and direction of migration. In the classic series of field experiments on avian migration, A. C. Perdeck discovered that translocated juveniles failed to reach goal areas, whereas translocated adults performed 'true-goal navigation'. His translocations of > 14 000 common starlings (Sturnus vulgaris) suggested that genetic mechanisms guide juveniles into a population-specific direction, i.e. 'vector navigation'. However, alternative explanations involving social learning after release in juveniles could not be excluded. By adding historical data from translocation sites, data that was unavailable in Perdeck's days, and by integrated analyses including the original data, we could not explain juvenile migrations from possible social information upon release. Despite their highly social behaviour, our findings are consistent with the idea that juvenile starlings follow inherited information and independently reach their winter quarters. Similar to more solitarily migrating songbirds, starlings would require genetic change to adjust the migration route in response to global change.


Subject(s)
Animal Migration , Social Behavior , Starlings , Animals , Starlings/physiology , Starlings/genetics , Seasons
2.
Sci Rep ; 14(1): 15068, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956435

ABSTRACT

Climate change reduces snowpack, advances snowmelt phenology, drives summer warming, alters growing season precipitation regimes, and consequently modifies vegetation phenology in mountain systems. Elevational migrants track spatial variation in seasonal plant growth by moving between ranges at different elevations during spring, so climate-driven vegetation change may disrupt historic benefits of migration. Elevational migrants can furthermore cope with short-term environmental variability by undertaking brief vertical movements to refugia when sudden adverse conditions arise. We uncover drivers of fine-scale vertical movement variation during upland migration in an endangered alpine specialist, Sierra Nevada bighorn sheep (Ovis canadensis sierrae) using a 20-year study of GPS collar data collected from 311 unique individuals. We used integrated step-selection analysis to determine factors that promote vertical movements and drive selection of destinations following vertical movements. Our results reveal that relatively high temperatures consistently drive uphill movements, while precipitation likely drives downhill movements. Furthermore, bighorn select destinations at their peak annual biomass and maximal time since snowmelt. These results indicate that although Sierra Nevada bighorn sheep seek out foraging opportunities related to landscape phenology, they compensate for short-term environmental stressors by undertaking brief up- and downslope vertical movements. Migrants may therefore be impacted by future warming and increased storm frequency or intensity, with shifts in annual migration timing, and fine-scale vertical movement responses to environmental variability.


Subject(s)
Animal Migration , Climate Change , Seasons , Animals , Animal Migration/physiology , Sheep, Bighorn/physiology , Ecosystem , Sheep/physiology
3.
Sci Rep ; 14(1): 14857, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937635

ABSTRACT

Social information is predicted to enhance the quality of animals' migratory decisions in dynamic ecosystems, but the relative benefits of social information in the long-range movements of marine megafauna are unknown. In particular, whether and how migrants use nonlocal information gained through social communication at the large spatial scale of oceanic ecosystems remains unclear. Here we test hypotheses about the cues underlying timing of blue whales' breeding migration in the Northeast Pacific via individual-based models parameterized by empirical behavioral data. Comparing emergent patterns from individual-based models to individual and population-level empirical metrics of migration timing, we find that individual whales likely rely on both personal and social sources of information about forage availability in deciding when to depart from their vast and dynamic foraging habitat and initiate breeding migration. Empirical patterns of migratory phenology can only be reproduced by models in which individuals use long-distance social information about conspecifics' behavioral state, which is known to be encoded in the patterning of their widely propagating songs. Further, social communication improves pre-migration seasonal foraging performance by over 60% relative to asocial movement mechanisms. Our results suggest that long-range communication enhances the perceptual ranges of migrating whales beyond that of any individual, resulting in increased foraging performance and more collective migration timing. These findings indicate the value of nonlocal social information in an oceanic migrant and suggest the importance of long-distance acoustic communication in the collective migration of wide-ranging marine megafauna.


Subject(s)
Animal Migration , Animals , Animal Migration/physiology , Ecosystem , Whales/physiology , Animal Communication , Seasons , Social Behavior
4.
PeerJ ; 12: e17560, 2024.
Article in English | MEDLINE | ID: mdl-38912045

ABSTRACT

Determining the genetic diversity and source rookeries of sea turtles collected from feeding grounds can facilitate effective conservation initiatives. To ascertain the genetic composition and source rookery, we examined a partial sequence of the mitochondrial control region (CR, 796 bp) of 40 green turtles (Chelonia mydas) collected from feeding grounds around the Korean Peninsula between 2014 and 2022. We conducted genetic and mixed-stock analyses (MSA) and identified 10 CR haplotypes previously reported in Japanese populations. In the haplotype network, six, three, and one haplotype(s) grouped with the Japan, Indo-Pacific, and Central South Pacific clades, respectively. The primary rookeries of the green turtles were two distantly remote sites, Ogasawara (OGA) and Central Ryukyu Island (CRI), approximately 1,300 km apart from each other. Comparing three parameters (season, maturity, and specific feeding ground), we noted that OGA was mainly associated with summer and the Jeju Sea, whereas CRI was with fall and the East (Japan) Sea ground. The maturity did not show a distinct pattern. Our results indicate that green turtles in the feeding grounds around the Korean Peninsula originate mainly from the Japan MU and have genetic origins in the Japan, Indo-Pacific, and Central South Pacific clades. Our results provide crucial insights into rookeries and MUs, which are the focus of conservation efforts of the Republic of Korea and potential parties to collaborate for green turtle conservation.


Subject(s)
Haplotypes , Turtles , Animals , Turtles/genetics , Republic of Korea , Genetic Variation/genetics , DNA, Mitochondrial/genetics , Animal Migration , Feeding Behavior , Seasons , Conservation of Natural Resources
5.
DNA Res ; 31(4)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38847751

ABSTRACT

We present a complete, chromosome-scale reference genome for the long-distance migratory bat Pipistrellus nathusii. The genome encompasses both haplotypic sets of autosomes and the separation of both sex chromosomes by utilizing highly accurate long-reads and preserving long-range phasing information through the use of three-dimensional chromatin conformation capture sequencing (Hi-C). This genome, accompanied by a comprehensive protein-coding sequence annotation, provides a valuable genomic resource for future investigations into the genomic bases of long-distance migratory flight in bats as well as uncovering the genetic architecture, population structure and evolutionary history of Pipistrellus nathusii. The reference-quality genome presented here gives a fundamental resource to further our understanding of bat genetics and evolution, adding to the growing number of high-quality genetic resources in this field. Here, we demonstrate its use in the phylogenetic reconstruction of the order Chiroptera, and in particular, we present the resources to allow detailed investigations into the genetic drivers and adaptations related to long-distance migration.


Subject(s)
Animal Migration , Chiroptera , Genome , Haplotypes , Phylogeny , Chiroptera/genetics , Animals
6.
Nat Commun ; 15(1): 5205, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918383

ABSTRACT

The extent of aerial flows of insects circulating around the planet and their impact on ecosystems and biogeography remain enigmatic because of methodological challenges. Here we report a transatlantic crossing by Vanessa cardui butterflies spanning at least 4200 km, from West Africa to South America (French Guiana) and lasting between 5 and 8 days. Even more, we infer a likely natal origin for these individuals in Western Europe, and the journey Europe-Africa-South America could expand to 7000 km or more. This discovery was possible through an integrative approach, including coastal field surveys, wind trajectory modelling, genomics, pollen metabarcoding, ecological niche modelling, and multi-isotope geolocation of natal origins. The overall journey, which was energetically feasible only if assisted by winds, is among the longest documented for individual insects, and potentially the first verified transatlantic crossing. Our findings suggest that we may be underestimating transoceanic dispersal in insects and highlight the importance of aerial highways connecting continents by trade winds.


Subject(s)
Butterflies , Flight, Animal , Animals , Butterflies/physiology , Flight, Animal/physiology , Wind , Ecosystem , South America , Europe , Animal Migration/physiology , Pollen , Africa , Animal Distribution
7.
Parasitol Res ; 123(6): 252, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922536

ABSTRACT

Avian haemosporidians of the genera Plasmodium and Haemoproteus are a group of widely distributed blood parasites that can negatively affect the fitness of their hosts. Colombia contains the greatest diversity of birds on the planet, but knowledge about the associations between haemosporidian and its avifauna is scarce and fragmented. We collected blood samples from 255 birds (203 residents and 52 neotropical migrants) belonging to 27 families and 108 species. The study was conducted in six localities in the inter-Andean valleys of the Cauca and Magdalena rivers. Parasites of the genera Plasmodium and Haemoproteus were identified in the samples by morphological and molecular analysis of a fragment of the mitochondrial gene cyt b. Among the samples, 9.3% (n = 24) were positive for Plasmodium or Haemoproteus. Co-infection with Plasmodium and Haemoproteus was found in Red-eyed Vireo. Seventeen haemosporidian lineages were identified, five of which were reported for the first time in resident birds (Common Ground Dove, Checker-throated Stipplethroat, Tropical Kingbird, Pale-breasted Thrush, and Ruddy-breasted Seedeater) and one in the Summer Tanager (neotropical migrant). The research results confirm the wide diversity of haemosporidian present in tropical lowlands and the possible role of neotropical migratory birds in dissemination on haemosporidian along their migratory routes.


Subject(s)
Bird Diseases , Birds , Haemosporida , Plasmodium , Protozoan Infections, Animal , Animals , Colombia/epidemiology , Haemosporida/classification , Haemosporida/isolation & purification , Haemosporida/genetics , Birds/parasitology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Plasmodium/classification , Plasmodium/isolation & purification , Plasmodium/genetics , Protozoan Infections, Animal/parasitology , Protozoan Infections, Animal/epidemiology , Cytochromes b/genetics , Animal Migration , Phylogeny , Coinfection/parasitology , Coinfection/veterinary , Coinfection/epidemiology
8.
PLoS One ; 19(6): e0295098, 2024.
Article in English | MEDLINE | ID: mdl-38837957

ABSTRACT

Artificial light at night (ALAN) is negatively impacting numerous species of nocturnally active birds. Nocturnal positive phototaxis, the movement towards ALAN, is exhibited by many marine birds and can result in stranding on land. Seabird species facing major population declines may be most at risk. Leach's Storm-Petrels (Hydrobates leucorhous) are small, threatened seabirds with an extensive breeding range in the North Atlantic and North Pacific Oceans. The Atlantic population, which represents approximately 40-48% of the global population, is declining sharply. Nocturnal positive phototaxis is considered to be a key contributing factor. The Leach's Storm-Petrel is the seabird species most often found stranded around ALAN in the North Atlantic, though there is little experimental evidence that reduction of ALAN decreases the occurrence of stranded storm-petrels. During a two-year study at a large, brightly illuminated seafood processing plant adjacent to the Leach's Storm-Petrel's largest colony, we compared the number of birds that stranded when the lights at the plant were on versus significantly reduced. We recorded survival, counted carcasses of adults and juveniles, and released any rescued individuals. Daily morning surveys revealed that reducing ALAN decreased strandings by 57.11% (95% CI: 39.29% - 83.01%) per night and night surveys revealed that reducing ALAN decreased stranding of adult birds by 11.94% (95% CI: 3.47% - 41.13%) per night. The peak stranding period occurred from 25 September to 28 October, and 94.9% of the birds found during this period were fledglings. These results provide evidence to support the implementation of widespread reduction and modification of coastal artificial light as a conservation strategy, especially during avian fledging and migration periods.


Subject(s)
Birds , Lighting , Animals , Birds/physiology , Conservation of Natural Resources/methods , Phototaxis , Light , Animal Migration/physiology , Atlantic Ocean
9.
PLoS One ; 19(6): e0304279, 2024.
Article in English | MEDLINE | ID: mdl-38837968

ABSTRACT

This paper delves into the intricate relationship between changes in Magnetic inclination and declination at specific geographical locations and the navigational decisions of migratory birds. Leveraging a dataset sourced from a prominent bird path tracking web resource, encompassing six distinct bird species' migratory trajectories, latitudes, longitudes, and observation timestamps, we meticulously analyzed the interplay between these avian movements and corresponding alterations in Magnetic inclination and declination. Employing a circular von Mises distribution assumption for the latitude and longitude distributions within each subdivision, we introduced a pioneering circular-circular regression model, accounting for von Mises error, to scrutinize our hypothesis. Our findings, predominantly supported by hypothesis tests conducted through circular-circular regression analysis, underscore the profound influence of Magnetic inclination and declination shifts on the dynamic adjustments observed in bird migration paths. Moreover, our meticulous examination revealed a consistent adherence to von Mises distribution across all bird directions. Notably, we unearthed compelling correlations between specific bird species, such as the Black Crowned Night Heron and Brown Pelican, exhibiting a noteworthy negative correlation with Magnetic inclination and a contrasting positive correlation with Magnetic declination. Similarly, the Pacific loon demonstrated a distinct negative correlation with Magnetic inclination and a positive association with Magnetic declination. Conversely, other avian counterparts showcased positive correlations with both Magnetic declination and inclination, further elucidating the nuanced dynamics between avian navigation and the Earth's magnetic field parameters.


Subject(s)
Animal Migration , Birds , Earth, Planet , Magnetic Fields , Animals , Birds/physiology , Animal Migration/physiology , Spatial Navigation/physiology
10.
J Environ Manage ; 363: 121390, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852410

ABSTRACT

Vertical-slot fishway (VSF) has been used in many water conservancy projects to restore the river connectivity. A high-quality fishway project should facilitate fish to discovering the exit and passing through, avoiding to long stay in the fishway and delay the migration. Current research on fishway engineering has not yielded an expected passing ratio of fish migration, and it is therefore of great significance to further study the assisting effect of VSF in fish migration. To begin with, we preliminarily determined the attractive and repelling colors of grass carps based on their swimming behavior in a static water pool configured with local colors. Combined with the migration route of the grass carp in a VSF pool without local coloring, four local coloring cases were designed. Based on the camera results of the four experimental local coloring cases, a comparative analysis was conducted with the blank control group frame by frame. This was followed by the statistics of the number of successfully migrated grass carps and their total completion time. On that basis, the assisting effect of VSF in fish migration under the four cases was evaluated in terms of the reduction rate of migration route length, the reduction rate of completion time, and the improvement rate of passing ratio. The research outcomes indicated that green and blue act as attractive colors while yellow and red serve as repelling colors for grass carp. Adding colors to the training wall and dividing wall in the VSF pool, the migration route of grass carp was appropriately adjusted, alongside a shortened completion time and an improved passing ratio. Of the four local coloring cases, the recommended case showed a significant effect on migration route, with more concentrated moving trajectories and shortened route length. Typically, the migration route length decreased by 26%, and the frequency of fish long staying at the junction between the training wall and dividing wall was markedly reduced, as well as the frequency of fish swimming along the water flow from upstream to downstream. The completion time was shortened by 26%, and the passing ratio was enhanced by 44%. The approach of combining local coloring with fish behavior and fishway hydraulics in the pool surpassed the method that optimizes the fishway design only from the fishway hydraulics. The improved method greatly shortened the migration route length, reduced the completion time, and significantly improved the passing ratio of fish passage objects in the VSF. The present research mainly focuses on using model experiments to evaluate the local coloring cases. In the future studies, we will configure local colors to the sidewalls of on-site fishways using environmentally friendly paint or colored organic glass panels. With the monitoring results of the completion time and passing ratio of fish passage objects, the recommended case can be further verified and optimized, thereby providing a more reasonable and feasible local coloring case for assisting fish migration in the VSF project.


Subject(s)
Animal Migration , Carps , Animals , Swimming , Color , Rivers , Conservation of Natural Resources
11.
Curr Biol ; 34(12): R564-R565, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889675

ABSTRACT

Painted ladies are well-known migratory butterflies, but confirmation of the details of their swarming flights through Europe has evaded scientists until now. It was their role as pollinators, carrying pollen grains on their flights, that helped unlock the secrets of their migrations.


Subject(s)
Animal Migration , Butterflies , Pollen , Pollination , Animals , Butterflies/physiology , Animal Migration/physiology , Europe , Flight, Animal/physiology
12.
Curr Biol ; 34(12): 2684-2692.e6, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38848713

ABSTRACT

Migratory insects may move in large numbers, even surpassing migratory vertebrates in biomass. Long-distance migratory insects complete annual cycles through multiple generations, with each generation's reproductive success linked to the resources available at different breeding grounds. Climatic anomalies in these grounds are presumed to trigger rapid population outbreaks. Here, we infer the origin and track the multigenerational path of a remarkable outbreak of painted lady (Vanessa cardui) butterflies that took place at an intercontinental scale in Europe, the Middle East, and Africa from March 2019 to November 2019. Using metabarcoding, we identified pollen transported by 264 butterflies captured in 10 countries over 7 months and modeled the distribution of the 398 plants detected. The analysis showed that swarms collected in Eastern Europe in early spring originated in Arabia and the Middle East, coinciding with a positive anomaly in vegetation growth in the region from November 2018 to April 2019. From there, the swarms advanced to Northern Europe during late spring, followed by an early reversal toward southwestern Europe in summer. The pollen-based evidence matched spatiotemporal abundance peaks revealed by citizen science, which also suggested an echo effect of the outbreak in West Africa during September-November. Our results show that population outbreaks in a part of species' migratory ranges may disseminate demographic effects across multiple generations in a wide geographic area. This study represents an unprecedented effort to track a continuous multigenerational insect migration on an intercontinental scale.


Subject(s)
Animal Migration , Butterflies , DNA Barcoding, Taxonomic , Pollen , Animals , Butterflies/physiology , Europe/epidemiology , Middle East/epidemiology , Africa/epidemiology , Seasons
13.
Sci Rep ; 14(1): 13180, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38849378

ABSTRACT

The movement ecology of European seabass, Dicentrarchus labrax, remains poorly understood, especially in the northern ranges of its distribution. To investigate migration patterns of seabass from the southern North Sea, we combined data from different projects from four countries using various tagging techniques. This resulted in 146 recaptures (out of 5598 externally marked seabass), 138 detected animals (out of 162 seabass fitted with an acoustic transmitter) and 76 archived depth and temperature series (out of 323 seabass with an archival tag). Using geolocation modelling, we distinguished different migration strategies, whereby individual fish migrated to the eastern English Channel (15.1%), the western English Channel (28.3%), the Celtic Sea and the norther part of the Bay of Biscay (17.0%), or stayed in the North Sea (39.6%). A high number of seabass exhibited fidelity to the North Sea (90.5% of recaptures, 55.3% for acoustic transmitters and 44.7% of archival tags). Although seabass are generally considered to migrate southwards in winter, a large number of individuals (n = 62) were observed in the southern North Sea, where spawning might potentially occur in a particular deep location along the coast of Norfolk in the UK. Our results highlight the need to consider fine-scaled population structuring in fisheries assessment, and indicate that current seasonal fisheries closures are not aligned with the ecology of seabass in the North Sea.


Subject(s)
Acoustics , Animal Migration , Bass , Telemetry , Animals , North Sea , Animal Migration/physiology , Bass/physiology , Telemetry/methods , Seasons
14.
Proc Biol Sci ; 291(2024): 20232831, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864145

ABSTRACT

In autumn 1950 David and Elizabeth Lack chanced upon a huge migration of insects and birds flying through the Pyrenean Pass of Bujaruelo, from France into Spain, later describing the spectacle as combining both grandeur and novelty. The intervening years have seen many changes to land use and climate, posing the question as to the current status of this migratory phenomenon. In addition, a lack of quantitative data has prevented insights into the ecological impact of this mass insect migration and the factors that may influence it. To address this, we revisited the site in autumn over a 4 year period and systematically monitored abundance and species composition of diurnal insect migrants. We estimate an annual mean of 17.1 million day-flying insect migrants from five orders (Diptera, Hymenoptera, Hemiptera, Lepidoptera and Odonata) moving south, with observations of southward 'mass migration' events associated with warmer temperatures, the presence of a headwind, sunlight, low windspeed and low rainfall. Diptera dominated the migratory assemblage, and annual numbers varied by more than fourfold. Numbers at this single site hint at the likely billions of insects crossing the entire Pyrenean mountain range each year, and we highlight the importance of this route for seasonal insect migrants.


Subject(s)
Animal Migration , Insecta , Animals , Spain , Insecta/physiology , France , Flight, Animal , Seasons
16.
J R Soc Interface ; 21(215): 20240035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835248

ABSTRACT

The Earth's magnetic field can provide reliable directional information, allowing migrating animals to orient themselves using a magnetic compass or estimate their position relative to a target using map-based orientation. Here we show for the first time that young, inexperienced herring (Clupea harengus, Ch) have a magnetic compass when they migrate hundreds of kilometres to their feeding grounds. In birds, such as the European robin (Erithacus rubecula), radical pair-based magnetoreception involving cryptochrome 4 (ErCRY4) was demonstrated; the molecular basis of magnetoreception in fish is still elusive. We show that cry4 expression in the eye of herring is upregulated during the migratory season, but not before, indicating a possible use for migration. The amino acid structure of herring ChCRY4 shows four tryptophans and a flavin adenine dinucleotide-binding site, a prerequisite for a magnetic receptor. Using homology modelling, we successfully reconstructed ChCRY4 of herring, DrCRY4 of zebrafish (Danio rerio) and StCRY4 of brown trout (Salmo trutta) and showed that ChCRY4, DrCRY4 and ErCRY4a, but not StCRY4, exhibit very comparable dynamic behaviour. The electron transfer could take place in ChCRY4 in a similar way to ErCRY4a. The combined behavioural, transcriptomic and simulation experiments provide evidence that CRY4 could act as a magnetoreceptor in Atlantic herring.


Subject(s)
Cryptochromes , Fishes , Animals , Cryptochromes/metabolism , Cryptochromes/chemistry , Fishes/physiology , Animal Migration/physiology , Magnetic Fields , Fish Proteins/metabolism , Fish Proteins/genetics , Fish Proteins/chemistry , Orientation/physiology
17.
Proc Biol Sci ; 291(2024): 20240624, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835274

ABSTRACT

Optimal migration theory prescribes adaptive strategies of energy, time or mortality minimization. To test alternative hypotheses of energy- and time-minimization migration we used multisensory data loggers that record time-resolved flight activity and light for positioning by geolocation in a long-distance migratory shorebird, the little ringed plover, Charadrius dubius. We could reject the hypothesis of energy minimization based on a relationship between stopover duration and subsequent flight time as predicted for a time minimizer. We found seasonally diverging slopes between stopover and flight durations in relation to the progress (time) of migration, which follows a time-minimizing policy if resource gradients along the migration route increase in autumn and decrease in spring. Total flight duration did not differ significantly between autumn and spring migration, although spring migration was 6% shorter. Overall duration of autumn migration was longer than that in spring, mainly owing to a mid-migration stop in most birds, when they likely initiated moult. Overall migration speed was significantly different between autumn and spring. Migratory flights often occurred as runs of two to seven nocturnal flights on adjacent days, which may be countering a time-minimization strategy. Other factors may influence a preference for nocturnal migration, such as avoiding flight in turbulent conditions, heat stress and diurnal predators.


Subject(s)
Animal Migration , Charadriiformes , Flight, Animal , Seasons , Animals , Charadriiformes/physiology , Time Factors , Energy Metabolism
18.
Glob Chang Biol ; 30(6): e17356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853470

ABSTRACT

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.


Subject(s)
Arthropods , Biomass , Seasons , Temperature , Animals , Arctic Regions , Arthropods/physiology , Climate Change , Food Chain , Charadriiformes/physiology , Animal Migration
19.
Sci Rep ; 14(1): 14204, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902276

ABSTRACT

The reaction of birds to the nest parasite, the European cuckoo Cuculus canorus, has been the subject of extensive testing in various aspects. However, while the cuckoo is a long-distance migrant, some of its hosts are sedentary species. In this study, we aimed to investigate whether species, primarily hosts, react to the presence of the cuckoo also in the winter season. This behaviour may involve an attempt to drive the parasite away from locations that will subsequently become their breeding sites. During playback experiments conducted in the winter of 2021/2022 in Poland, we demonstrated that numerous bird species react to the male cuckoo calls in winter. These calls may be perceived as a source of danger, particularly by cuckoo hosts, who responded to this call more frequently than non-hosts and the control species (pigeon). Nonetheless, the birds' reactions were not strong, as they did not approach the source of the call. However, our results are constrained by the limited number of cuckoo host species wintering in Poland. To better evaluate the intensity of bird responses to the male cuckoo's call during the non-breeding season, further studies should be conducted in regions where a greater variety of species, especially those most susceptible to parasitism, overwinter.


Subject(s)
Passeriformes , Seasons , Animals , Male , Passeriformes/physiology , Passeriformes/parasitology , Poland , Vocalization, Animal/physiology , Nesting Behavior/physiology , Animal Migration/physiology
20.
Sci Rep ; 14(1): 14199, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902400

ABSTRACT

The wild to domestic bird interface is an important nexus for emergence and transmission of highly pathogenic avian influenza (HPAI) viruses. Although the recent incursion of HPAI H5N1 Clade 2.3.4.4b into North America calls for emergency response and planning given the unprecedented scale, readily available data-driven models are lacking. Here, we provide high resolution spatial and temporal transmission risk models for the contiguous United States. Considering virus host ecology, we included weekly species-level wild waterfowl (Anatidae) abundance and endemic low pathogenic avian influenza virus prevalence metrics in combination with number of poultry farms per commodity type and relative biosecurity risks at two spatial scales: 3 km and county-level. Spillover risk varied across the annual cycle of waterfowl migration and some locations exhibited persistent risk throughout the year given higher poultry production. Validation using wild bird introduction events identified by phylogenetic analysis from 2022 to 2023 HPAI poultry outbreaks indicate strong model performance. The modular nature of our approach lends itself to building upon updated datasets under evolving conditions, testing hypothetical scenarios, or customizing results with proprietary data. This research demonstrates an adaptive approach for developing models to inform preparedness and response as novel outbreaks occur, viruses evolve, and additional data become available.


Subject(s)
Animals, Wild , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Poultry , Animals , Influenza in Birds/epidemiology , Influenza in Birds/virology , Influenza in Birds/transmission , Animals, Wild/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Disease Outbreaks/veterinary , Poultry/virology , Birds/virology , United States/epidemiology , Phylogeny , Animal Migration
SELECTION OF CITATIONS
SEARCH DETAIL
...