Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.683
Filter
1.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39099298

ABSTRACT

Various zoonotic microorganisms cause reproductive problems such as abortions and stillbirths, leading to economic losses on farms, particularly within livestock. In South Africa, bovine brucellosis is endemic in cattle, and from 2013-2018, outbreaks of Brucella melitensis occurred in sable. Coxiella burnetii, the agent responsible for the zoonotic disease known as Q-fever and/or coxiellosis, also causes reproductive problems and infects multiple domestic animal species worldwide, including humans. However, little is known of this disease in wildlife. With the expansion of the wildlife industry in South Africa, diseases like brucellosis and coxiellosis can significantly impact herd breeding success because of challenges in identifying, managing and treating diseases in wildlife populations. This study investigated samples obtained from aborted sable and roan antelope, initially suspected to be brucellosis, from game farms in South Africa using serology tests and ruminant VetMAX™ polymerase chain reaction (PCR) abortion kit. The presence of C. burnetii was confirmed with PCR in a sable abortion case, while samples from both sable and roan were seropositive for C. burnetii indirect enzyme-linked immunosorbent assay (iELISA). This study represents the initial report of C. burnetii infection in sable and roan antelope in South Africa. Epidemiological investigations are crucial to assess the risk of C. burnetii in sable and roan populations, as well as wildlife and livestock in general, across South Africa. This is important in intensive farming practices, particularly as Q-fever, being a zoonotic disease, poses a particular threat to the health of veterinarians and farm workers as well as domestic animals.Contribution: A report of clinical C. burnetii infection in the wildlife industry contributes towards the limited knowledge of this zoonotic disease in South Africa.


Subject(s)
Antelopes , Coxiella burnetii , Q Fever , Animals , South Africa/epidemiology , Q Fever/veterinary , Q Fever/epidemiology , Coxiella burnetii/isolation & purification , Female , Abortion, Veterinary/microbiology , Abortion, Veterinary/epidemiology , Animals, Wild/microbiology
2.
Sci Rep ; 14(1): 18199, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107422

ABSTRACT

The gut microbiota plays an important role in the immunology, physiology and growth and development of animals. However, currently, there is a lack of available sequencing data on the gut microbiota of Asian badgers. Studying the gut microbiota of Asian badgers could provide fundamental data for enhancing productivity and immunity of badgers' breeding, as well as for the protection of wild animals. In this study, we first characterized the composition and structure of the gut microbiota in the large intestines of wild and captive Asian badgers during summer and winter by sequencing the V3-V4 region of the 16S ribosomal RNA gene. A total of 9 dominant phyla and 12 genera among the bacterial communities of the large intestines exhibited significant differences. Our results showed that Firmicutes and Proteobacteria were the most predominant in both wild and captive badgers, regardless of the season. Romboutsia, Streptococcus and Enterococcus may represent potential sources of zoonoses, warranting further attention and study. Our findings indicated that the diversity and availability of food resources were the most important influencing factors on the gut microbiota of Asian badgers, providing fundamental data for the protection and conservation of wild animals. Variation in the gut microbiota due to season, age and sex in both wild and captive Asian badgers should be considered in future research directions. Furthermore, combined multi-omics studies could provide more information for wild animal conservation, and enhancing our understanding of the molecular mechanism between the microbiota and host.


Subject(s)
Animals, Wild , Gastrointestinal Microbiome , Mustelidae , RNA, Ribosomal, 16S , Seasons , Animals , Mustelidae/microbiology , RNA, Ribosomal, 16S/genetics , Animals, Wild/microbiology , Male , Female , Bacteria/classification , Bacteria/genetics
3.
BMC Vet Res ; 20(1): 300, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971814

ABSTRACT

BACKGROUND: Clostridium perfringens (C. perfringens) is an important zoonotic microorganism that can cause animal and human infections, however information about the prevalence status in wild birds of this pathogenic bacterium is currently limited. RESULT: In this study, 57 strains of C. perfringens were isolated from 328 fecal samples of wild birds. All the isolates were identified as type A and 70.18% of the isolates carried the cpb2 gene. Antimicrobial susceptibility testing showed that and 22.80% of the isolates were classified as multidrug-resistant strains. The MLST analysis of the 57 isolates from wild birds was categorized into 55 different sequence types (STs) and clustered into eight clonal complexes (CCs) with an average of 20.1 alleles and the Simpson Diversity index (Ds) of 0.9812, and revealed a high level of genetic diversity within the C. perfringens populations. Interestingly, the isolates from swan goose were clustered in the same CC while isolates from other bird species were more scattered suggesting that a potential difference in genetic diversity among the C. perfringens populations associated with different bird species. CONCLUSION: C. perfringens exhibits a wide range of host adaptations, varying degrees of antimicrobial resistance, and a high degree of genetic diversity in wild birds. Understanding the prevalence, toxin type, antimicrobial resistance, and genetic diversity of C. perfringens in wildlife populations is essential for developing effective strategies for disease control and management.


Subject(s)
Animals, Wild , Birds , Clostridium Infections , Clostridium perfringens , Drug Resistance, Multiple, Bacterial , Genetic Variation , Clostridium perfringens/genetics , Clostridium perfringens/isolation & purification , Clostridium perfringens/drug effects , Animals , Birds/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Clostridium Infections/veterinary , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , Animals, Wild/microbiology , Feces/microbiology , Multilocus Sequence Typing/veterinary , Anti-Bacterial Agents/pharmacology , Bird Diseases/microbiology , Bird Diseases/epidemiology , Microbial Sensitivity Tests/veterinary
4.
Front Cell Infect Microbiol ; 14: 1409685, 2024.
Article in English | MEDLINE | ID: mdl-38957795

ABSTRACT

Introduction: Wild rodents can serve as reservoirs or carriers of E. bieneusi, thereby enabling parasite transmission to domestic animals and humans. This study aimed to investigate the prevalence of E. bieneusi in wild rodents from the Inner Mongolian Autonomous Region and Liaoning Province of China. Moreover, to evaluate the potential for zoonotic transmission at the genotype level, a genetic analysis of the isolates was performed. Methods: A total of 486 wild rodents were captured from two provinces in China. Polymerase chain reaction (PCR) was performed to amplify the vertebrate cytochrome b (cytb) gene in the fecal DNA of the rodents to detect their species. The genotype of E. bieneusi was determined via PCR amplification of the internal transcribed spacer (ITS) region of rDNA. The examination of genetic characteristics and zoonotic potential requires the application of similarity and phylogenetic analysis. Results: The infection rates of E. bieneusi in the four identified rodent species were 5.2% for Apodemus agrarius (n = 89), 4.5% for Cricetulus barabensis (n = 96), 11.3% for Mus musculus (n = 106), and 38.5% for Rattus norvegicus (n = 195). Infection was detected at an average rate of 17.4% among 486 rodents. Of the 11 identified genotypes, nine were known: SHR1 (detected in 32 samples), D (30 samples), EbpA (9 samples), PigEbITS7 (8 samples), HNR-IV (6 samples), Type IV (5 samples), HNR-VII (2 samples), HNH7 (1 sample), and HNPL-V (1 sample). Two novel genotypes were also discovered, NMR-I and NMR-II, each comprising one sample. The genotypes were classified into group 1 and group 13 via phylogenetic analysis. Discussion: Based on the initial report, E. bieneusi is highly prevalent and genetically diverse in wild rodents residing in the respective province and region. This indicates that these animals are crucial for the dissemination of E. bieneusi. Zoonotic E. bieneusi-carrying animals present a significant hazard to local inhabitants. Therefore, it is necessary to increase awareness regarding the dangers presented by these rodents and reduce their population to prevent environmental contamination.


Subject(s)
Animals, Wild , Enterocytozoon , Feces , Genotype , Host Specificity , Microsporidiosis , Phylogeny , Rodentia , Zoonoses , Animals , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , China/epidemiology , Zoonoses/microbiology , Zoonoses/transmission , Microsporidiosis/epidemiology , Microsporidiosis/veterinary , Microsporidiosis/microbiology , Rodentia/microbiology , Feces/microbiology , Animals, Wild/microbiology , Prevalence , Cytochromes b/genetics , Disease Reservoirs/microbiology , Mice , DNA, Ribosomal Spacer/genetics , Humans , Rodent Diseases/microbiology , Rodent Diseases/epidemiology , Polymerase Chain Reaction , DNA, Fungal/genetics , Rats
5.
Vet Med Sci ; 10(4): e1530, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979670

ABSTRACT

AIM: This study aimed to summarize the frequency and the antimicrobial susceptibility profiles of the Salmonella serotypes identified from the specimens of companion animals, livestock, avian, wildlife and exotic species within Atlantic Canada. MATERIALS AND METHODS: The retrospective electronic laboratory data of microbiological analyses of a selected subset of samples from 03 January 2012 to 29 December 2021 submitted from various animal species were retrieved. The frequency of Salmonella serotypes identified, and their antimicrobial susceptibility results obtained using the disk diffusion or broth method were analysed. The test results were interpreted according to the Clinical and Laboratory Standards Institute standard. The Salmonella serotypes were identified by slide agglutination (Kauffman-White-Le-Minor Scheme) and/or the Whole Genome Sequencing for the Salmonella in silico Serovar Typing Resource-based identification. RESULTS: Of the cases included in this study, 4.6% (n = 154) had at least one Salmonella isolate, corresponding to 55 different serovars. Salmonella isolation was highest from exotic animal species (n = 40, 1.20%), followed by porcine (n = 26, 0.78%), and canine (n = 23, 0.69%). Salmonella subsp. enterica serovar Typhimurium was predominant among exotic mammals, porcine and caprine samples, whereas S. Enteritidis was mostly identified in bovine and canine samples. S. Typhimurium of porcine origin was frequently resistant (>70.0%) to ampicillin. In contrast, S. Typhimurium isolates from porcine and caprine samples were susceptible (>70.0%) to florfenicol. S. Oranienburg from equine samples was susceptible to chloramphenicol, but frequently resistant (>90.0%) to azithromycin. In avian samples, S. Copenhagen was susceptible (>90.0%) to florfenicol, whereas Muenchen was frequently resistant (>90.0%) to florfenicol. S. subsp. diarizonae serovar IIIb:61:k:1,5 of ovine origin was resistant (50.0% isolates) to sulfadimethoxine. No significant changes were observed in the antibiotic resistance profiles across the study years. CONCLUSIONS: This report provides data for surveillance studies, distribution of Salmonella serotypes and their antimicrobial resistance among veterinary specimens of Atlantic Canada.


Subject(s)
Salmonella Infections, Animal , Salmonella , Serogroup , Animals , Retrospective Studies , Salmonella/drug effects , Salmonella/isolation & purification , Salmonella/genetics , Salmonella/classification , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology , Animals, Wild/microbiology , Canada/epidemiology , Livestock/microbiology , Anti-Bacterial Agents/pharmacology , Pets/microbiology , Birds/microbiology , Microbial Sensitivity Tests/veterinary
6.
Acta Vet Scand ; 66(1): 32, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010071

ABSTRACT

BACKGROUND: European hedgehogs (Erinaceus europaeus) are widely distributed across Europe. They may play an important role by spreading zoonotic bacteria in the environment and to humans and animals. The aim of our work was to study the prevalence and characteristics of the most important foodborne bacterial pathogens in wild hedgehogs. RESULTS: Faecal samples from 148 hospitalised wild hedgehogs originating from the Helsinki region in southern Finland were studied. Foodborne pathogens were detected in 60% of the hedgehogs by PCR. Listeria (26%) and STEC (26%) were the most common foodborne pathogens. Salmonella, Yersinia, and Campylobacter were detected in 18%, 16%, and 7% of hedgehogs, respectively. Salmonella and Yersinia were highly susceptible to the tested antimicrobials. Salmonella Enteritidis and Listeria monocytogenes 2a were the most common types found in hedgehogs. All S. Enteritidis belonged to one sequence type (ST11), forming four clusters of closely related isolates. L. monocytogenes was genetically more diverse than Salmonella, belonging to 11 STs. C. jejuni ST45 and ST677, Y. pseudotuberculosis O:1 of ST9 and ST42, and Y. enterocolitica O:9 of ST139 were also found. CONCLUSIONS: Our study shows that wild European hedgehogs should be considered an important source of foodborne pathogens, and appropriate hygiene measures after any contact with hedgehogs and strict biosecurity around farms are therefore important.


Subject(s)
Hedgehogs , Hedgehogs/microbiology , Animals , Finland/epidemiology , Prevalence , Feces/microbiology , Animals, Wild/microbiology , Foodborne Diseases/microbiology , Foodborne Diseases/epidemiology , Foodborne Diseases/veterinary , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics
7.
PLoS Negl Trop Dis ; 18(7): e0012306, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976750

ABSTRACT

BACKGROUND: Rodents are recognized as major reservoirs of numerous zoonotic pathogens and are involved in the transmission and maintenance of infectious diseases. Furthermore, despite their importance, diseases transmitted by rodents have been neglected. To date, there have been limited epidemiological studies on rodents, and information regarding their involvement in infectious diseases in the Republic of Korea (ROK) is still scarce. METHODOLOGY/PRINCIPAL FINDINGS: We investigated rodent-borne pathogens using nested PCR/RT-PCR from 156 rodents including 151 Apodemus agrarius and 5 Rattus norvegicus from 27 regions in eight provinces across the ROK between March 2019 and November 2020. Spleen, kidney, and blood samples were used to detect Anaplasma phagocytophilum, Bartonella spp., Borrelia burgdorferi sensu lato group, Coxiella burnetii, Leptospira interrogans, and severe fever with thrombocytopenia syndrome virus (SFTSV). Of the 156 rodents, 73 (46.8%) were infected with Bartonella spp., 25 (16.0%) with C. burnetii, 24 (15.4%) with L. interrogans, 21 (13.5%) with A. phagocytophilum, 9 (5.8%) with SFTSV, and 5 (3.2%) with Borrelia afzelii. Co-infections with two and three pathogens were detected in 33 (21.1%) and 11 rodents (7.1%), respectively. A. phagocytophilum was detected in all regions, showing a widespread occurrence in the ROK. The infection rates of Bartonella spp. were 83.3% for B. grahamii and 16.7% for B. taylorii. CONCLUSIONS/SIGNIFICANCE: To the best of our knowledge, this is the first report of C. burnetii and SFTSV infections in rodents in the ROK. This study also provides the first description of various rodent-borne pathogens through an extensive epidemiological survey in the ROK. These results suggest that rodents harbor various pathogens that pose a potential threat to public health in the ROK. Our findings provide useful information on the occurrence and distribution of zoonotic pathogens disseminated among rodents and emphasize the urgent need for rapid diagnosis, prevention, and control strategies for these zoonotic diseases.


Subject(s)
Anaplasma phagocytophilum , Bartonella , Coxiella burnetii , Zoonoses , Animals , Republic of Korea/epidemiology , Zoonoses/epidemiology , Zoonoses/microbiology , Rats , Coxiella burnetii/isolation & purification , Coxiella burnetii/genetics , Bartonella/isolation & purification , Bartonella/genetics , Anaplasma phagocytophilum/isolation & purification , Anaplasma phagocytophilum/genetics , Rodentia/microbiology , Murinae/microbiology , Animals, Wild/microbiology , Animals, Wild/virology , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Rodent Diseases/virology , Phlebovirus/genetics , Phlebovirus/isolation & purification , Disease Reservoirs/microbiology , Leptospira interrogans/isolation & purification , Leptospira interrogans/genetics
8.
Parasite ; 31: 37, 2024.
Article in English | MEDLINE | ID: mdl-38963405

ABSTRACT

Enterocytozoon bieneusi is an obligate intracellular microsporidian parasite with a worldwide distribution. As a zoonotic pathogen, E. bieneusi can infect a wide range of wildlife hosts through the fecal-oral route. Although the feces of flying squirrels (Trogopterus xanthipes) are considered a traditional Chinese medicine (as "faeces trogopterori"), no literature is available on E. bieneusi infection in flying squirrels to date. In this study, a total of 340 fresh flying squirrel fecal specimens from two captive populations were collected in Pingdingshan city, China, to detect the prevalence of E. bieneusi and assess their zoonotic potential. By nested PCR amplification of the ITS gene, six specimens tested positive, with positive samples from each farm, with an overall low infection rate of 1.8%. The ITS sequences revealed three genotypes, including known genotype D and two novel genotypes, HNFS01 and HNFS02. Genotype HNFS01 was the most prevalent (4/6, 66.7%). Phylogenetic analysis showed that all genotypes clustered into zoonotic Group 1, with the novel genotypes clustering into different subgroups. To our knowledge, this is the first report of E. bieneusi infection in flying squirrels, suggesting that flying squirrels could act as a potential reservoir and zoonotic threat for E. bieneusi transmission to humans in China.


Title: Occurrence et génotypage d'Enterocytozoon bieneusi chez les écureuils volants (Trogopterus xanthipes) de Chine. Abstract: Enterocytozoon bieneusi est un parasite microsporidien intracellulaire obligatoire présent dans le monde entier. En tant qu'agent pathogène zoonotique, E. bieneusi peut infecter un large éventail d'hôtes sauvages par la voie fécale-orale. Bien que les excréments d'écureuils volants (Trogopterus xanthipes) soient considérés comme un ingrédient de médecine traditionnelle chinoise (comme « faeces trogopterori ¼), aucune littérature n'est disponible à ce jour sur l'infection par E. bieneusi chez les écureuils volants. Dans cette étude, un total de 340 spécimens fécaux frais d'écureuils volants provenant de deux populations captives ont été collectés dans la ville de Pingdingshan, en Chine, pour détecter la prévalence d'E. bieneusi et évaluer leur potentiel zoonotique. Par amplification PCR nichée du gène ITS, six échantillons se sont révélés positifs, avec des échantillons positifs dans chaque ferme, et un taux d'infection global faible, à 1,8 %. Les séquences ITS ont révélé trois génotypes, dont le génotype D connu et deux nouveaux génotypes, HNFS01 et HNFS02. Le génotype HNFS01 était le plus répandu (4/6, 66,7 %). L'analyse phylogénétique a montré que tous les génotypes se regroupaient dans le groupe zoonotique 1, les nouveaux génotypes se regroupant en différents sous-groupes. À notre connaissance, il s'agit du premier rapport d'infection par E. bieneusi chez des écureuils volants, ce qui suggère que les écureuils volants pourraient agir comme un réservoir potentiel et une menace zoonotique pour la transmission d'E. bieneusi aux humains en Chine.


Subject(s)
Enterocytozoon , Feces , Genotype , Microsporidiosis , Phylogeny , Sciuridae , Animals , Sciuridae/microbiology , Sciuridae/parasitology , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , China/epidemiology , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Feces/microbiology , Feces/parasitology , Prevalence , Zoonoses , Polymerase Chain Reaction/veterinary , DNA, Fungal/genetics , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Rodent Diseases/parasitology , DNA, Ribosomal Spacer/genetics , Animals, Wild/microbiology
9.
BMC Res Notes ; 17(1): 184, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956715

ABSTRACT

OBJECTIVE: Bartonella are emerging bacterial zoonotic pathogens. Utilization of clotted blood samples for surveillance of these bacteria in wildlife has begun to supersede the use of tissues; however, the efficacy of these samples has not been fully investigated. Our objective was to compare the efficacy of spleen and blood samples for DNA extraction and direct detection of Bartonella spp. via qPCR. In addition, we present a protocol for improved DNA extraction from clotted, pelleted (i.e., centrifuged) blood samples obtained from wild small mammals. RESULTS: DNA concentrations from kit-extracted blood clot samples were low and A260/A280 absorbance ratios indicated high impurity. Kit-based DNA extraction of spleen samples was efficient and produced ample DNA concentrations of good quality. We developed an in-house extraction method for the blood clots which resulted in apposite DNA quality when compared to spleen samples extracted via MagMAX DNA Ultra 2.0 kit. We detected Bartonella in 9/30 (30.0%) kit-extracted spleen DNA samples and 11/30 (36.7%) in-house-extracted blood clot samples using PCR. Our results suggest that kit-based methods may be less suitable for DNA extraction from blood clots, and that blood clot samples may be superior to tissues for Bartonella detection.


Subject(s)
Animals, Wild , Bartonella Infections , Bartonella , DNA, Bacterial , Spleen , Animals , Bartonella/isolation & purification , Bartonella/genetics , DNA, Bacterial/blood , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Spleen/microbiology , Bartonella Infections/diagnosis , Bartonella Infections/blood , Bartonella Infections/microbiology , Animals, Wild/microbiology , Real-Time Polymerase Chain Reaction/methods
10.
Nat Commun ; 15(1): 6012, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039075

ABSTRACT

Gut microbiomes are widely hypothesised to influence host fitness and have been experimentally shown to affect host health and phenotypes under laboratory conditions. However, the extent to which they do so in free-living animal populations and the proximate mechanisms involved remain open questions. In this study, using long-term, individual-based life history and shallow shotgun metagenomic sequencing data (2394 fecal samples from 794 individuals collected between 2013-2019), we quantify relationships between gut microbiome variation and survival in a feral population of horses under natural food limitation (Sable Island, Canada), and test metagenome-derived predictions using short-chain fatty acid data. We report detailed evidence that variation in the gut microbiome is associated with a host fitness proxy in nature and outline hypotheses of pathogenesis and methanogenesis as key causal mechanisms which may underlie such patterns in feral horses, and perhaps, wild herbivores more generally.


Subject(s)
Feces , Gastrointestinal Microbiome , Methane , Animals , Horses/microbiology , Gastrointestinal Microbiome/genetics , Feces/microbiology , Methane/metabolism , Animals, Wild/microbiology , Metagenome , Fatty Acids, Volatile/metabolism , Metagenomics/methods , Male , Female , Canada
11.
PeerJ ; 12: e17710, 2024.
Article in English | MEDLINE | ID: mdl-39006014

ABSTRACT

As the most widely distributed scavenger birds on the Qinghai-Tibetan Plateau, Himalayan vultures (Gyps himalayensis) feed on the carcasses of various wild and domestic animals, facing the dual selection pressure of pathogens and antibiotics and are suitable biological sentinel species for monitoring antibiotic resistance genes (ARGs). This study used metagenomic sequencing to comparatively investigate the ARGs and mobile genetic elements (MGEs) of wild and captive Himalayan vultures. Overall, the resistome of Himalayan vultures contained 414 ARG subtypes resistant to 20 ARG types, with abundances ranging from 0.01 to 1,493.60 ppm. The most abundant resistance type was beta-lactam (175 subtypes), followed by multidrug resistance genes with 68 subtypes. Decreases in the abundance of macrolide-lincosamide-streptogramin (MLS) resistance genes were observed in the wild group compared with the zoo group. A total of 75 genera (five phyla) of bacteria were predicted to be the hosts of ARGs in Himalayan vultures, and the clinical (102 ARGs) and high-risk ARGs (35 Rank I and 56 Rank II ARGs) were also analyzed. Among these ARGs, twenty-two clinical ARGs, nine Rank I ARG subtypes, sixteen Rank II ARG subtypes were found to differ significantly between the two groups. Five types of MGEs (128 subtypes) were found in Himalayan vultures. Plasmids (62 subtypes) and transposases (44 subtypes) were found to be the main MGE types. Efflux pump and antibiotic deactivation were the main resistance mechanisms of ARGs in Himalayan vultures. Decreases in the abundance of cellular protection were identified in wild Himalayan vultures compared with the captive Himalayan vultures. Procrustes analysis and the co-occurrence networks analysis revealed different patterns of correlations among gut microbes, ARGs, and MGEs in wild and captive Himalayan vultures. This study is the first step in describing the characterization of the ARGs in the gut of Himalayan vultures and highlights the need to pay more attention to scavenging birds.


Subject(s)
Animals, Wild , Interspersed Repetitive Sequences , Animals , Animals, Wild/microbiology , Interspersed Repetitive Sequences/genetics , Falconiformes/microbiology , Falconiformes/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial/genetics , China , Bacteria/genetics , Bacteria/drug effects , Drug Resistance, Bacterial/genetics , Animals, Zoo/microbiology , Birds/microbiology , Birds/genetics
12.
Prev Vet Med ; 230: 106257, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955115

ABSTRACT

INTRODUCTION: Tick-borne pathogens (TBPs) constitute an emerging threat to public and animal health especially in the African continent, where land-use change, and wildlife loss are creating new opportunities for disease transmission. A review of TBPs with a focus on ticks determined the epidemiology of Rhipicephalus ticks in heartwater and the affinity of each Rickettsia species for different tick genera. We conducted a systematic review and meta-analysis to collect, map and estimate the molecular prevalence of Anaplasmataceae, Rickettsiaceae and Coxiellaceae in African wildlife. MATERIALS AND METHODS: Relevant scientific articles were retrieved from five databases: PubMed, ScienceDirect, Scopus, Ovid and OAIster. Publications were selected according to pre-determined exclusion criteria and evaluated for risk of bias using the appraisal tool for cross-sectional studies (AXIS). We conducted an initial descriptive analysis followed by a meta-analysis to estimate the molecular prevalence of each pathogen. Subgroup analysis and meta-regression models were employed to unravel associations with disease determinants. Finally, the quality of evidence of every estimate was finally assessed. RESULTS: Out of 577 retrieved papers, a total of 41 papers were included in the qualitative analysis and 27 in the meta-analysis. We retrieved 21 Anaplasmataceae species, six Rickettsiaceae species and Coxiella burnetii. Meta-analysis was performed for a total of 11 target pathogens. Anaplasma marginale, Ehrlichia ruminantium and Anaplasma centrale were the most prevalent in African bovids (13.9 %, CI: 0-52.4 %; 20.9 %, CI: 4.1-46.2 %; 13.9 %, CI: 0-68.7 %, respectively). Estimated TBPs prevalences were further stratified per animal order, family, species and sampling country. DISCUSSION: We discussed the presence of a sylvatic cycle for A. marginale and E. ruminantium in wild African bovids, the need to investigate A. phagocytophilum in African rodents and non-human primates as well as E. canis in the tissues of wild carnivores, and a lack of data and characterization of Rickettsia species and C. burnetii. CONCLUSION: Given the lack of epidemiological data on wildlife diseases, the current work can serve as a starting point for future epidemiological and/or experimental studies.


Subject(s)
Anaplasmataceae , Animals, Wild , Animals , Prevalence , Animals, Wild/microbiology , Anaplasmataceae/isolation & purification , Africa/epidemiology , Rickettsiaceae , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Anaplasmataceae Infections/veterinary , Anaplasmataceae Infections/epidemiology , Anaplasmataceae Infections/microbiology
13.
Math Biosci ; 375: 109258, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004215

ABSTRACT

We present a model for the dynamics of two interacting pathogen variants in a wild animal host population. Using the next-generation matrix approach we define the invasion threshold for one pathogen variant when the other is already established and at steady state. We then provide explicit criteria for the special cases where: i) the two pathogen variants exclude each other; ii) one variant excludes the other; iii) the population dynamics of hosts infected with both variants are independent of the order of infection; iv) there is no interaction between the variants; and v) one variant enhances transmission of the other.


Subject(s)
Animals, Wild , Population Dynamics , Animals , Animals, Wild/microbiology , Population Dynamics/statistics & numerical data , Models, Biological , Mathematical Concepts , Host-Pathogen Interactions , Communicable Diseases/transmission , Communicable Diseases/epidemiology
14.
Trop Med Int Health ; 29(8): 657-667, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38994702

ABSTRACT

ΟBJECTIVES: Although Buruli ulcer, tuberculosis, and leprosy are the three most common mycobacterial diseases, One Health dimensions of these infections remain poorly understood. This narrative review aims at exploring the scientific literature with respect to the presence of animal reservoir(s) and other environmental sources for the pathogens of these infections, their role in transmission to humans and the research on/practical implementation of One Health relevant control efforts. METHODS: The literature review was conducted using the online databases PubMed, Scopus, ProQuest and Google Scholar, reviewing articles that were written in English in the last 15 years. Grey literature, published by intergovernmental agencies, was also reviewed. RESULTS: For the pathogen of Buruli ulcer, evidence suggests possums as a possible animal reservoir and thus having an active role in disease transmission to humans. Cattle and some wildlife species are deemed as established animal reservoirs for tuberculosis pathogens, with a non-negligible proportion of infections in humans being of zoonotic origin. Armadillos constitute an established animal reservoir for leprosy pathogens with the transmission of the disease from armadillos to humans being deemed possible. Lentic environments, soil and other aquatic sources may represent further abiotic reservoirs for viable Buruli ulcer and leprosy pathogens infecting humans. Ongoing investigation and implementation of public health measures, targeting (sapro)zoonotic transmission can be found in all three diseases. CONCLUSION: Buruli ulcer, tuberculosis and leprosy exhibit important yet still poorly understood One Health aspects. Despite the microbiological affinity of the respective causative mycobacteria, considerable differences in their animal reservoirs, potential environmental sources and modes of zoonotic transmission are being observed. Whether these differences reflect actual variations between these diseases or rather knowledge gaps remains unclear. For improved disease control, further investigation of zoonotic aspects of all three diseases and formulation of One Health relevant interventions is urgently needed.


Subject(s)
Buruli Ulcer , Disease Reservoirs , Leprosy , One Health , Tuberculosis , Buruli Ulcer/transmission , Buruli Ulcer/epidemiology , Buruli Ulcer/microbiology , Humans , Animals , Leprosy/epidemiology , Leprosy/transmission , Leprosy/microbiology , Disease Reservoirs/microbiology , Tuberculosis/epidemiology , Tuberculosis/transmission , Tuberculosis/microbiology , Animals, Wild/microbiology , Zoonoses/microbiology , Zoonoses/epidemiology , Zoonoses/transmission
15.
Vet Microbiol ; 296: 110196, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067146

ABSTRACT

Bacterial antibiotic resistance is a public health problem affecting humans and animals. This study focuses on identifying Gram-negative bacilli (GNB) (MALDI-TOF MS and Klebsiella MALDI TypeR) resistant to antimicrobials in freshly emitted feces of healthy captive and rescued wild birds from a zoo in Brazil. Birds from the zoo and rescued from sixteen different orders were investigated. Resistant bacteria from feces were selected (MacConkey agar with 2 µg/mL cefotaxime). Genomic similarity and plasmid were investigated by Pulsed-Field Gel Electrophoresis of XbaI fragments (XbaI-PFGE) and S1-PFGE. Polymerase Chain Reaction (PCR) was performed to search for beta-lactamase genes. From 80 birds included, 26 from the zoo (50 %) and 18 rescued wild birds (64 %) presented cefotaxime-resistant GNB. E. coli and Klebsiella spp were the most prevalent species. Among 65 isolates from the zoo and rescued wild birds, 75 % were considered multidrug-resistant (MDR). The majority of the isolates were extended-spectrum beta-lactamases (ESBL) producing and resistant to enrofloxacin. blaCTX-M-GROUP-1, blaTEM, and blaSHV were the most detected genes, and blaKPC was detected in K. pneumoniae complex. According to genomic similarity results, some identical profiles were found in birds with no known contact among the zoo or rescued birds. Several isolates carried one to three plasmids (15-350 kb). The presence of multidrug-resistant (MDR) isolates from healthy captive and wild birds brings novel data on the dissemination of these elements to the environment.


Subject(s)
Animals, Wild , Anti-Bacterial Agents , Birds , Feces , beta-Lactamases , Animals , Brazil/epidemiology , Birds/microbiology , Anti-Bacterial Agents/pharmacology , Feces/microbiology , Animals, Wild/microbiology , beta-Lactamases/genetics , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/classification , Microbial Sensitivity Tests/veterinary , Drug Resistance, Multiple, Bacterial/genetics , Animals, Zoo/microbiology , Plasmids/genetics , Drug Resistance, Bacterial/genetics
16.
Mol Ecol ; 33(16): e17477, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39010794

ABSTRACT

In humans, gut microbiome (GM) differences are often correlated with, and sometimes causally implicated in, ageing. However, it is unclear how these findings translate in wild animal populations. Studies that investigate how GM dynamics change within individuals, and with declines in physiological condition, are needed to fully understand links between chronological age, senescence and the GM, but have rarely been done. Here, we use longitudinal data collected from a closed population of Seychelles warblers (Acrocephalus sechellensis) to investigate how bacterial GM alpha diversity, composition and stability are associated with host senescence. We hypothesised that GM diversity and composition will differ, and become more variable, in older adults, particularly in the terminal year prior to death, as the GM becomes increasingly dysregulated due to senescence. However, GM alpha diversity and composition remained largely invariable with respect to adult age and did not differ in an individual's terminal year. Furthermore, there was no evidence that the GM became more heterogenous in senescent age groups (individuals older than 6 years), or in the terminal year. Instead, environmental variables such as season, territory quality and time of day, were the strongest predictors of GM variation in adult Seychelles warblers. These results contrast with studies on humans, captive animal populations and some (but not all) studies on non-human primates, suggesting that GM deterioration may not be a universal hallmark of senescence in wild animal species. Further work is needed to disentangle the factors driving variation in GM-senescence relationships across different host taxa.


Subject(s)
Aging , Gastrointestinal Microbiome , Songbirds , Animals , Gastrointestinal Microbiome/genetics , Songbirds/microbiology , Songbirds/genetics , Animals, Wild/microbiology , Longitudinal Studies , Seychelles , Bacteria/classification , Bacteria/genetics , RNA, Ribosomal, 16S/genetics
17.
Nature ; 631(8020): 344-349, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926575

ABSTRACT

Many threats to biodiversity cannot be eliminated; for example, invasive pathogens may be ubiquitous. Chytridiomycosis is a fungal disease that has spread worldwide, driving at least 90 amphibian species to extinction, and severely affecting hundreds of others1-4. Once the disease spreads to a new environment, it is likely to become a permanent part of that ecosystem. To enable coexistence with chytridiomycosis in the field, we devised an intervention that exploits host defences and pathogen vulnerabilities. Here we show that sunlight-heated artificial refugia attract endangered frogs and enable body temperatures high enough to clear infections, and that having recovered in this way, frogs are subsequently resistant to chytridiomycosis even under cool conditions that are optimal for fungal growth. Our results provide a simple, inexpensive and widely applicable strategy to buffer frogs against chytridiomycosis in nature. The refugia are immediately useful for the endangered species we tested and will have broader utility for amphibian species with similar ecologies. Furthermore, our concept could be applied to other wildlife diseases in which differences in host and pathogen physiologies can be exploited. The refugia are made from cheap and readily available materials and therefore could be rapidly adopted by wildlife managers and the public. In summary, habitat protection alone cannot protect species that are affected by invasive diseases, but simple manipulations to microhabitat structure could spell the difference between the extinction and the persistence of endangered amphibians.


Subject(s)
Anura , Chytridiomycota , Disease Resistance , Endangered Species , Mycoses , Refugium , Animals , Anura/immunology , Anura/microbiology , Anura/physiology , Body Temperature/immunology , Body Temperature/physiology , Body Temperature/radiation effects , Chytridiomycota/immunology , Chytridiomycota/pathogenicity , Chytridiomycota/physiology , Disease Resistance/immunology , Disease Resistance/physiology , Disease Resistance/radiation effects , Ecosystem , Mycoses/veterinary , Mycoses/microbiology , Mycoses/immunology , Sunlight , Animals, Wild/immunology , Animals, Wild/microbiology , Animals, Wild/physiology , Introduced Species
18.
Euro Surveill ; 29(25)2024 Jun.
Article in English | MEDLINE | ID: mdl-38904114

ABSTRACT

BackgroundTo be better prepared for emerging wildlife-borne zoonoses, we need to strengthen wildlife disease surveillance.AimThe aim of this study was to create a topical overview of zoonotic pathogens in wildlife species to identify knowledge gaps and opportunities for improvement of wildlife disease surveillance.MethodsWe created a database, which is based on a systematic literature review in Embase focused on zoonotic pathogens in 10 common urban wildlife mammals in Europe, namely brown rats, house mice, wood mice, common voles, red squirrels, European rabbits, European hedgehogs, European moles, stone martens and red foxes. In total, we retrieved 6,305 unique articles of which 882 were included.ResultsIn total, 186 zoonotic pathogen species were described, including 90 bacteria, 42 helminths, 19 protozoa, 22 viruses and 15 fungi. Most of these pathogens were only studied in one single animal species. Even considering that some pathogens are relatively species-specific, many European countries have no (accessible) data on zoonotic pathogens in these relevant animal species. We used the Netherlands as an example to show how this database can be used by other countries to identify wildlife disease surveillance gaps on a national level. Only 4% of all potential host-pathogen combinations have been studied in the Netherlands.ConclusionsThis database comprises a comprehensive overview that can guide future research on wildlife-borne zoonotic diseases both on a European and national scale. Sharing and expanding this database provides a solid starting point for future European-wide collaborations to improve wildlife disease surveillance.


Subject(s)
Animals, Wild , Zoonoses , Animals , Animals, Wild/microbiology , Europe/epidemiology , Zoonoses/epidemiology , Databases, Factual , Humans , Rats , Sciuridae/microbiology , Hedgehogs/microbiology , Rabbits , Mice , Population Surveillance , Foxes/microbiology , Foxes/parasitology
19.
Sci Rep ; 14(1): 14768, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926469

ABSTRACT

Hypervariable region sequencing of the 16S ribosomal RNA (rRNA) gene plays a critical role in microbial ecology by offering insights into bacterial communities within specific niches. While providing valuable genus-level information, its reliance on data from targeted genetic regions limits its overall utility. Recent advances in sequencing technologies have enabled characterisation of the full-length 16S rRNA gene, enhancing species-level classification. Although current short-read platforms are cost-effective and precise, they lack full-length 16S rRNA amplicon sequencing capability. This study aimed to evaluate the feasibility of a modified 150 bp paired-end full-length 16S rRNA amplicon short-read sequencing technique on the Illumina iSeq 100 and 16S rRNA amplicon assembly workflow by utilising a standard mock microbial community and subsequently performing exploratory characterisation of captive (zoo) and free-ranging African elephant (Loxodonta africana) respiratory microbiota. Our findings demonstrate that, despite generating assembled amplicons averaging 869 bp in length, this sequencing technique provides taxonomic assignments consistent with the theoretical composition of the mock community and respiratory microbiota of other mammals. Tentative bacterial signatures, potentially representing distinct respiratory tract compartments (trunk and lower respiratory tract) were visually identified, necessitating further investigation to gain deeper insights into their implication for elephant physiology and health.


Subject(s)
Bacteria , Elephants , Microbiota , RNA, Ribosomal, 16S , Animals , Elephants/microbiology , Elephants/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Microbiota/genetics , High-Throughput Nucleotide Sequencing/methods , Respiratory System/microbiology , Animals, Zoo/microbiology , Sequence Analysis, DNA/methods , Animals, Wild/microbiology , Phylogeny
20.
Spat Spatiotemporal Epidemiol ; 49: 100657, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876568

ABSTRACT

Anthrax is a zoonotic disease caused by a spore-forming gram-positive bacterium, Bacillus anthracis. Increased anthropogenic factors inside wildlife-protected areas may worsen the spillover of the disease at the interface. Consequently, environmental suitability prediction for B. anthracis spore survival to locate a high-risk area is urgent. Here, we identified a potentially suitable habitat and a high-risk area for appropriate control measures. Our result revealed that a relatively largest segment of Omo National Park, about 23.7% (1,218 square kilometers) of the total area; 36.6% (711 square kilometers) of Mago National Park, and 29.4% (489 square kilometers) of Tama wildlife Reserve predicted as a high-risk area for the anthrax occurrence in the current situation. Therefore, the findings of this study provide the priority area to focus on and allocate resources for effective surveillance, prevention, and control of anthrax before it causes devastating effects on wildlife.


Subject(s)
Animals, Wild , Anthrax , Bacillus anthracis , Animals , Anthrax/epidemiology , Anthrax/veterinary , Anthrax/prevention & control , Bacillus anthracis/isolation & purification , Animals, Wild/microbiology , Ethiopia/epidemiology , Conservation of Natural Resources , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL