Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.875
Filter
1.
PLoS One ; 19(7): e0306289, 2024.
Article in English | MEDLINE | ID: mdl-38950022

ABSTRACT

Although the overall burden of malaria is decreasing in Ethiopia, a recent report of an unpredictable increased incidence may be related to the presence of community-wide gametocyte-carrier individuals and a high proportion of infected vectors. This study aimed to reveal the current prevalence of gametocyte-carriage and the sporozoite infectivity rate of Anopheles vectors for Plasmodium parasites. A community-based cross-sectional study was conducted from May 01 to June 30/2019. A total of 53 households were selected using systematic random sampling and a 242 study participants were recruited. Additionally,515 adult female Anopheles mosquitoes were collected using Center for Diseases Control and Prevention (CDC) light traps and mouth aspirators. Parasite gametocytemia was determined using giemsa stain microscopy, while sporozoite infection was determined by giemsa staining microscopy and enzyme linked immunosorbent assay (ELISA). Among the total 242 study participants, 5.4% (95%, CI = 2.9-8.3) of them were positive for any of the Plasmodium species gametocyte. Furthermore, being female [AOR = 15.5(95%, CI = 1.71-140.39)], age group between 15-29 years old [AOR = 16.914 (95%, CI = 1.781-160.63)], no ITNs utilization [AOR = 16.7(95%, CI = 1.902 -146.727)], and high asexual parasite density [(95%, CI = 0.057-0.176, P = 0.001, F = 18.402)] were identified as statistically significant factors for gametocyte carriage. Whereas sporozoite infection rate was 11.6% (95%, CI = 8.2-15.5) and 12.7% (95%, CI = 9.6-16.3) by microscopy and ELISA, respectively. Overall, this study indicated that malaria remains to be an important public health problem in Gondar Zuria district where high gametocyte carriage rate and sporozoite infection rate could sustain its transmission and burden. Therefore, in Ethiopia, where malaria elimination program is underway, frequent, and active community-based surveillance of gametocytemia and sporozoite infection rate is important.


Subject(s)
Anopheles , Mosquito Vectors , Sporozoites , Animals , Ethiopia/epidemiology , Humans , Anopheles/parasitology , Female , Adult , Sporozoites/physiology , Adolescent , Young Adult , Male , Cross-Sectional Studies , Mosquito Vectors/parasitology , Child , Child, Preschool , Malaria/epidemiology , Malaria/parasitology , Malaria/transmission , Middle Aged , Plasmodium/isolation & purification , Infant , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/physiology , Prevalence
2.
PLoS One ; 19(7): e0306664, 2024.
Article in English | MEDLINE | ID: mdl-38968270

ABSTRACT

BACKGROUNDS: Malaria, a preventive and treatable disease, is still responsible for annual deaths reported in most tropical regions, principally in sub-Saharan Africa. Subunit recombinant transmission-blocking vaccines (TBVs) have been proposed as promising vaccines to succeed in malaria elimination and eradication. Here, a provisional study was designed to assess the immunogenicity and functional activity of alanyl aminopeptidase N (APN1) of Anopheles stephensi, as a TBV candidate, administered with MPL, CpG, and QS21 adjuvants in the murine model. METHODOLOGY/PRINCIPAL FINDINGS: The mouse groups were immunized with recombinant APN1 (rAPN1) alone or formulated with CpG, MPL, QS-21, or a combination of adjuvants (CMQ), and the elicited immune responses were evaluated after the third immunization. The standard membrane feeding assay (SMFA) measured the functional activity of antibodies against bacterial-expressed APN1 protein in adjuvanted vaccine groups on transmission of P. falciparum (NF54) to An. stephensi mosquitoes. Evaluation of mice vaccinated with rAPN1 formulated with distinct adjuvants manifested a significant increase in the high-avidity level of anti-APN1 IgG and IgG subclasses; however, rAPN1 induced the highest level of high-avidity anti-APN1 IgG1, IgG2a, and IgG2b antibodies in the immunized vaccine group 5 (APN1/CMQ). In addition, vaccine group 5 (receiving APN1/CMQ), had still the highest level of anti-APN1 IgG antibodies relative to other immunized groups after six months, on day 180. The SMFA data indicates a trend towards higher transmission-reducing activity in groups 2 and 5, which received the antigen formulated with CpG or a combination of three adjuvants. CONCLUSIONS/SIGNIFICANCE: The results have shown the capability of admixture to stimulate high-affinity and long-lasting antibodies against the target antigen to hinder Plasmodium parasite development in the mid-gut of An. stephensi. The attained results authenticated APN1/CMQ and APN1/CpG as a potent APN1-based TBV formulation which will be helpful in designing a vaccine in the future.


Subject(s)
Adjuvants, Immunologic , Anopheles , CD13 Antigens , Malaria Vaccines , Saponins , Animals , Anopheles/parasitology , Anopheles/immunology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Mice , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Saponins/pharmacology , Saponins/administration & dosage , CD13 Antigens/immunology , CD13 Antigens/metabolism , Female , Plasmodium falciparum/immunology , Malaria/prevention & control , Malaria/transmission , Malaria/immunology , Malaria/parasitology , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Mice, Inbred BALB C , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology
3.
PLoS One ; 19(7): e0305207, 2024.
Article in English | MEDLINE | ID: mdl-38968330

ABSTRACT

Increasing reports of insecticide resistance continue to hamper the gains of vector control strategies in curbing malaria transmission. This makes identifying new insecticide targets or alternative vector control strategies necessary. CLassifier of Essentiality AcRoss EukaRyote (CLEARER), a leave-one-organism-out cross-validation machine learning classifier for essential genes, was used to predict essential genes in Anopheles gambiae and selected predicted genes experimentally validated. The CLEARER algorithm was trained on six model organisms: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and employed to identify essential genes in An. gambiae. Of the 10,426 genes in An. gambiae, 1,946 genes (18.7%) were predicted to be Cellular Essential Genes (CEGs), 1716 (16.5%) to be Organism Essential Genes (OEGs), and 852 genes (8.2%) to be essential as both OEGs and CEGs. RNA interference (RNAi) was used to validate the top three highly expressed non-ribosomal predictions as probable vector control targets, by determining the effect of these genes on the survival of An. gambiae G3 mosquitoes. In addition, the effect of knockdown of arginase (AGAP008783) on Plasmodium berghei infection in mosquitoes was evaluated, an enzyme we computationally inferred earlier to be essential based on chokepoint analysis. Arginase and the top three genes, AGAP007406 (Elongation factor 1-alpha, Elf1), AGAP002076 (Heat shock 70kDa protein 1/8, HSP), AGAP009441 (Elongation factor 2, Elf2), had knockdown efficiencies of 91%, 75%, 63%, and 61%, respectively. While knockdown of HSP or Elf2 significantly reduced longevity of the mosquitoes (p<0.0001) compared to control groups, Elf1 or arginase knockdown had no effect on survival. However, arginase knockdown significantly reduced P. berghei oocytes counts in the midgut of mosquitoes when compared to LacZ-injected controls. The study reveals HSP and Elf2 as important contributors to mosquito survival and arginase as important for parasite development, hence placing them as possible targets for vector control.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , RNA Interference , Animals , Anopheles/genetics , Anopheles/parasitology , Malaria/prevention & control , Malaria/transmission , Malaria/parasitology , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Computational Biology/methods , Mice , Humans , Mosquito Control/methods , Genes, Essential , Female , Plasmodium berghei/genetics
4.
Parasit Vectors ; 17(1): 290, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971776

ABSTRACT

BACKGROUND: Aedes and Anopheles mosquitoes are responsible for tremendous global health burdens from their transmission of pathogens causing malaria, lymphatic filariasis, dengue, and yellow fever. Innovative vector control strategies will help to reduce the prevalence of these diseases. Mass rearing of mosquitoes for research and support of these strategies presently depends on meals of vertebrate blood, which is subject to acquisition, handling, and storage issues. Various blood-free replacements have been formulated for these mosquitoes, but none of these replacements are in wide use, and little is known about their potential impact on competence of the mosquitoes for Plasmodium infection. METHODS: Colonies of Aedes aegypti and Anopheles stephensi were continuously maintained on a blood-free replacement (SkitoSnack; SS) or bovine blood (BB) and monitored for engorgement and hatch rates. Infections of Ae. aegypti and An. stephensi were assessed with Plasmodium gallinaceum and P. falciparum, respectively. RESULTS: Replicate colonies of mosquitoes were maintained on BB or SS for 10 generations of Ae. aegypti and more than 63 generations of An. stephensi. The odds of engorgement by SS- relative to BB-maintained mosquitoes were higher for both Ae. aegypti (OR = 2.6, 95% CI 1.3-5.2) and An. stephensi (OR 2.7, 95% CI 1.4-5.5), while lower odds of hatching were found for eggs from the SS-maintained mosquitoes of both species (Ae. aegypti OR = 0.40, 95% CI 0.26-0.62; An. stephensi OR = 0.59, 95% CI 0.36-0.96). Oocyst counts were similar for P. gallinaceum infections of Ae. aegypti mosquitoes maintained on SS or BB (mean ratio = [mean on SS]/[mean on BB] = 1.11, 95% CI 0.85-1.49). Similar oocyst counts were also observed from the P. falciparum infections of SS- or BB-maintained An. stephensi (mean ratio = 0.76, 95% CI 0.44-1.37). The average counts of sporozoites/mosquito showed no evidence of reductions in the SS-maintained relative to BB-maintained mosquitoes of both species. CONCLUSIONS: Aedes aegypti and An. stephensi can be reliably maintained on SS over multiple generations and are as competent for Plasmodium infection as mosquitoes maintained on BB. Use of SS alleviates the need to acquire and preserve blood for mosquito husbandry and may support new initiatives in fundamental and applied research, including novel manipulations of midgut microbiota and factors important to the mosquito life cycle and pathogen susceptibility.


Subject(s)
Aedes , Anopheles , Mosquito Vectors , Animals , Aedes/parasitology , Aedes/physiology , Anopheles/parasitology , Anopheles/physiology , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Plasmodium gallinaceum/physiology , Plasmodium falciparum/physiology , Cattle , Female , Blood/parasitology , Feeding Behavior
5.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 228-232, 2024 Apr 29.
Article in Chinese | MEDLINE | ID: mdl-38952306

ABSTRACT

Malaria is one of the most serious mosquito-borne infectious diseases in the world. The global malaria control progress has stalled in recent years, which is largely due to the biological threats from the malaria pathogen Plasmodium and the vector Anopheles mosquitoes. This article provides an overview of biological threats to global malaria elimination, including antimalarial drug resistance, deletions in the malaria rapid diagnostic test target P. falciparum histidine-rich protein 2/3 (Pfhrp2/3) genes, vector insecticide resistance and emergence of invasive vector species, so as to provide insights into malaria and vector research and the formulation and adjustment of the malaria control and elimination strategy.


Subject(s)
Malaria , Mosquito Vectors , Animals , Malaria/prevention & control , Malaria/transmission , Malaria/parasitology , Humans , Mosquito Vectors/parasitology , Anopheles/parasitology , Anopheles/genetics , Drug Resistance/genetics
6.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 247-250, 2024 Apr 26.
Article in Chinese | MEDLINE | ID: mdl-38952310

ABSTRACT

Driven by international exchanges and climate changes, the invasion and spread of vector Anopheles mosquitoes posed a new challenge to achieving global malaria elimination. Taking the invasion of An. stephensi to exacerbate the malaria epidemic in Africa as an example, this article summarizes the current situation of global Anopheles invasion, and estimates the potential risk of vector Anopheles mosquitoes to unravel the difficulties and challenges in the global malaria elimination program, so as to provide insights into improved early earning and precision control of vector Anopheles mosquito invasion across the world.


Subject(s)
Anopheles , Introduced Species , Malaria , Mosquito Vectors , Malaria/prevention & control , Malaria/transmission , Animals , Anopheles/parasitology , Anopheles/physiology , Humans , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Disease Eradication/methods
7.
Sci Rep ; 14(1): 14603, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918533

ABSTRACT

Malaria in eastern Indonesia remains high despite significant reduction and elimination in other parts of the country. A rapid entomological assessment was conducted in eight high malaria endemic regencies of Papua Province, Indonesia, to expedite malaria elimination efforts in this region. This study aims to characterize specific, actionable endpoints toward understanding where and when malaria transmission is happening, where interventions may function best, and identify gaps in protection that result in continued transmission. The entomological assessment included identifying potential vectors through human landing catch (HLC), indoor morning and night resting collections, identification of larval sites through surveillance of water bodies, and vector incrimination toward understanding exposure to malaria transmission. Human landing catches (HLCs) and larval collections identified 10 Anopheles species, namely Anopheles koliensis, Anopheles punctulatus, Anopheles farauti, Anopheles hinesorum, Anopheles longirostris, Anopheles peditaeniatus, Anopheles tesselatus, Anopheles vagus, Anopheles subpictus and Anopheles kochi. The most common and abundant species found overall were An. koliensis and An. punctulatus, while An. farauti was found in large numbers in the coastal areas of Mimika and Sarmi Regencies. Vector incrimination on Anopheles collected from HLCs and night indoor resting demonstrated that An. koliensis and An. punctulatus carried Plasmodium in Keerom, Jayapura, and Sarmi Regencies. Analysis of HLCs for the most common species revealed that the An. koliensis and An. punctulatus, bite indoors and outdoors at equal rates, while An. farauti predominantly bite outdoors. Larval surveillance demonstrated that most water bodies in and surrounding residential areas contained Anopheles larvae. This study demonstrated indoor and outdoor exposure to mosquito bites and gaps in protection, enabling exposure to infectious bites in all regencies. This explains why current malaria control efforts focusing on indoor protection have failed to substantially reduce malaria incidence in the region. Optimization of insecticide-treated bed nets (ITNs), as well as installment of mosquito screens in houses, may further reduce indoor transmission. For outdoor transmission, the use of community-centric approaches to reduce or eliminate larval sources within and surrounding the village through the guidance of locally stationed entomologists, along with Social and Behavior Change mediated health education towards the local adoption of mosquito protection tools during outdoor activities, may reduce malaria transmission.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Animals , Anopheles/parasitology , Anopheles/physiology , Malaria/transmission , Malaria/epidemiology , Malaria/prevention & control , Humans , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Indonesia/epidemiology , Larva , Endemic Diseases
8.
J Vector Borne Dis ; 61(2): 151-157, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38922649

ABSTRACT

BACKGROUND OBJECTIVES: Despite significant progress in malaria control throughout India, Chhattisgarh state continues to be a significant contributor to both malaria morbidity and mortality. This study aims to identify key factors associated with malaria endemicity, with a goal of focusing on these factors for malaria elimination by 2030. METHODS: We employed an analysis and narrative review methodology to summarize the existing evidence on malaria epidemiology in Chhattisgarh. Data encompassing environmental conditions, dominant malaria vectors and their distribution, and the impact of previous interventions on malaria control, were extracted from published literature using PubMed and Google Scholar. This information was subsequently correlated with malaria incidence data using appropriate statistical and geographical methods. RESULTS: Much of the malaria burden in Chhattisgarh state is concentrated in a few specific districts. The primary malaria vectors in these regions are Anopheles culicifacies and An. fluviatilis. High transmission areas are found in tribal belts which are challenging to access and are characterized by densely forested areas that provide a conducive habitat for malaria vectors. INTERPRETATION CONCLUSION: Conducive environmental conditions characterized by high forest cover, community behavior, and insurgency, contribute to high malaria endemicity in the area. Challenges include insecticide resistance in malaria vectors and asymptomatic malaria. Allocating additional resources to high-endemic districts is crucial. Innovative and focused malaria control programs of the country, such as DAMAN and Malaria Mukt Abhiyan, hold immense importance.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , India/epidemiology , Humans , Malaria/prevention & control , Malaria/epidemiology , Animals , Anopheles/parasitology , Anopheles/physiology , Mosquito Vectors/parasitology , Mosquito Control/methods , Disease Eradication/methods , Incidence , Insecticide Resistance
9.
J Vector Borne Dis ; 61(2): 176-182, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38922651

ABSTRACT

BACKGROUND OBJECTIVES: Malaria remains a major public health concern in Nigeria and the vector (Anopheles species) can only be controlled effectively by having good knowledge of its composition and potential for disease transmission. This work aimed at surveying indoor malaria vectors and, Knowledge, Attitudes, and Practices (KAP) in relation to disease transmission in Toro LGA, Bauchi State, Nigeria. METHODS: Mosquitoes were collected by Pyrethrum Spray Catch (PSC) between October and December 2019 and were morphologically identified using standard keys. Blood samples were collected from individuals who slept in the rooms where PSC was conducted. Thick and thin blood smears were made for malaria parasite examination. Questionnaires were administered to 120 participants for the KAP studies. RESULTS: Ninety-seven Anopheles mosquitoes were collected and identified as Anopheles gambiae 76 (78.35%), An. funestus 20 (20.62%) and An. coustani 1(1.03%). The overall malaria prevalence was 15.8%. KAP studies revealed that measures and treatment-seeking behaviours against malaria varied significantly (P<0.05) among the respondents. Sleeping under a net 55 (45.8%) and use of insecticides 24 (20.0%) were some of the preventive measures highlighted while the treatment-seeking behaviours included visit to a pharmacy 74 (61.7%) and use of local herbs 11 (9.2%). INTERPRETATION CONCLUSION: This work revealed that An. gambiae and An. funestus are predominant malaria vectors in the area. The KAP information demonstrated fair knowledge about the disease by the respondents. Therefore, public enlightenment about malaria prevention, control and treatment is recommended to address the few but highly negative impact knowledge gaps about malaria.


Subject(s)
Anopheles , Health Knowledge, Attitudes, Practice , Malaria , Mosquito Vectors , Nigeria/epidemiology , Animals , Humans , Malaria/transmission , Malaria/prevention & control , Malaria/epidemiology , Anopheles/physiology , Anopheles/parasitology , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Female , Male , Adult , Young Adult , Surveys and Questionnaires , Mosquito Control/methods , Middle Aged , Adolescent , Prevalence
10.
Sci Rep ; 14(1): 14488, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914669

ABSTRACT

Pyrethroid bednets treated with the synergist piperonyl butoxide (PBO) offer the possibility of improved vector control in mosquito populations with metabolic resistance. In 2017-2019, we conducted a large-scale, cluster-randomised trial (LLINEUP) to evaluate long-lasting insecticidal nets (LLINs) treated with a pyrethroid insecticide plus PBO (PBO LLINs), as compared to conventional, pyrethroid-only LLINs across 104 health sub-districts (HSDs) in Uganda. In LLINEUP, and similar trials in Tanzania, PBO LLINs were found to provide greater protection against malaria than conventional LLINs, reducing parasitaemia and vector density. In the LLINEUP trial, we conducted cross-sectional household entomological surveys at baseline and then every 6 months for two years, which we use here to investigate longitudinal changes in mosquito infection rate and genetic markers of resistance. Overall, 5395 female Anopheles mosquitoes were collected from 5046 households. The proportion of mosquitoes infected (PCR-positive) with Plasmodium falciparum did not change significantly over time, while infection with non-falciparum malaria decreased in An. gambiae s.s., but not An. funestus. The frequency of genetic markers associated with pyrethroid resistance increased significantly over time, but the rate of change was not different between the two LLIN types. The knock-down resistance (kdr) mutation Vgsc-995S declined over time as Vgsc-995F, the alternative resistance mutation at this codon, increased. Vgsc-995F appears to be spreading into Uganda. Distribution of LLINs in Uganda was previously found to be associated with reductions in parasite prevalence and vector density, but here we show that the proportion of infective mosquitoes remained stable across both PBO and non-PBO LLINs, suggesting that the potential for transmission persisted. The increased frequency of markers of pyrethroid resistance indicates that LLIN distribution favoured the evolution of resistance within local vectors and highlights the potential benefits of resistance management strategies.Trial registration: This study is registered with ISRCTN, ISRCTN17516395. Registered 14 February 2017, http://www.isrctn.com/ISRCTN17516395 .


Subject(s)
Anopheles , Insecticide Resistance , Insecticide-Treated Bednets , Mosquito Control , Mosquito Vectors , Pyrethrins , Animals , Anopheles/parasitology , Anopheles/genetics , Anopheles/drug effects , Insecticide Resistance/genetics , Uganda/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Mosquito Vectors/drug effects , Mosquito Control/methods , Humans , Pyrethrins/pharmacology , Insecticides/pharmacology , Malaria/epidemiology , Malaria/prevention & control , Malaria/transmission , Malaria/parasitology , Female , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Prevalence , Genetic Markers , Cross-Sectional Studies , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Piperonyl Butoxide/pharmacology , Genotype
11.
Sci Rep ; 14(1): 13669, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871839

ABSTRACT

Among the factors affecting the effectiveness of malaria control is poor knowledge of the entomologic drivers of the disease. We investigated anopheline populations as part of a baseline study to implement house screening of windows and doors as a supplementary malaria control tool towards elimination in Jabi Tehnan district, Amhara Regional State of Ethiopia. The samples were surveyed monthly using CDC light traps between June 2020 and May 2021. Mosquito trap density (< 3 mosquitoes/trap) was low, however, with a high overall Plasmodium sporozoite rate (9%; indoor = 4.3%, outdoor = 13.1%) comprising P. falciparum (88.9%) and P. vivax (11.1%). Anopheles gambiae s.l., mostly An. arabiensis, comprised > 80% of total anopheline captures and contributed ~ 42% of Plasmodium-infected mosquitoes. On the other hand, morphologically scored Anopheles funestus s.l., constituting about 6% of anopheline collections, accounted for 50% of sporozoite-infected mosquitoes. Most of the infected An. funestus s.l. specimens (86.7%) were grouped with previously unknown or undescribed Anopheles species previously implicated as a cryptic malaria vector in the western Kenyan highlands, confirming its wider geographic distribution in eastern Africa. Other species with Plasmodium infection included An. longipalpis C, An. theileri, An. demillioni, and An. nili. Cumulatively, 77.8% of the infected mosquitoes occurred outdoors. These results suggest efficient malaria parasite transmission despite the low vector densities, which has implications for effective endpoint indicators to monitor malaria control progress. Additionally, the largely outdoor infection and discovery of previously unknown and cryptic vectors suggest an increased risk of residual malaria transmission and, thus, a constraint on effective malaria prevention and control.


Subject(s)
Anopheles , Mosquito Vectors , Ethiopia/epidemiology , Animals , Anopheles/parasitology , Mosquito Vectors/parasitology , Humans , Malaria/transmission , Malaria/epidemiology , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/pathogenicity , Plasmodium vivax/physiology , Sporozoites , Mosquito Control/methods , Malaria, Vivax/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Falciparum/transmission , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Female
12.
Sci Rep ; 14(1): 12958, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839981

ABSTRACT

The present cluster-randomised control trial aims to assess the entomological efficacy of pyrethroid-pyriproxyfen and pyrethroid-chlorfenapyr LLINs compared to the standard pyrethroid-only LLINs, in their third year of community usage. Adult mosquito collections were performed every 3 months, in 4 randomly selected houses in each of the 60 trial clusters, using human landing catches. Adult mosquitoes were morphologically identified and Anopheles vectors were molecularly speciated and screened for the presence of the L1014F kdr mutation using PCR. Plasmodium falciparum sporozoite infection was assessed using ELISA. A subset of An. gambiae s.l. was also dissected to examine parity and fertility rates across study arms. There was no evidence of a significant reduction in indoor vector density and entomological inoculation rate by the pyrethroid-pyriproxyfen [DR 0.94 (95% CI 0.46-1.88), p = 0.8527; and RR 1.10 (95% CI 0.44-2.72), p = 0.8380], and pyrethroid-chlorfenapyr [DR 0.74 (95% CI 0.37-1.48), p = 0.3946; and RR 1.00 (95% CI 0.40-2.50), p = 0.9957] LLINs, respectively. The same trend was observed outdoors. Frequencies of the L1014F kdr mutation, as well as parous and fertility rates, were similar between study arms. In the third year after net distribution, entomological indicators show that the two dual active-ingredients nets performed similarly to the standard pyrethroid-only LLIN. To maintain malaria gains, it is crucial that net distribution cycles fit with their operational lifespan.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Mosquito Control , Mosquito Vectors , Plasmodium falciparum , Pyrethrins , Pyridines , Pyrethrins/pharmacology , Animals , Anopheles/parasitology , Anopheles/drug effects , Humans , Mosquito Control/methods , Benin , Mosquito Vectors/parasitology , Mosquito Vectors/drug effects , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Malaria/transmission , Malaria/prevention & control , Insecticides/pharmacology , Malaria, Falciparum/transmission , Malaria, Falciparum/parasitology , Female , Insecticide Resistance/genetics
13.
J Cell Sci ; 137(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38832798

ABSTRACT

Plasmodium sporozoites are the infective forms of the malaria parasite in the mosquito and vertebrate host. Gliding motility allows sporozoites to migrate and invade mosquito salivary glands and mammalian hosts. Motility and invasion are powered by an actin-myosin motor complex linked to the glideosome, which contains glideosome-associated proteins (GAPs), MyoA and the myosin A tail-interacting protein (MTIP). However, the role of several proteins involved in gliding motility remains unknown. We identified that the S14 gene is upregulated in sporozoite from transcriptome data of Plasmodium yoelii and further confirmed its transcription in P. berghei sporozoites using real-time PCR. C-terminal 3×HA-mCherry tagging revealed that S14 is expressed and localized on the inner membrane complex of the sporozoites. We disrupted S14 in P. berghei and demonstrated that it is essential for sporozoite gliding motility, and salivary gland and hepatocyte invasion. The gliding and invasion-deficient S14 knockout sporozoites showed normal expression and organization of inner membrane complex and surface proteins. Taken together, our data show that S14 plays a role in the function of the glideosome and is essential for malaria transmission.


Subject(s)
Malaria , Plasmodium berghei , Protozoan Proteins , Sporozoites , Sporozoites/metabolism , Plasmodium berghei/metabolism , Plasmodium berghei/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Animals , Mice , Malaria/parasitology , Salivary Glands/parasitology , Salivary Glands/metabolism , Anopheles/parasitology
14.
Sci Rep ; 14(1): 14294, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906949

ABSTRACT

The applicability of the specific human IgG antibody response to Anopheles gambiae salivary Gland Protein-6 peptide 1 (gSG6-P1 salivary peptide) as a biomarker able to distinguish the level of exposure to mosquito bites according to seasonal variations has not yet been evaluated in Central African regions. The study aimed to provide the first reliable data on the IgG anti-gSG6-P1 response in rural area in Cameroon according to the dry- and rainy-season. Between May and December 2020, dry blood samples were collected from people living in the Bankeng village in the forest area of the Centre region of Cameroon. Malaria infection was determined by thick-blood smear microscopy and multiplex PCR. The level of IgG anti-gSG6-P1 response, was assessed by enzyme-linked immunosorbent assay. Anopheles density and aggressiveness were assessed using human landing catches. The prevalence of malaria infection remains significantly higher in the rainy season than in the dry season (77.57% vs 61.44%; p = 0.0001). The specific anti-gSG6-P1 IgG response could be detected in individuals exposed to few mosquito bites and showed inter-individual heterogeneity even when living in the same exposure area. In both seasons, the level of anti-gSG6-P1 IgG response was not significantly different between Plasmodium infected and non-infected individuals. Mosquito bites were more aggressive in the rainy season compared to the dry season (human biting rate-HBR of 15.05 b/p/n vs 1.5 b/p/n) where mosquito density was very low. Infected mosquitoes were found only during the rainy season (sporozoite rate = 10.63% and entomological inoculation rate-EIR = 1.42 ib/p/n). The level of IgG anti-gSG6-P1 response was significantly higher in the rainy season and correlated with HBR (p ˂ 0.0001). This study highlights the high heterogeneity of individual's exposure to the Anopheles gambiae s.l vector bites depending on the transmission season in the same area. These findings reinforce the usefulness of the anti-gSG6-P1 IgG response as an accurate immunological biomarker for detecting individual exposure to Anopheles gambiae s.l. bites during the low risk period of malaria transmission in rural areas and for the differentiating the level of exposure to mosquitoes.


Subject(s)
Anopheles , Immunoglobulin G , Insect Bites and Stings , Rural Population , Salivary Proteins and Peptides , Seasons , Animals , Anopheles/parasitology , Anopheles/immunology , Humans , Cameroon/epidemiology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Insect Bites and Stings/immunology , Insect Bites and Stings/epidemiology , Insect Bites and Stings/blood , Female , Adult , Male , Salivary Proteins and Peptides/immunology , Adolescent , Young Adult , Malaria/epidemiology , Malaria/immunology , Malaria/blood , Malaria/transmission , Middle Aged , Child , Mosquito Vectors/parasitology , Mosquito Vectors/immunology , Child, Preschool , Insect Proteins/immunology
15.
Nat Commun ; 15(1): 5194, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890271

ABSTRACT

Resistance to clinical malaria takes years to develop even in hyperendemic regions and sterilizing immunity has rarely been observed. To evaluate the maturation of the host response against controlled repeat exposures to P. falciparum (Pf) NF54 strain-infected mosquitoes, we systematically monitored malaria-naïve participants through an initial exposure to uninfected mosquitoes and 4 subsequent homologous exposures to Pf-infected mosquitoes over 21 months (n = 8 males) (ClinicalTrials.gov# NCT03014258). The primary outcome was to determine whether protective immunity against parasite infection develops following repeat CHMI and the secondary outcomes were to track the clinical signs and symptoms of malaria and anti-Pf antibody development following repeat CHMI. After two exposures, time to blood stage patency increases significantly and the number of reported symptoms decreases indicating the development of clinical tolerance. The time to patency correlates positively with both anti-Pf circumsporozoite protein (CSP) IgG and CD8 + CD69+ effector memory T cell levels consistent with partial pre-erythrocytic immunity. IFNγ levels decrease significantly during the participants' second exposure to high blood stage parasitemia and could contribute to the decrease in symptoms. In contrast, CD4-CD8 + T cells expressing CXCR5 and the inhibitory receptor, PD-1, increase significantly after subsequent Pf exposures, possibly dampening the memory response and interfering with the generation of robust sterilizing immunity.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Humans , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/blood , Plasmodium falciparum/immunology , Male , Protozoan Proteins/immunology , Animals , Adult , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Interferon-gamma/metabolism , Interferon-gamma/immunology , Female , Immunoglobulin G/blood , Immunoglobulin G/immunology , Young Adult , CD8-Positive T-Lymphocytes/immunology , Mosquito Vectors/parasitology , Mosquito Vectors/immunology , Anopheles/parasitology
16.
Proc Natl Acad Sci U S A ; 121(24): e2320898121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833464

ABSTRACT

The World Health Organization identifies a strong surveillance system for malaria and its mosquito vector as an essential pillar of the malaria elimination agenda. Anopheles salivary antibodies are emerging biomarkers of exposure to mosquito bites that potentially overcome sensitivity and logistical constraints of traditional entomological surveys. Using samples collected by a village health volunteer network in 104 villages in Southeast Myanmar during routine surveillance, the present study employs a Bayesian geostatistical modeling framework, incorporating climatic and environmental variables together with Anopheles salivary antigen serology, to generate spatially continuous predictive maps of Anopheles biting exposure. Our maps quantify fine-scale spatial and temporal heterogeneity in Anopheles salivary antibody seroprevalence (ranging from 9 to 99%) that serves as a proxy of exposure to Anopheles bites and advances current static maps of only Anopheles occurrence. We also developed an innovative framework to perform surveillance of malaria transmission. By incorporating antibodies against the vector and the transmissible form of malaria (sporozoite) in a joint Bayesian geostatistical model, we predict several foci of ongoing transmission. In our study, we demonstrate that antibodies specific for Anopheles salivary and sporozoite antigens are a logistically feasible metric with which to quantify and characterize heterogeneity in exposure to vector bites and malaria transmission. These approaches could readily be scaled up into existing village health volunteer surveillance networks to identify foci of residual malaria transmission, which could be targeted with supplementary interventions to accelerate progress toward elimination.


Subject(s)
Anopheles , Bayes Theorem , Malaria , Mosquito Vectors , Animals , Anopheles/parasitology , Mosquito Vectors/parasitology , Humans , Malaria/transmission , Malaria/epidemiology , Malaria/immunology , Malaria/parasitology , Seroepidemiologic Studies , Insect Bites and Stings/epidemiology , Insect Bites and Stings/immunology , Insect Bites and Stings/parasitology , Sporozoites/immunology
17.
J Water Health ; 22(5): 878-886, 2024 May.
Article in English | MEDLINE | ID: mdl-38822466

ABSTRACT

The health district of Sakassou is one of the 83 health districts in Côte d'Ivoire, located in a zone with very high malarial transmission rates, with an incidence rate of ≥40% Therefore, to guide vector control methods more effectively, it was crucial to have a good understanding of the vectors in the area. This study aimed to determine the level of malarial transmission during the dry season in Sakassou, Côte d'Ivoire. Female Anopheles mosquitoes were sampled using human landing catches (HLCs) and pyrethrum spraying catches (PSCs). The larvae were collected using the 'dipping' method. A total of 10,875 adult female mosquitoes of Anopheles gambiae were collected. The PCR analysis revealed that all individuals were Anopheles coluzzii. The geographical distribution of potential breeding sites of Anopheles showed the presence of An. coluzzii in all the wetlands of the city of Sakassou. During the dry season, the human-biting rate of An. coluzzii was 139.1 bites/person/night. An exophagic trend was displayed by an adult female of An. coluzzii. The entomological inoculation rate during the dry season was 1.49 infectious bites/person/night. This study demonstrated that An. coluzzii was the main vector of malarial transmission in Sakassou, and the intensity of transmission remains high throughout the dry season.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Seasons , Animals , Anopheles/physiology , Anopheles/parasitology , Cote d'Ivoire/epidemiology , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Malaria/transmission , Malaria/epidemiology , Female , Humans , Oryza/parasitology , Agricultural Irrigation , Mosquito Control
18.
Bull Math Biol ; 86(8): 91, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888640

ABSTRACT

Malaria remains a global health problem despite the many attempts to control and eradicate it. There is an urgent need to understand the current transmission dynamics of malaria and to determine the interventions necessary to control malaria. In this paper, we seek to develop a fit-for-purpose mathematical model to assess the interventions needed to control malaria in an endemic setting. To achieve this, we formulate a malaria transmission model to analyse the spread of malaria in the presence of interventions. A sensitivity analysis of the model is performed to determine the relative impact of the model parameters on disease transmission. We explore how existing variations in the recruitment and management of intervention strategies affect malaria transmission. Results obtained from the study imply that the discontinuation of existing interventions has a significant effect on malaria prevalence. Thus, the maintenance of interventions is imperative for malaria elimination and eradication. In a scenario study aimed at assessing the impact of long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), and localized individual measures, our findings indicate that increased LLINs utilization and extended IRS coverage (with longer-lasting insecticides) cause a more pronounced reduction in symptomatic malaria prevalence compared to a reduced LLINs utilization and shorter IRS coverage. Additionally, our study demonstrates the impact of localized preventive measures in mitigating the spread of malaria when compared to the absence of interventions.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Malaria , Mathematical Concepts , Models, Biological , Mosquito Control , Humans , Malaria/prevention & control , Malaria/epidemiology , Malaria/transmission , Mosquito Control/methods , Mosquito Control/statistics & numerical data , Insecticide-Treated Bednets/statistics & numerical data , Animals , Mosquito Vectors/parasitology , Prevalence , Computer Simulation , Anopheles/parasitology , Endemic Diseases/prevention & control , Endemic Diseases/statistics & numerical data
19.
Emerg Infect Dis ; 30(7): 1467-1471, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916721

ABSTRACT

We detected malaria vector Anopheles stephensi mosquitoes in the Al Hudaydah governorate in Yemen by using DNA sequencing. We report 2 cytochrome c oxidase subunit I haplotypes, 1 previously found in Ethiopia, Somalia, Djibouti, and Yemen. These findings provide insight into invasive An. stephensi mosquitoes in Yemen and their connection to East Africa.


Subject(s)
Anopheles , Mosquito Vectors , Animals , Anopheles/genetics , Anopheles/parasitology , Anopheles/classification , Yemen , Mosquito Vectors/genetics , Humans , Electron Transport Complex IV/genetics , Haplotypes , Malaria/transmission , Malaria/epidemiology , Phylogeny
20.
Parasit Vectors ; 17(1): 261, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886827

ABSTRACT

BACKGROUND: Malaria transmission in Tanzania is driven by mosquitoes of the Anopheles gambiae complex and Anopheles funestus group. The latter includes An. funestus s.s., an anthropophilic vector, which is now strongly resistant to public health insecticides, and several sibling species, which remain largely understudied despite their potential as secondary vectors. This paper provides the initial results of a cross-country study of the species composition, distribution and malaria transmission potential of members of the Anopheles funestus group in Tanzania. METHODS: Mosquitoes were collected inside homes in 12 regions across Tanzania between 2018 and 2022 using Centres for Disease Control and Prevention (CDC) light traps and Prokopack aspirators. Polymerase chain reaction (PCR) assays targeting the noncoding internal transcribed spacer 2 (ITS2) and 18S ribosomal DNA (18S rDNA) were used to identify sibling species in the An. funestus group and presence of Plasmodium infections, respectively. Where DNA fragments failed to amplify during PCR, we sequenced the ITS2 region to identify any polymorphisms. RESULTS: The following sibling species of the An. funestus group were found across Tanzania: An. funestus s.s. (50.3%), An. parensis (11.4%), An. rivulorum (1.1%), An. leesoni (0.3%). Sequencing of the ITS2 region in the nonamplified samples showed that polymorphisms at the priming sites of standard species-specific primers obstructed PCR amplification, although the ITS2 sequences closely matched those of An. funestus s.s., barring these polymorphisms. Of the 914 samples tested for Plasmodium infections, 11 An. funestus s.s. (1.2%), and 2 An. parensis (0.2%) individuals were confirmed positive for P. falciparum. The highest malaria transmission intensities [entomological inoculation rate (EIR)] contributed by the Funestus group were in the north-western region [108.3 infectious bites/person/year (ib/p/y)] and the south-eastern region (72.2 ib/p/y). CONCLUSIONS: Whereas An. funestus s.s. is the dominant malaria vector in the Funestus group in Tanzania, this survey confirms the occurrence of Plasmodium-infected An. parensis, an observation previously made in at least two other occasions in the country. The findings indicate the need to better understand the ecology and vectorial capacity of this and other secondary malaria vectors in the region to improve malaria control.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Anopheles/genetics , Anopheles/classification , Anopheles/parasitology , Anopheles/physiology , Animals , Tanzania/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Mosquito Vectors/classification , Mosquito Vectors/physiology , Malaria/transmission , Malaria/epidemiology , Humans , RNA, Ribosomal, 18S/genetics , Polymerase Chain Reaction , Female , Plasmodium/genetics , Plasmodium/isolation & purification , Plasmodium/classification , DNA, Ribosomal Spacer/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...