Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062857

ABSTRACT

The delay in wound healing caused by chronic wounds or pathological scars is a pressing issue in clinical practice, imposing significant economic and psychological burdens on patients. In particular, with the aging of the population and the increasing incidence of diseases such as diabetes, impaired wound healing is one of the growing health problems. MicroRNA (miRNA) plays a crucial role in wound healing and regulates various biological processes. Our results show that miR-618 was significantly upregulated during the inflammatory phase of wound healing.Subsequently, miR-618 promotes the secretion of pro-inflammatory cytokines and regulates the proliferation and migration of keratinocytes. Mechanistically, miR-618 binds to the target gene-Atp11b and inhibits the PI3K-Akt signaling pathway, inhibiting the epithelial-mesenchymal transition (EMT) of keratinocytes. In addition, the PI3K-Akt signaling pathway induces the enrichment of nuclear miR-618, and miR-618 binds to the promoter of Lin7a to regulate gene transcription. Intradermal injection of miR-618 antagomir around full-thickness wounds in peridermal mice effectively accelerates wound closure compared to control. In conclusion, miR-618 antagomir can be a potential therapeutic agent for wound healing.


Subject(s)
Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Keratinocytes , MicroRNAs , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Wound Healing , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Keratinocytes/metabolism , Wound Healing/genetics , Mice , Cell Movement/genetics , Phosphatidylinositol 3-Kinases/metabolism , Epithelial-Mesenchymal Transition/genetics , Proto-Oncogene Proteins c-akt/metabolism , Humans , Antagomirs/metabolism , Antagomirs/pharmacology
2.
Brain Behav Immun ; 119: 919-944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718909

ABSTRACT

Neuroinflammation and accumulation of Amyloid Beta (Aß) accompanied by deterioration of special memory are hallmarks of Alzheimer's disease (AD). Effective preventative and treatment options for AD are still needed. Microglia in AD brains are characterized by elevated levels of microRNA-17 (miR-17), which is accompanied by defective autophagy, Aß accumulation, and increased inflammatory cytokine production. However, the effect of targeting miR-17 on AD pathology and memory loss is not clear. To specifically inhibit miR-17 in microglia, we generated mannose-coated lipid nanoparticles (MLNPs) enclosing miR-17 antagomir (Anti-17 MLNPs), which are targeted to mannose receptors readily expressed on microglia. We used a 5XFAD mouse model (AD) that recapitulates many AD-related phenotypes observed in humans. Our results show that Anti-17 MLNPs, delivered to 5XFAD mice by intra-cisterna magna injection, specifically deliver Anti-17 to microglia. Anti-17 MLNPs downregulated miR-17 expression in microglia but not in neurons, astrocytes, and oligodendrocytes. Anti-17 MLNPs attenuated inflammation, improved autophagy, and reduced Aß burdens in the brains. Additionally, Anti-17 MLNPs reduced the deterioration in spatial memory and decreased anxiety-like behavior in 5XFAD mice. Therefore, targeting miR-17 using MLNPs is a viable strategy to prevent several AD pathologies. This selective targeting strategy delivers specific agents to microglia without the adverse off-target effects on other cell types. Additionally, this approach can be used to deliver other molecules to microglia and other immune cells in other organs.


Subject(s)
Alzheimer Disease , Brain , Disease Models, Animal , Mannose , Mice, Transgenic , MicroRNAs , Microglia , Nanoparticles , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , MicroRNAs/metabolism , Nanoparticles/administration & dosage , Mice , Microglia/metabolism , Microglia/drug effects , Mannose/pharmacology , Brain/metabolism , Brain/drug effects , Amyloid beta-Peptides/metabolism , Lipids , Male , Antagomirs/pharmacology , Antagomirs/administration & dosage
3.
Arch Esp Urol ; 77(2): 183-192, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38583011

ABSTRACT

PURPOSE: This study aimed to determine the influence of miR-1297 on kidney injury in rats with diabetic nephropathy (DN) and its causal role. METHODS: A DN rat model was established through right kidney resection and intraperitoneal injection of streptozotocin (STZ). Sham rats did not undergo right kidney resection or STZ injection. The DN rats were divided into the DN model and antagomiR-1297 treatment groups. Kidney morphology was observed using hematoxylin and eosin staining. Renal function indices, including blood urea nitrogen (BUN), serum creatinine (SCr), and urinary protein, were measured using kits. Levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1ß, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined through enzyme-linked immunosorbent assay (ELISA). Fibrin (FN), collagen type I (Col I), and α-smooth muscle actin (α-SMA) were assessed through western blotting and real-time reverse transcription-polymerase chain reaction. Apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. miR-1297 targets were predicted using bioinformatic software and verified through luciferase reporter assay. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway expression was analyzed through western blotting. RESULTS: AntagomiR-1297 reduced BUN (p = 0.005), SCr (p = 0.012), and urine protein (p < 0.001) levels and improved kidney tissue morphology. It prevented renal interstitial fibrosis by decreasing FN, Col I, and α-SMA protein levels (all p < 0.001). AntagomiR-1297 increased SOD (p = 0.001) and GSH-Px (p = 0.002) levels. Additionally, it reduced levels of cell inflammatory factors, including TNF-α, IL-6, and IL-1ß (all p < 0.001), and alleviated apoptosis (p < 0.001) in rat kidney tissue with DN. miR-1297 was pinpointed as a target for PTEN. AntagomiR-1297 increased PTEN expression and suppressed PI3K and AKT phosphorylation (all p < 0.001). CONCLUSIONS: AntagomiR-1297 can mitigate renal fibrosis, renal inflammation, apoptosis, and oxidative stress levels through the PTEN/PI3K/AKT pathway.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , MicroRNAs , Rats , Animals , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Antagomirs/metabolism , Antagomirs/pharmacology , Kidney , MicroRNAs/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Diabetes Mellitus/metabolism
4.
Sci Rep ; 14(1): 2348, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287075

ABSTRACT

Acacetin, one of the flavonoid compounds, is a natural product found in various plants, including Silver birch, and Damiana. Previous studies showed that acacetin has anti-cancer effects on many kinds of cancer cells, however, the role of and the mechanisms of actions of acacetin on non-small cell lung cancer (NSCLC) cells is still not fully understood. Herein, we found that, in vitro, acacetin inhibited the proliferation, invasion, and migration of NSCLC cells, A549 and H460, in a dose-dependent manner. Meanwhile, flow cytometry assay results showed that acacetin induced G2/M phase cell cycle arrest, and apoptosis of NSCLC cells. In vivo, acacetin suppressed tumor formation of A549-xenografted nude mice model with no obvious toxicities. Western blotting results showed that the protein levels of cell cycle-related proteins cyclin B1, cyclin D, and anti-apoptotic protein Bcl-2 had decreased, while the apoptosis-related protein Bak had increased both in NSCLC cells and in A549-xenografted tumor tissues. For investigating the molecular mechanism behind the biological effects of acacetin on NSCLC, we found that acacetin induced the expression levels of tumor suppressor p53 both in vitro and in vivo. MicroRNA, miR-34a, the direct target of p53, has been shown anti-NSCLC proliferation effects by suppressing the expression of its target gene programmed death ligand 1 (PD-L1). We found that acacetin upregulated the expression levels of miR-34a, and downregulated the expression levels of PD-L1 of NSCLC cells in vitro and of tumors in vivo. In vitro, knockdown p53 expression by siRNAs reversed the induction effects of acacetin on miR34a expression and abolished the inhibitory activity of acacetin on NSCLC cell proliferation. Furthermore, using agomir and antagomir to overexpress and suppress the expression miR-34a in NSCLC cells was also examined. We found that miR-34a agomir showed similar effects as acacetin on A549 cells, while miR-34a antagomir could partially or completely reverse acacetin's effects on A549 cells. In vivo, intratumor injection of miR-34a antagomir could drastically suppress the anti-tumor formation effects of acacetin in A549-xenografted nude mice. Overall, our results showed that acacetin inhibits cell proliferation and induces cell apoptosis of NSCLC cells by regulating miR-34a.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Flavones , Lung Neoplasms , MicroRNAs , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , B7-H1 Antigen/metabolism , Tumor Suppressor Protein p53/metabolism , Mice, Nude , Antagomirs/pharmacology , Cell Line, Tumor , MicroRNAs/metabolism , Cell Proliferation , Cell Cycle Proteins/metabolism , Apoptosis/genetics , Gene Expression Regulation, Neoplastic
5.
Adv Mater ; 36(6): e2307639, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009631

ABSTRACT

Treating bone infections and ensuring bone repair is one of the greatest global challenges of modern orthopedics, made complex by antimicrobial resistance (AMR) risks due to long-term antibiotic treatment and debilitating large bone defects following infected tissue removal. An ideal multi-faceted solution would will eradicate bacterial infection without long-term antibiotic use, simultaneously stimulating osteogenesis and angiogenesis. Here, a multifunctional collagen-based scaffold that addresses these needs by leveraging the potential of antibiotic-free antimicrobial nanoparticles (copper-doped bioactive glass, CuBG) to combat infection without contributing to AMR in conjunction with microRNA-based gene therapy (utilizing an inhibitor of microRNA-138) to stimulate both osteogenesis and angiogenesis, is developed. CuBG scaffolds reduce the attachment of gram-positive bacteria by over 80%, showcasing antimicrobial functionality. The antagomiR-138 nanoparticles induce osteogenesis of human mesenchymal stem cells in vitro and heal a large load-bearing defect in a rat femur when delivered on the scaffold. Combining both promising technologies results in a multifunctional antagomiR-138-activated CuBG scaffold inducing hMSC-mediated osteogenesis and stimulating vasculogenesis in an in vivo chick chorioallantoic membrane model. Overall, this multifunctional scaffold catalyzes killing mechanisms in bacteria while inducing bone repair through osteogenic and angiogenic coupling, making this platform a promising multi-functional strategy for treating and repairing complex bone infections.


Subject(s)
MicroRNAs , Nanoparticles , Humans , Rats , Animals , Tissue Scaffolds , Bone Regeneration , MicroRNAs/genetics , Antagomirs/pharmacology , Osteogenesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
6.
Neurol Res ; 46(1): 54-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37842802

ABSTRACT

BACKGROUND: Diabetic neuropathic pain (DNP) is a serious complication for diabetic patients involving nervous system. MicroRNAs (miRNAs) are small-noncoding RNAs which are dysregulated in neuropathic pain, and might be critical molecules for pain treatment. Our previous study has shown miR-184-5p was significantly downregulated in DNP. Therefore, the mechanism of miR-184-5p in DNP was investigated in this study. METHODS: A DNP model was established through streptozotocin (STZ). The pharmacological tools were injected intrathecally, and pain behavior was evaluated by paw withdrawal mechanical thresholds (PWMTs). Bioinformatics analysis, Dual-luciferase reporter assay and fluorescence-in-situ-hybridization (FISH) were used to seek and confirm the potential target genes of miR-184-5p. The expression of relative genes and proteins was analyzed by quantitative reverse transcriptase real-time PCR (qPCR) and western blotting. RESULTS: MiR-184-5p expression was down-regulated in spinal dorsal on days 7 and 14 after STZ, while intrathecal administration of miR-184-5p agomir attenuates neuropathic pain induced by DNP and intrathecal miR-184-5p antagomir induces pain behaviors in naïve mice. Chemokine CC motif ligand 1 (CCL1) was found to be a potential target of miR-184-5p and the protein expression of CCL1 and the mRNA expression of CCR8 were up-regulated in spinal dorsal on days 7 and 14 after STZ. The luciferase reporter assay and FISH demonstrated that CCL1 is a direct target of miR-184-5p. MiR-184-5p overexpression attenuated the expression of CCL1/CCR8 in DNP; intrathecal miR-184-5p antagomir increased the expression of CCL1/CCR8 in spinal dorsal of naïve mice. CONCLUSION: This research illustrates that miR-184-5p alleviates DNP through the inhibition of CCL1/CCR8 signaling expression.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , MicroRNAs , Neuralgia , Animals , Humans , Mice , Antagomirs/pharmacology , Antagomirs/therapeutic use , Antagomirs/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetic Neuropathies/metabolism , Disease Models, Animal , Ligands , Luciferases/metabolism , MicroRNAs/metabolism , Neuralgia/drug therapy , Receptors, CCR8/metabolism , Spinal Cord/metabolism
7.
Antiviral Res ; 217: 105702, 2023 09.
Article in English | MEDLINE | ID: mdl-37604350

ABSTRACT

Coxsackievirus B3 (CVB3) is one of the major pathogens of viral myocarditis, lacking specific anti-virus therapeutic options. Increasing evidence has shown an important involvement of the miR-17-92 cluster both in virus infection and cardiovascular development and diseases, while its role in CVB3-induced viral myocarditis remains unclear. In this study, we found that miR-19a and miR-19b were significantly up-regulated in heart tissues of CVB3-infected mice and exerted a significant facilitatory impact on CVB3 biosynthesis and replication, with a more pronounced effect observed in miR-19b, by targeting the encoding region of viral RNA-dependent RNA polymerase 3D (RdRp, 3Dpol) to increase viral genomic RNA stability. The virus-promoting effects were nullified by the synonymous mutations in the viral 3Dpol-encoding region, which corresponded to the seed sequence shared by miR-19a and miR-19b. In parallel, treatment with miR-19b antagomir not only resulted in a noteworthy suppression of CVB3 replication and infection in infected cells, but also demonstrated a significant reduction in the cardiac viral load of CVB3-infected mice, resulting in a considerable alleviation of myocarditis. Collectively, our study showed that CVB3-induced cardiac miR-19a/19b contributed to viral myocarditis via facilitating virus biosynthesis and replication, and targeting miR-19a/19b might represent a novel therapeutic target for CVB3-induced viral myocarditis.


Subject(s)
Enterovirus B, Human , MicroRNAs , Myocarditis , Myocardium , Virus Replication , Enterovirus B, Human/genetics , Enterovirus B, Human/physiology , Myocarditis/metabolism , Myocarditis/virology , Myocardium/metabolism , Myocardium/pathology , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Humans , Virus Replication/drug effects , Virus Replication/genetics , Genome, Viral , RNA-Dependent RNA Polymerase/genetics , Antagomirs/pharmacology , Mice, Inbred BALB C , HEK293 Cells , HeLa Cells , Mice , Animals
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 1032-1037, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37551473

ABSTRACT

OBJECTIVE: To investigate the effects of long non-coding RNA (lncRNA) GATA3 antisense RNA 1 (GATA3-AS1) targeting miR-515-5p on the proliferation and apoptosis of childhood acute lymphoblastic leukemia (ALL) cells. METHODS: RT-qPCR was used to determine the expression of GATA3-AS1 and miR-515-5p in the plasma of controls and ALL children. Human ALL cells Jurkat were divided into si-GATA3-AS1, si-NC, miR-NC, miR-515-5p, si-GATA3-AS1+anti-miR-NC and si-GATA3-AS1+anti-miR-515-5p groups. CCK-8 assay was used to detect the cell proliferation, and flow cytometry was used to detect the cell apoptosis. The targeting relationship between GATA3-AS1 and miR-515-5p was determined by dual-luciferase reporter assay. RESULTS: The expression level of GATA3-AS1 in the plasma of ALL children was significantly higher than that of controls (P <0.001), while the expression level of miR-515-5p was significantly lower than that of controls (P <0.001). Compared with the si-NC group, the cell inhibition rate, apoptosis rate, and miR-515-5p expression level in si-GATA3-AS1 group were significantly increased (P <0.001). Compared with the miR-NC group, the cell inhibition rate and apoptosis rate in miR-515-5p group were significantly increased (P <0.001). GATA3-AS1 could directly and specifically bind to miR-515-5p. Compared with the si-GATA3-AS1+anti-miR-NC group, the cell inhibition rate and apoptosis rate in si-GATA3-AS1+anti-miR-515-5p group were significantly decreased (P <0.001). CONCLUSION: Down-regulation of GATA3-AS1 can inhibit proliferation and induce apoptosis of childhood ALL cells by targeting up-regulation of miR-515-5p expression.


Subject(s)
MicroRNAs , Precursor Cell Lymphoblastic Leukemia-Lymphoma , RNA, Long Noncoding , Child , Humans , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Antagomirs/pharmacology , Cell Line, Tumor , Cell Proliferation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Apoptosis , Gene Expression Regulation, Neoplastic , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism
9.
eNeuro ; 10(7)2023 07.
Article in English | MEDLINE | ID: mdl-37433683

ABSTRACT

About one-third of individuals living with epilepsy have treatment-resistant seizures. Alternative therapeutic strategies are thus urgently needed. One potential novel treatment target is miRNA-induced silencing, which is differentially regulated in epilepsy. Inhibitors (antagomirs) of specific microRNAs (miRNAs) have shown therapeutic promise in preclinical epilepsy studies; however, these studies were mainly conducted in male rodent models, and research into miRNA regulation in females and by female hormones in epilepsy is scarce. This is problematic because female sex and the menstrual cycle can affect the disease course of epilepsy and may, therefore, also alter the efficacy of potential miRNA-targeted treatments. Here, we used the proconvulsant miRNA miR-324-5p and its target, the potassium channel Kv4.2, as an example to test how miRNA-induced silencing and the efficacy of antagomirs in epilepsy are altered in female mice. We showed that Kv4.2 protein is reduced after seizures in female mice similar to male mice; however, in contrast to male mice, miRNA-induced silencing of Kv4.2 is unchanged, and miR-324-5p activity, as measured by the association with the RNA-induced silencing complex, is reduced in females after seizure. Moreover, an miR-324-5p antagomir does not consistently reduce seizure frequency or increase Kv4.2 in female mice. As a possible underlying mechanism, we found that miR-324-5p activity and the silencing of Kv4.2 in the brain were differentially correlated with plasma levels of 17ß-estradiol and progesterone. Our results suggest that hormonal fluctuations in sexually mature female mice influence miRNA-induced silencing and could alter the efficacy of potential future miRNA-based treatments for epilepsy in females.


Subject(s)
Epilepsy , MicroRNAs , Mice , Male , Female , Animals , MicroRNAs/genetics , Antagomirs/pharmacology , Progesterone/metabolism , Estradiol/metabolism , Hippocampus/metabolism , Disease Models, Animal , Seizures/chemically induced , Epilepsy/metabolism
10.
J Control Release ; 358: 259-272, 2023 06.
Article in English | MEDLINE | ID: mdl-37121514

ABSTRACT

Osteoporosis (OP) affects millions worldwide but currently cannot be cured. Suppressing the level of miR-214 in osteoclasts by the anti-miRNA oligonucleotide (AMO) anti-miR-214 reverses bone absorption and provides a potential treatment. Here we report a peptide-guided delivery strategy using red blood cell extracellular vesicles (RBCEVs) as the vehicle to realize osteoclast-targeted delivery of anti-miR-214. A bi-functional peptide, TBP-CP05, which binds to both the CD63 on RBCEVs and receptors on osteoclasts, acts as the guide. TBP-CP05 binds with RBCEVs through CP05, displays the TRAP-binding peptide (TBP) on the surface of EVs, and endows RBCEVs with osteoclast-targeting capability both in vitro and in vivo. Intravenous injection of the osteoclast-targeting RBCEVs (OT-RBCEVs) led to the enrichment of EVs in the bone skeleton, significant inhibition of the osteoclast activity, elevated osteoblast activity, and improved bone density in osteoporotic mice. Altogether, this work demonstrates efficient guidance of drug-loaded EVs to the targeted cells in vivo using bi-functional fusion peptides, and showcases that targeted delivery of anti-miR-214 by OT-RBCEVs may be a viable method for OP treatment. SIGNIFICANCE STATEMENT. Surface functionalization of EVs endows these nanovesicles cell-specific targeting property which guides the drug cargos to specific tissues and cells with higher accuracy, longer retention, and minimal off-target effects. Methods to functionalize EVs with minimal procedures are highly desired for clinical applications. Here we present a facile method using a bifunctional fusion peptide to guide RBCEVs to osteoclasts. A simple incubation of the bifunctional peptide and RBCEVs results in osteoclast-targeting RBCEVs (OT-RBCEVs) that effectively deliver anti-miR-214 to osteoclasts in vivo in a mouse model of osteoporosis, bringing a potential therapy to osteoporotic patients. This is, to our knowledge, the first report on peptide functionalization of RBCEVs and osteoclast-targeted delivery using RBCEVs.


Subject(s)
Extracellular Vesicles , MicroRNAs , Osteoporosis , Mice , Animals , Osteoclasts/metabolism , MicroRNAs/genetics , Oligonucleotides/genetics , Antagomirs/metabolism , Antagomirs/pharmacology , Osteoporosis/metabolism , Extracellular Vesicles/metabolism , Peptides/pharmacology , Erythrocytes/metabolism
11.
Zhonghua Zhong Liu Za Zhi ; 45(3): 230-237, 2023 Mar 23.
Article in Chinese | MEDLINE | ID: mdl-36944544

ABSTRACT

Objective: To explore the effect of lncRNA ADPGK-AS1 on the proliferation and apoptosis of retinoblastoma cells and its possible mechanism. Methods: The tumor tissues of 31 patients with retinoblastoma admitted to Henan Provincial Eye Hospital from February to June 2020 and their corresponding normal tissues adjacent to the cancer were collected. The expression levels of lncRNA ADPGK-AS1 and miR-200b-5p in retinoblastoma tissues and normal adjacent tissues were detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). Human retinal epithelial cell ARPE-19, human retinoblastoma cell Y-79 and WERI-Rb-1 were cultured in vitro. The expression levels of lncRNA ADPGK-AS1 and miR-200b-5p were detected by qRT-PCR. Y-79 cells were randomly divided into si-con group, si-lncRNA ADPGK-AS1 group, miR con group, miR-200b-5p group, si-lncRNA ADPGK-AS1+ anti-miR con group, and si-lncRNA ADPGK-AS1+ anti-miR-200b-5p group. The proliferation, cloning and apoptosis of cells in each group were detected by tetramethylazol blue method, plate cloning test and flow cytometry, respectively. The targeting relationship between lncRNA ADPGK-AS1 and miR-200b-5p was detected by double luciferase report test, and the expression level of cleaved-caspase-3 protein was detected by western blot. Results: Compared with the adjacent tissues, the expression of lncRNA ADPGK-AS1 in retinoblastoma tissues was increased (P<0.05), while the expression of miR-200b-5p was decreased (P<0.05). Compared with ARPE-19 cells, the expression of lncRNA ADPGK-AS1 in Y-79 and WERI-Rb-1 cells was increased (P<0.05), while the expression of miR-200b-5p was decreased (P<0.05). Compared with the si-con group, the cell viability of the si-lncRNA ADPGK-AS1 group was reduced (1.06±0.09 vs 0.53±0.05, P<0.05), the number of cell clone formation was reduced (114.00±8.03 vs 57.00±4.13, P<0.05), while the apoptosis rate [(7.93±0.68)% vs (25.43±1.94)%] and the protein level of cleaved-caspase-3 were increased (P<0.05). Compared with the miR-con group, the cell viability of the miR-200b-5p group was decreased (1.05±0.08 vs 0.57±0.05, P<0.05), the number of cell clone formation was decreased (118.00±10.02 vs 64.00±5.13, P<0.05), while the apoptosis rate [(7.89±0.71)% vs (23.15±1.62)%] and the protein level of cleaved-caspase-3 were increased (P<0.05). lncRNA ADPGK-AS1 could target the expression of miR-200b-5p. Compared with the si-lncRNA ADPGK-AS1+ anti-miR-con group, cell viability of the si-lncRNA ADPGK-AS1+ anti-miR-200b-5p group was increased (0.53±0.04 vs 1.25±0.10, P<0.05), and the number of cell clones was increased (54.00±4.39 vs 125.00±10.03, P<0.05), while the rate of apoptosis [(25.38±1.53)% vs (9.76±0.71)%] and the protein level of cleaved-caspase-3 were decreased (P<0.05). Conclusion: Interfering with the expression of lncRNA ADPGK-AS1 could inhibit the proliferation and clone formation and induce apoptosis of retinoblastoma cells by targeting the expression of miR-200b-5p.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Retinal Neoplasms , Retinoblastoma , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Retinoblastoma/genetics , Retinoblastoma/pathology , Caspase 3/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Antagomirs/pharmacology , Cell Proliferation , Cell Line, Tumor , Apoptosis/genetics , Retinal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
12.
Biomaterials ; 295: 122049, 2023 04.
Article in English | MEDLINE | ID: mdl-36827892

ABSTRACT

Alcohol-associated liver disease (ALD) and its complications are significant health problems worldwide. Several pathways in ALD are influenced by alcohol that drives inflammation, fatty acid metabolism, and fibrosis. Although miR-96 has become a key regulator in several liver diseases, its function in ALD remains unclear. In contrast, sonic hedgehog (SHH) signaling has a well-defined role in liver disease through influencing the activation of hepatic stellate cells (HSCs) and the inducement of liver fibrosis. In this study, we investigated the expression patterns of miR-96 and Hh molecules in mouse and human liver samples. We showed that miR-96 and Shh were upregulated in ethanol-fed mice. Furthermore, alcoholic hepatitis (AH) patient specimens also showed upregulated FOXO3a, TGF-ß1, SHH, and GLI2 proteins. We then examined the effects of Hh inhibitor MDB5 and anti-miR-96 on inflammatory and extracellular matrix (ECM)-related genes. We identified FOXO3 and SMAD7 as direct target genes of miR-96. Inhibition of miR-96 decreased the expression of these genes in vitro in AML12 cells, HSC-T6 cells, and in vivo in ALD mice. Furthermore, MDB5 decreased HSCs activation and the expression of ECM-related genes, such as Gli1, Tgf-ß1, and collagen. Lipid nanoparticles (LNPs) loaded with the combination of MDB5, and anti-miR-96 ameliorated ALD in mice. Our study demonstrated that this combination therapy could serve as a new therapeutic target for ALD.


Subject(s)
MicroRNAs , Transforming Growth Factor beta1 , Animals , Humans , Mice , Antagomirs/pharmacology , Ethanol/adverse effects , Hedgehog Proteins/metabolism , Liver/pathology , Liver Cirrhosis/drug therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Transforming Growth Factor beta1/metabolism
13.
Inflamm Res ; 72(4): 715-729, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36749385

ABSTRACT

INTRODUCTION: Sepsis or endotoxemia can induce intestinal dysfunction in the epithelial and immune barrier. Th17 cells, a distinct subset of CD4+ T-helper cells, act as "border patrol" in the intestine under pathological condition and in the previous studies, Th17 cells exhibited an ambiguous function in intestinal inflammation. Our study will explore a specific role of Th17 cells and its relevant mechanism in endotoxemia-induced intestinal injury. MATERIALS AND METHODS: Lipopolysaccharide was used to establish mouse model of endotoxemia. miR-681 was analyzed by RT-PCR and northern blot analysis and its regulation by HIF-1α was determined by chromatin immunoprecipitation and luciferase reporter assay. Intestinal Th17 cells isolated from endotoxemic mice were quantitatively evaluated by flow cytometry and its recruitment to the intestine controlled by miR-681/CCR6 pathway was assessed by using anti-miRNA treatment and CCR6 knockout mice. Intestinal histopathology, villus length, intestinal inflammation, intestinal permeability, bacterial translocation and survival were investigated, by histology and TUNEL analysis, ELISA, measurement of diamine oxidase, bacterial culture, with or without anti-miR-681 treatment in endotoxemic wild-type and (or) CCR6 knockout mice. RESULTS: In this study, we found that miR-681 was significantly promoted in intestinal Th17 cells during endotoxemia, which was dependent on hypoxia-inducible factor-1α (HIF-1α). Interestingly, miR-681 could directly suppress CCR6, which was a critical modulator for Th17 cell recruitment to the intestines. In vivo, anti-miR-681 enhanced survival, increased number of intestinal Th17 cells, reduced crypt and villi apoptosis, decreased intestinal inflammation and bacterial translocation, resulting in protection against endotoxemia-induced intestinal injury in mice. However, CCR6 deficiency could neutralize the beneficial effect of anti-miR-681 on the intestine during endotoxemia, suggesting that the increment of intestinal Th17 cells caused by anti-miR-681 relies on CCR6 expression. CONCLUSION: The results of the study indicate that control of intestinal Th17 cells by regulating novel miR-681/CCR6 signaling attenuates endotoxemia-induced intestinal injury.


Subject(s)
Endotoxemia , Th17 Cells , Mice , Animals , Endotoxemia/metabolism , Antagomirs/metabolism , Antagomirs/pharmacology , Intestines , Intestinal Mucosa , Receptors, CCR6/genetics
14.
Nat Commun ; 14(1): 1129, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854749

ABSTRACT

Tissue injury to skin diminishes miR-200b in dermal fibroblasts. Fibroblasts are widely reported to directly reprogram into endothelial-like cells and we hypothesized that miR-200b inhibition may cause such changes. We transfected human dermal fibroblasts with anti-miR-200b oligonucleotide, then using single cell RNA sequencing, identified emergence of a vasculogenic subset with a distinct fibroblast transcriptome and demonstrated blood vessel forming function in vivo. Anti-miR-200b delivery to murine injury sites likewise enhanced tissue perfusion, wound closure, and vasculogenic fibroblast contribution to perfused vessels in a FLI1 dependent manner. Vasculogenic fibroblast subset emergence was blunted in delayed healing wounds of diabetic animals but, topical tissue nanotransfection of a single anti-miR-200b oligonucleotide was sufficient to restore FLI1 expression, vasculogenic fibroblast emergence, tissue perfusion, and wound healing. Augmenting a physiologic tissue injury adaptive response mechanism that produces a vasculogenic fibroblast state change opens new avenues for therapeutic tissue vascularization of ischemic wounds.


Subject(s)
Fibroblasts , Skin , Wound Healing , Animals , Humans , Mice , Antagomirs/pharmacology , Antagomirs/therapeutic use , Fibroblasts/metabolism , Fibroblasts/physiology , Oligonucleotides/pharmacology , Skin/metabolism , Wound Healing/genetics , Wound Healing/physiology
15.
Brain Res ; 1800: 148192, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36463959

ABSTRACT

BACKGROUND: Hypoxia-ischemic brain damage (HIBD) is a primary cause of morbidity and disability in survivors of preterm infants. We previously discovered that miR-200b-3p plays an important role in HIBD via targeting Slit2. This study was designed to identify novel targets of miR-200b-3p and investigate the relationship between miR-200b-3p and its downstream effectors. METHODS AND RESULTS: Cultured primary rat hippocampal neurons were used in the model of oxygen-glucose deprivation (OGD) and RT-qPCR was utilized to detect the alterations of miR-200b-3p in these cells following the OGD. Our study found that the expression of miR-200b-3p was up-regulated in neurons post OGD. Bioinformatics analysis identified that ß transducin repeat-containing protein (ß-TrCP) is a target gene of miR-200b-3p, and our luciferase reporter gene assay confirmed that miR-200b-3p can interact with ß-TrCP mRNA. Hypoxia-ischemic brain damage was induced in three-day-old SD rats and inhibition of miR-200b-3p by injection of antagomir into bilateral lateral ventricles enhanced ß-TrCP expression at both the mRNA and protein levels in rats' brains. TUNEL staining and CCK-8 assays found that the survival of hippocampal neurons in the miR-200b-3p antagomir group was improved significantly (p<0.05), whereas apoptosis of neurons in the miR-200b-3p antagomir group was significantly decreased (p<0.05), as compared with the OGD group. However, silencing of ß-TrCP by ß-TrCP siRNA impaired the neuroprotective effect of miR-200b-3p antagomir. H&E staining showed that miR-200b-3p attenuated the pathological changes in the hippocampal region of rats with HIBD. CONCLUSION: Our study has demonstrated that ß-TrCP is a target gene of miR-200b-3p and that inhibition of miR-200b-3p by antagomir attenuates hypoxia-ischemic brain damage via ß-TrCP.


Subject(s)
Hypoxia-Ischemia, Brain , MicroRNAs , Infant, Newborn , Humans , Rats , Animals , Oxygen/metabolism , MicroRNAs/metabolism , beta-Transducin Repeat-Containing Proteins/pharmacology , Antagomirs/pharmacology , Rats, Sprague-Dawley , Glucose/pharmacology , Infant, Premature , Hypoxia-Ischemia, Brain/pathology , Apoptosis , RNA, Messenger
16.
J Biochem Mol Toxicol ; 37(2): e23245, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36281492

ABSTRACT

We found that the expression of microRNA (miRNA)-9a-5p decreased in inflammatory bowel diseases (IBD; ulcerative colitis and Crohn's disease). Further, we revealed the effects and mechanisms of miRNA-9a-5p for regulating IBD progression. In C57BL/6N mice, IBD was induced with dextran sodium sulfate (DSS), and the effects of endogenous miRNA-9a-5p were mimicked/antagonized through intraperitoneal injection of miRNA-9a-5p agomir and antagomir. In animal experimentation, agomir could inhibit intestinal inflammation and tissue damage, and reduce the mucosal barrier permeability. Antagomir, on the other hand, could promote barrier damage, whose effect was associated with the M1 macrophage polarization. This study finds that miRNA-9a-5p targets NOX4 to suppress ROS production, which plays an important role in mucosal barrier damage in IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , MicroRNAs , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Antagomirs/pharmacology , Mice, Inbred C57BL , Inflammatory Bowel Diseases/chemically induced , Macrophages/metabolism , Disease Models, Animal , NADPH Oxidase 4/genetics
17.
Chinese Journal of Oncology ; (12): 230-237, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-969829

ABSTRACT

Objective: To explore the effect of lncRNA ADPGK-AS1 on the proliferation and apoptosis of retinoblastoma cells and its possible mechanism. Methods: The tumor tissues of 31 patients with retinoblastoma admitted to Henan Provincial Eye Hospital from February to June 2020 and their corresponding normal tissues adjacent to the cancer were collected. The expression levels of lncRNA ADPGK-AS1 and miR-200b-5p in retinoblastoma tissues and normal adjacent tissues were detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). Human retinal epithelial cell ARPE-19, human retinoblastoma cell Y-79 and WERI-Rb-1 were cultured in vitro. The expression levels of lncRNA ADPGK-AS1 and miR-200b-5p were detected by qRT-PCR. Y-79 cells were randomly divided into si-con group, si-lncRNA ADPGK-AS1 group, miR con group, miR-200b-5p group, si-lncRNA ADPGK-AS1+ anti-miR con group, and si-lncRNA ADPGK-AS1+ anti-miR-200b-5p group. The proliferation, cloning and apoptosis of cells in each group were detected by tetramethylazol blue method, plate cloning test and flow cytometry, respectively. The targeting relationship between lncRNA ADPGK-AS1 and miR-200b-5p was detected by double luciferase report test, and the expression level of cleaved-caspase-3 protein was detected by western blot. Results: Compared with the adjacent tissues, the expression of lncRNA ADPGK-AS1 in retinoblastoma tissues was increased (P<0.05), while the expression of miR-200b-5p was decreased (P<0.05). Compared with ARPE-19 cells, the expression of lncRNA ADPGK-AS1 in Y-79 and WERI-Rb-1 cells was increased (P<0.05), while the expression of miR-200b-5p was decreased (P<0.05). Compared with the si-con group, the cell viability of the si-lncRNA ADPGK-AS1 group was reduced (1.06±0.09 vs 0.53±0.05, P<0.05), the number of cell clone formation was reduced (114.00±8.03 vs 57.00±4.13, P<0.05), while the apoptosis rate [(7.93±0.68)% vs (25.43±1.94)%] and the protein level of cleaved-caspase-3 were increased (P<0.05). Compared with the miR-con group, the cell viability of the miR-200b-5p group was decreased (1.05±0.08 vs 0.57±0.05, P<0.05), the number of cell clone formation was decreased (118.00±10.02 vs 64.00±5.13, P<0.05), while the apoptosis rate [(7.89±0.71)% vs (23.15±1.62)%] and the protein level of cleaved-caspase-3 were increased (P<0.05). lncRNA ADPGK-AS1 could target the expression of miR-200b-5p. Compared with the si-lncRNA ADPGK-AS1+ anti-miR-con group, cell viability of the si-lncRNA ADPGK-AS1+ anti-miR-200b-5p group was increased (0.53±0.04 vs 1.25±0.10, P<0.05), and the number of cell clones was increased (54.00±4.39 vs 125.00±10.03, P<0.05), while the rate of apoptosis [(25.38±1.53)% vs (9.76±0.71)%] and the protein level of cleaved-caspase-3 were decreased (P<0.05). Conclusion: Interfering with the expression of lncRNA ADPGK-AS1 could inhibit the proliferation and clone formation and induce apoptosis of retinoblastoma cells by targeting the expression of miR-200b-5p.


Subject(s)
Humans , MicroRNAs/metabolism , Retinoblastoma/pathology , Caspase 3/metabolism , RNA, Long Noncoding/metabolism , Antagomirs/pharmacology , Cell Proliferation , Cell Line, Tumor , Apoptosis/genetics , Retinal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
18.
Journal of Experimental Hematology ; (6): 1032-1037, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009960

ABSTRACT

OBJECTIVE@#To investigate the effects of long non-coding RNA (lncRNA) GATA3 antisense RNA 1 (GATA3-AS1) targeting miR-515-5p on the proliferation and apoptosis of childhood acute lymphoblastic leukemia (ALL) cells.@*METHODS@#RT-qPCR was used to determine the expression of GATA3-AS1 and miR-515-5p in the plasma of controls and ALL children. Human ALL cells Jurkat were divided into si-GATA3-AS1, si-NC, miR-NC, miR-515-5p, si-GATA3-AS1+anti-miR-NC and si-GATA3-AS1+anti-miR-515-5p groups. CCK-8 assay was used to detect the cell proliferation, and flow cytometry was used to detect the cell apoptosis. The targeting relationship between GATA3-AS1 and miR-515-5p was determined by dual-luciferase reporter assay.@*RESULTS@#The expression level of GATA3-AS1 in the plasma of ALL children was significantly higher than that of controls (P <0.001), while the expression level of miR-515-5p was significantly lower than that of controls (P <0.001). Compared with the si-NC group, the cell inhibition rate, apoptosis rate, and miR-515-5p expression level in si-GATA3-AS1 group were significantly increased (P <0.001). Compared with the miR-NC group, the cell inhibition rate and apoptosis rate in miR-515-5p group were significantly increased (P <0.001). GATA3-AS1 could directly and specifically bind to miR-515-5p. Compared with the si-GATA3-AS1+anti-miR-NC group, the cell inhibition rate and apoptosis rate in si-GATA3-AS1+anti-miR-515-5p group were significantly decreased (P <0.001).@*CONCLUSION@#Down-regulation of GATA3-AS1 can inhibit proliferation and induce apoptosis of childhood ALL cells by targeting up-regulation of miR-515-5p expression.


Subject(s)
Child , Humans , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Antagomirs/pharmacology , Cell Line, Tumor , Cell Proliferation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Apoptosis , Gene Expression Regulation, Neoplastic , GATA3 Transcription Factor/metabolism
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(11): 998-1004, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36328430

ABSTRACT

Objective To investigate the effect of miR-29a interference on mitochondrial fusion and fission of cardiomyocytes induced by oxygen and glucose deprivation/reoxygenation (OGD/R). Methods H9c2 cells were divided into normal control group, model group, negative control group and miR-29a interference group. Rat H9c2 cardiomyocyte injury model was induced by OGD/R. Negative control (NC) group cells were transfected with anti-NC, while miR-29a interference group cells were transfected with anti-miR-29a, and normal control group cells were not transfected. Reverse transcription PCR was used to detect miR-29a interference efficiency, along with CCK-8 assay to detect cell proliferation ratio, flow cytometry to detect cell apoptosis rate and mitochondrial membrane potential change, and kit to detect superoxide dismutase(SOD), malondialdehyde (MDA), lactate dehydrogenase (LDH)contents. Western blot analysis was employed to test the levels of Bcl2-associated X protein (BAX), Bcl2 antagonist/killer (BAK), caspase-9, mitochondrial fission protein 1(Fis1), mitofusin 1 (Mfn1), Mfn2, optic atrophy 1(OPA1), phosphoryerated extracellular signal-regulated kinase (p-ERK) and phosphoryerated dynamin related protein-1(p-Drp1). Results Compared with OGD/R group, the expression level of miR-29a of H9c2 cells in OGD/R group treated with anti-miR-29a decreased significantly, together with the findings including significantly increased cell proliferation factor, decreased apoptosis rate, increased SOD content, decreased MDA and LDH contents, as well as significantly increased mitochondrial membrane potential. The protein levels of BAX, BAK, caspase-9, Fis1, Mfn1, Mfn2, OPA1, p-ERK and p-Drp1 significantly decreased. Conclusion Interference with miR-29a expression can promote OGD/R-induced proliferation of H9c2 cells, inhibit cell apoptosis, reduce mitochondrial oxidative stress level, enhance mitochondrial membrane potential, and alleviate mitochondrial over-fusion and fission of myocardial cells.


Subject(s)
MicroRNAs , Myocytes, Cardiac , Rats , Animals , Mitochondrial Dynamics , Glucose/metabolism , Oxygen/pharmacology , Oxygen/metabolism , Down-Regulation , bcl-2-Associated X Protein/metabolism , Caspase 9/metabolism , Antagomirs/metabolism , Antagomirs/pharmacology , Apoptosis , Superoxide Dismutase/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
20.
Neuropharmacology ; 219: 109250, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36088985

ABSTRACT

MicroRNAs (or miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression. Recently, we reported that the nuclear factor of activated T cells 4 (NFATc4) signaling might contribute to sustained prophylactic effects of new antidepressant (R)-ketamine in lipopolysaccharide (LPS)-treated inflammation model of depression. In this study, we examined the role of miRNAs (miR-149 and miR-7688-5p) which can regulate NFATc4 in the prefrontal cortex (PFC) of male mice after administration of LPS (1.0 mg/kg). There was a positive correlation between the expression of Nfatc4 and the expression of miR-149 in the PFC. There was also a negative correlation between gene expression of Nfatc4 and gene expression of miR-7688-5p in the PFC. Gut microbiota analysis showed that pretreatment with (R)-ketamine (10 mg/kg) could restore altered composition of gut microbiota in LPS-treated mice. A network analysis showed that gut microbiota may regulate gene expression of Nfatc4 and miR-149 (or miR-7688-5p) in the PFC. Finally, inhibition of miR-149 by antagomiR-149 blocked LPS-induced depression-like behavior by attenuating LPS-induced expression of NFATc4 in the PFC. These findings suggest that the regulation of NFATc4 signaling by miR-149 might play a role in persistent prophylactic effects of (R)-ketamine, and that gut microbiota may regulate the gene expression of miRNAs in the PFC through gut-microbiota-brain axis.


Subject(s)
Ketamine , MicroRNAs , Animals , Antagomirs/metabolism , Antagomirs/pharmacology , Antidepressive Agents/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Ketamine/metabolism , Ketamine/pharmacology , Lipopolysaccharides/pharmacology , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Prefrontal Cortex
SELECTION OF CITATIONS
SEARCH DETAIL