Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 306
Filter
1.
Bioorg Chem ; 148: 107435, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762999

ABSTRACT

BACKGROUND: Pyridine and its derivatives play a vital role in medicinal chemistry, serving as key scaffolds for drugs. The ability to bind to biological targets makes pyridine compounds significant, sparking interest in creating new pyridine-based drugs. Thus, the purpose of the research is to synthesize new thioalkyl derivatives of pyridine, predict their biological spectrum, study their psychotropic properties, and based on these findings, perform structure-activity relationships to assess pharmacophore functional groups. METHODS: Classical organic methods were employed for synthesizing new thioalkyl derivatives of pyridine, with a multifaceted pharmacological profiles. Various software packages and methods were employed to evaluate the biological spectrum of the newly synthesized compounds. For the evaluation of neurotropic activity of new synthesized compounds, some biological methods were used according to indicators characterizing anticonvulsant, sedative and antianxiety activity as well as side effects. RESULTS: Effective synthetic methods for 6-amino-4-phenyl-2-thio-2H-thiopyran-5-carboxylic acid ethyl ester, 2-amino substituted thiopyridine derivatives and 6-cycloamino-2-thioalkyl-4-phenylnicotinate derivatives were obtained in high yield. Predicted biological spectra and pharmacokinetic data indicated high gastrointestinal absorption and low blood-brain barrier passage for most compounds and demonstrated potential various biological effects, particularly psychotropic properties. Studied compounds demonstrated high anticonvulsant activity through antagonism with pentylenetetrazole. They exhibited low toxicity without inducing muscle relaxation in the studied doses. In psychotropic studies, the compounds displayed activating, sedative, and anxiolytic effects. Notably, the 6-amino-2-thioalkyl-4-phenylnicotinate derivatives demonstrated significant anxiolytic activity (about four times more compared to diazepam). They also exhibited pronounced sedative effects. Ethyl 2-({2-[(diphenylmethyl)amino]-2-oxoethyl}thio)-4-phenyl-6-pyrrolidin-1-ylnicotinate exhibited anxiolytic activity even two times greater than diazepam. Moreover, all studied compounds showed statistically significant antidepressant effects. Noteworthy ethyl 2-({2-oxo-2-[(tetrahydrofuran-2-ylmethyl)amino]ethyl}thio)-4-phenyl-6-pyrrolidin-1-ylnicotinate showcasing its unique psychotropic effect. CONCLUSIONS: The selected compounds demonstrate anticonvulsant properties, activating behavior, and anxiolytic effects, while simultaneously exhibiting antidepressant effects and these compounds as promising candidates for further exploration in the development of therapeutics with a broad spectrum of neuropsychiatric applications.


Subject(s)
Anti-Anxiety Agents , Anticonvulsants , Pyridines , Structure-Activity Relationship , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/pharmacology , Anticonvulsants/chemistry , Mice , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Molecular Structure , Dose-Response Relationship, Drug , Male , Seizures/drug therapy , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/chemical synthesis , Hypnotics and Sedatives/chemistry , Pentylenetetrazole
2.
Chem Biodivers ; 21(8): e202400935, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38818650

ABSTRACT

The study focuses on the anxiolytic potential of chalcone (2E,4E)-1-(2-hydroxyphenyl)-5-phenylpenta-2,4-dien-1-one (CHALCNM) in adult zebrafish. Successfully synthesized in 58 % yield, CHALCNM demonstrated no toxicity after 96 h of exposure. In behavioral tests, CHALCNM (40 mg/kg) reduced locomotor activity and promoted less anxious behavior in zebrafish, confirmed by increased permanence in the light zone of the aquarium. Flumazenil reversed its anxiolytic effect, indicating interaction with GABAA receptors. Furthermore, CHALCNM (4 and 20 mg/kg) preserved zebrafish memory in inhibitory avoidance tests. Virtual screening and ADMET profile studies suggest high oral bioavailability, access to the CNS, favored by low topological polarity (TPSA≤75 Å2) and low incidence of hepatotoxicity, standing out as a promising pharmacological agent against the GABAergic system. In molecular coupling, CHALCNM demonstrated superior affinity to diazepam for the GABAA receptor. These results reinforce the therapeutic potential of CHALCNM in the treatment of anxiety, highlighting its possible future clinical application.


Subject(s)
Anti-Anxiety Agents , Behavior, Animal , Chalcone , Zebrafish , Animals , Behavior, Animal/drug effects , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/analogs & derivatives , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/chemical synthesis , Receptors, GABA-A/metabolism , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Molecular Structure , Molecular Docking Simulation , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Locomotion/drug effects , Structure-Activity Relationship
3.
Molecules ; 26(11)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34205930

ABSTRACT

BACKGROUND: Neurotic disturbances, anxiety, neurosis-like disorders, and stress situations are widespread. Benzodiazepine tranquillizers have been found to be among the most effective antianxiety drugs. The pharmacological action of benzodiazepines is due to their interaction with the supra-molecular membrane GABA-a-benzodiazepine receptor complex, linked to the Cl-ionophore. Benzodiazepines enhance GABA-ergic transmission and this has led to a study of the role of GABA in anxiety. The search for anxiolytics and anticonvulsive agents has involved glutamate-ergic, 5HT-ergic substances and neuropeptides. However, each of these well-known anxiolytics, anticonvulsants and cognition enhancers (nootropics) has repeatedly been reported to have many adverse side effects, therefore there is an urgent need to search for new drugs able to restore damaged cognitive functions without causing significant adverse reactions. OBJECTIVE: Considering the relevance of epilepsy diffusion in the world, we have addressed our attention to the discovery of new drugs in this field Thus our aim is the synthesis and study of new compounds with antiepileptic (anticonvulsant) and not only, activity. METHODS: For the synthesis of compounds classical organic methods were used and developed. For the evaluation of biological activity some anticonvulsant and psychotropic methods were used. RESULTS: As a result of multistep reactions 26 new, five-membered heterocyclic systems were obtained. PASS prediction of anticonvulsant activity was performed for the whole set of the designed molecules and probability to be active Pa values were ranging from 0.275 to 0.43. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures, anti-thiosemicarbazides effect as well as some psychotropic effect. The biological assays evidenced that some of the studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of compounds is low and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity it was found that the selected compounds have an activating behavior and anxiolytic effects on the models of "open field" and "elevated plus maze" (EPM). The data obtained indicate the anxiolytic (anti-anxiety) activity of the derivatives of pyrimidines, especially pronounced in compounds 6n, 6b, and 7c. The studied compounds increase the latent time of first immobilization on the model of "forced swimming" (FST) and exhibit some antidepressant effect similarly to diazepam. Docking studies revealed that compound 6k bound tightly in the active site of GABAA receptor with a value of the scoring function that estimates free energy of binding (ΔG) at -7.95 kcal/mol, while compound 6n showed the best docking score and seems to be dual inhibitor of SERT transporter as well as 5-HT1A receptor. CONCLUSIONS: Тhe selected compounds have an anticonvulsant, activating behavior and anxiolytic effects, at the same time exhibit some antidepressant effect.


Subject(s)
Azepines/administration & dosage , Azepines/chemical synthesis , Pyrimidines/administration & dosage , Pyrimidines/chemical synthesis , Seizures/drug therapy , Animals , Anti-Anxiety Agents/administration & dosage , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Anticonvulsants/administration & dosage , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Azepines/chemistry , Azepines/pharmacology , Disease Models, Animal , Male , Maze Learning/drug effects , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Pentylenetetrazole/adverse effects , Pyrimidines/chemistry , Pyrimidines/pharmacology , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Rats , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Seizures/chemically induced , Seizures/physiopathology
4.
Article in English | MEDLINE | ID: mdl-33741446

ABSTRACT

More than 500 molecules have been identified as components of Cannabis sativa (C. sativa), of which the most studied is Δ9-tetrahydrocannabinol (Δ9-THC). Several studies have suggested that Δ9-THC exerts diverse biological effects, ranging from fragmentation of DNA to behavioral disruptions. Currently, it is accepted that most of the pharmacological properties of Δ9-THC engage the activation of the cannabinoid receptors, named CB1 and CB2. Interestingly, multiple pieces of evidence have suggested that the cannabinoid receptors play an active role in the modulation of several diseases leading to the design of synthetic cannabinoid-like compounds. Advances in the development of synthetic CB1 cannabinoid receptor selective agonists as therapeutical approaches are, however, limited. This review focuses on available evidence searched in PubMed regarding the synthetic CB1 cannabinoid receptor selective agonists such as AM-1235, arachidonyl-2' chloroethylamide (ACEA), CP 50,556-1 (Levonantradol), CP-55,940, HU-210, JWH-007, JWH-018, JWH-200 (WIN 55,225), methanandamide, nabilone, O-1812, UR-144, WIN 55,212-2, nabiximols, and dronabinol. Indeed, it would be ambitious to describe all available evidence related to the synthetic CB1 cannabinoid receptor selective agonists. However, and despite the positive evidence on the positive results of using these compounds in experimental models of health disturbances and preclinical trials, we discuss evidence in regards some concerns due to side effects.


Subject(s)
Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/therapeutic use , Controlled Substances/chemical synthesis , Receptor, Cannabinoid, CB1/agonists , Analgesics/chemical synthesis , Analgesics/therapeutic use , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/therapeutic use , Cannabinoids/chemical synthesis , Cannabinoids/therapeutic use , Controlled Substances/administration & dosage , Cyclohexanols/chemical synthesis , Cyclohexanols/therapeutic use , Dronabinol/analogs & derivatives , Dronabinol/chemical synthesis , Dronabinol/therapeutic use , Humans , Mental Disorders/drug therapy , Mental Disorders/metabolism , Pain/drug therapy , Pain/metabolism , Phenanthridines/chemical synthesis , Phenanthridines/therapeutic use , Receptor, Cannabinoid, CB1/metabolism
5.
Bioorg Chem ; 109: 104737, 2021 04.
Article in English | MEDLINE | ID: mdl-33631464

ABSTRACT

Benzodiazepines (BZDs) have been widely used in neurological disorders such as insomnia, anxiety, and epilepsy. The use of classical BZDs, e.g., diazepam, has been limited due to adverse effects such as interaction with alcohol, ataxia, amnesia, psychological and physical dependence, and tolerance. In the quest for new benzodiazepine agonists with more selectivity and low adverse effects, novel derivatives of 4,6-diphenylpyrimidin-2-ol were designed, synthesized, and evaluated. In this series, compound 2, 4-(2-(benzyloxy)phenyl)-6-(4-fluorophenyl)pyrimidin-2-ol, was the most potent analogue in radioligand binding assay with an IC50 value of 19 nM compared to zolpidem (IC50 = 48 nM), a nonbenzodiazepine central BZD receptor (CBR) agonist. Some compounds with a variety of affinities in radioligand receptor binding assay were selected for in vivo evaluations. Compound 3 (IC50 = 25 nM), which possessed chlorine instead of fluorine in position 4 of the phenyl ring, exhibited an excellent ED50 value in most in vivo tests. Proper sedative-hypnotic effects, potent anticonvulsant activity, appropriate antianxiety effect, and no memory impairment probably served compound 3, a desirable candidate as a benzodiazepine agonist. The pharmacological effects of compound 3 were antagonized by flumazenil, a selective BZD receptor antagonist, confirming the BZD receptors' involvement in the biological effects of the novel ligand.


Subject(s)
Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , GABA-A Receptor Agonists/pharmacology , Pyrimidines/pharmacology , Receptors, GABA-A/metabolism , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Anxiety/metabolism , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , GABA-A Receptor Agonists/chemical synthesis , GABA-A Receptor Agonists/chemistry , Ligands , Male , Mice , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
6.
Molecules ; 25(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158242

ABSTRACT

The translocator protein (TSPO, 18 kDa) plays an important role in the synthesis of neurosteroids by promoting the transport of cholesterol from the outer to the inner mitochondrial membrane, which is the rate-limiting step in neurosteroidogenesis. Stimulation of TSPO by appropriate ligands increases the level of neurosteroids. The present study describes the design, synthesis and investigation of anxiolytic-like effects of a series of N-acyl-tryptophanyl-containing dipeptides. These novel dipeptide TSPO ligands were designed with the original drug-based peptide design strategy using alpidem as non-peptide prototype. The anxiolytic activities were investigated in Balb/C mice using the illuminated open-field and elevated plus-maze tests in outbred laboratory mice ICR (CD-1). Dipeptide GD-102 (N-phenylpropionyl-l-tryptophanyl-l-leucine amide) in the dose range of 0.01-0.5 mg/kg intraperitoneally (i.p.) has a pronounced anxiolytic activity. The anxiolytic effect of GD-102 was abolished by PK11195, a specific TSPO antagonist. The structure-activity relationship study made it possible to identify a pharmacophore fragment for the dipeptide TSPO ligand. It was shown that l,d-diastereomer of GD-102 has no activity, and the d,l-isomer has less pronounced activity. The anxiolytic activity also disappears by replacing the C-amide group with the methyl ester, a free carboxyl group or methylamide. Consecutive replacement of each amino acid residue with glycine showed the importance of each of the amino acid residues in the structure of the ligand. The most active and technologically available compound GD-102, was selected for evaluation as a potential anxiolytic drug.


Subject(s)
Anti-Anxiety Agents , Dipeptides , Maze Learning/drug effects , Receptors, GABA/metabolism , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Dipeptides/chemical synthesis , Dipeptides/chemistry , Dipeptides/pharmacology , Ligands , Male , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Structure-Activity Relationship
7.
Eur J Med Chem ; 200: 112405, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32492595

ABSTRACT

A series of 4-phenyl-6H-imidazo[1,5-a]thieno[3,2-f][1,4]diazepine-7-carboxylate esters were synthesized and tested as central benzodiazepine receptor (CBR) ligands by the ability to displace [3H]flumazenil from rat cortical membranes. All the compounds showed high affinity with IC50 values ranging from 5.19 to 16.22 nM. In particular, compounds 12b (IC50 = 8.66 nM) and 12d (IC50 = 5.19 nM) appeared as the most effective ligands being their affinity values significantly lower than that of diazepam (IC50 = 18.52 nM). Compounds 12a-f were examined in vivo for their pharmacological effects in mice and five potential benzodiazepine (BDZ) actions were thus taken into consideration: anxiolytic, anticonvulsant, anti-amnesic, hypnotic, and locomotor activities. All the new synthesized compounds were able to induce a significant antianxiety effect and, among them, compound 12f protected pentylenetetrazole (PTZ)-induced convulsions in a dose-dependent manner reaching a 40% effect at 30 mg/kg. In addition, all the compounds were able to significantly prevent the memory impairment evoked by scopolamine, while none of them was able to interfere with pentobarbital-evoked sleep and influence motor coordination. Moreover, title compounds did not affect locomotor and exploratory activity at the same time and doses at which the anti-anxiety effect was observed. Finally, molecular docking simulations were carried out in order to assess the binding mode for compounds 12a-f. The obtained results demonstrated that these compounds bind the BDZ binding site in a similar fashion to flumazenil.


Subject(s)
Anti-Anxiety Agents/chemical synthesis , Benzodiazepines/chemistry , Drug Design , Animals , Anti-Anxiety Agents/pharmacology , Anticonvulsants , Benzodiazepines/metabolism , Binding Sites , Locomotion/drug effects , Memory Disorders/chemically induced , Memory Disorders/prevention & control , Mice , Molecular Docking Simulation , Rats , Receptors, GABA-A/metabolism
8.
Bioorg Med Chem Lett ; 30(9): 127063, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32139323

ABSTRACT

The first study about the anxiolytic activity of two chiral tetrahydrocarbazoles is presented. This new chiral compounds were prepared through an organocatalytic strategy via trienamine activation. The in situ ortho-quinodimethane species, formed by the condensation of the N-protected 2-methylindole acrylaldehyde with a sterically hindred diarylsilylprolinol ether derivative as catalyst, easily participate in a Diels-Alder reaction with the ethyl cyanophenyl acrylate as dienophile, in good yields and excellent stereoselectivity. These compounds showed activity against anxiety and mood disorders that can possibly contribute in the discovery of new drugs. In addition, the use of N-protected 2-methylindole acrylaldehyde will set a new base for the synthesis of medically and pharmacologically important tetrahydrocarbazoles via trienamine catalysis.


Subject(s)
Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/pharmacology , Carbazoles/chemical synthesis , Carbazoles/pharmacology , Animals , Mice , Mice, Inbred BALB C , Molecular Structure , Structure-Activity Relationship
9.
J Enzyme Inhib Med Chem ; 35(1): 805-814, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32183602

ABSTRACT

Multi-target drugs can better address the cascade of events involved in oxidative stress and the reduction in cholinergic transmission that occur in Alzheimer's disease than cholinesterase inhibitors alone. We synthesised a series of 3-arylbenzofuranone derivatives and evaluated their antioxidant activity, cholinesterase inhibitory activity, and monoamine oxidase inhibitory activity. 3-Arylbenzofuranone compounds exhibit good antioxidant activity as well as selective acetylcholinesterase inhibitory activity. The IC50 value of anti-acetylcholinesterase inhibition of Compound 20 (0.089 ± 0.01 µM) is similar to the positive drug donepezil (0.059 ± 0.003 µM). According to the experimental results, Compounds 7, 13 show a certain effect in the in vitro evaluation performed and have the potential as drug candidates for the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Anti-Anxiety Agents/pharmacology , Antioxidants/pharmacology , Benzofurans/pharmacology , Cholinesterase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Biphenyl Compounds/antagonists & inhibitors , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Picrates/antagonists & inhibitors , Rats , Rats, Wistar , Structure-Activity Relationship
10.
Neurotox Res ; 37(4): 893-903, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31853730

ABSTRACT

The level of acetylcholine, a neurotransmitter essential for processing memory and learning, is lower in the brains of patients with Alzheimer's disease due to the higher concentration of the enzyme acetylcholinesterase. The main compounds used for Alzheimer's treatment are acetylcholinesterase inhibitors. Quercetin coordination complexes with the metal ions Cu+2, Zn+2, Ni+2, Co+2, and Fe+2 were synthesized to investigate their potential use against Alzheimer's disease, by evaluating the inhibition of acetylcholinesterase in vitro and in silico, as well as the antioxidant activity, toxicity, and anxiolytic action in the zebrafish (Danio rerio) model. The organic complexes were characterized by UV-Vis and FT-IR. The spectral information suggested that coordination of metals occurs with the carbonyl group and OH linked to the C-3 carbon of quercetin. The quercetin-Fe (QFe) complex presented the best antioxidant and antiacetylcholinesterase actions, and these results were confirmed by molecular docking. In the toxicity and locomotor evaluation, the quercetin molecules and the synthesized complexes, mainly QCu and QZn derivatives, showed the highest degree of inhibition of the fish's locomotor activity, suggesting a possible anxiolytic action. Then, quercetin complexes with metals, mainly with Fe+2, represent valuable compounds and deserve more investigation as promising agents against Alzheimer's disease.


Subject(s)
Anti-Anxiety Agents/chemical synthesis , Antioxidants/chemical synthesis , Cholinesterase Inhibitors/chemical synthesis , Computer Simulation , Coordination Complexes/chemical synthesis , Iron Compounds/chemical synthesis , Animals , Anti-Anxiety Agents/toxicity , Antioxidants/toxicity , Cholinesterase Inhibitors/toxicity , Coordination Complexes/toxicity , Drug Evaluation, Preclinical/methods , Iron Compounds/toxicity , Locomotion/drug effects , Locomotion/physiology , Molecular Docking Simulation/methods , Protein Structure, Secondary , Quercetin , Zebrafish
11.
Bull Exp Biol Med ; 167(5): 641-644, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31625062

ABSTRACT

The effects of a peptide anxiolytic Selank synthesized on the basis of the endogenous peptide tuftsin on memory impairment and content of brain-derived neurotrophic factor (BDNF) in brain structures were analyzed in outbred rats receiving 10% ethanol as the only source of fluid for 30 weeks. In the object recognition test, Selank (0.3 mg/kg a day, 7 days, intraperitoneally) produced a cognitive-stimulating effect in 9 months rats not exposed to ethanol (p<0.05) and prevented the formation of ethanol-induced memory and attention disturbances (p<0.01) developing during alcohol withdrawal. In ex vivo experiments, Selank prevented ethanol-induced increase in BDNF content in the hippocampus and frontal cortex (p<0.05). These results indicate positive effects of the tuftsin analogue on age-related memory disturbances associated with chronic alcohol intoxication and confirm the involvement of the neurotrophin mechanism related to BDNF production into the effect of Selank.


Subject(s)
Anti-Anxiety Agents/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Hippocampus/drug effects , Memory Disorders/prevention & control , Nootropic Agents/pharmacology , Oligopeptides/pharmacology , Prefrontal Cortex/drug effects , Alcoholism/drug therapy , Alcoholism/etiology , Alcoholism/metabolism , Alcoholism/physiopathology , Animals , Animals, Outbred Strains , Anti-Anxiety Agents/chemical synthesis , Brain-Derived Neurotrophic Factor/agonists , Brain-Derived Neurotrophic Factor/antagonists & inhibitors , Brain-Derived Neurotrophic Factor/metabolism , Ethanol/administration & dosage , Gene Expression/drug effects , Hippocampus/metabolism , Hippocampus/physiopathology , Male , Memory Disorders/chemically induced , Memory Disorders/metabolism , Memory Disorders/physiopathology , Memory, Short-Term/drug effects , Nootropic Agents/chemical synthesis , Oligopeptides/chemical synthesis , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Rats , Tuftsin/chemistry , Tuftsin/metabolism
12.
Bioorg Med Chem Lett ; 29(21): 126679, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31537425

ABSTRACT

Searching for CNS active cyclic amines derivatives containing heterocyclic xanthone core we designed and synthesized a set of fourteen novel 2- or 4-methylxanthone substituted by alkyl- or aryl-piperazine moieties. The compounds were evaluated in vivo for their potential antidepressant-like activity (in the forced swim test) and anxiolytic-like activity (four-plate test) and their inhibitory effect against rat 5-HT2 receptor was checked. The pharmacokinetic analysis of active compounds done by a non-compartmental approach have shown a rapid absorption of all studied molecules from intraperitoneal cavity and good penetration the blood-brain barrier after i.p. administration with brain to plasma ratios varied from 2.8 to 31.6. Genotoxicity and biotransformation of active compounds were studied. Compound 19 interactions with major classes of GPCRs, uptake systems and ion channels were tested and results indicated that it binds to 5-HT2A, 5-HT2B receptors and sodium channels.


Subject(s)
Anti-Anxiety Agents/chemical synthesis , Antidepressive Agents/chemical synthesis , Central Nervous System/metabolism , Piperazines/chemical synthesis , Xanthones/chemical synthesis , Animals , Anti-Anxiety Agents/pharmacokinetics , Antidepressive Agents/pharmacokinetics , Blood-Brain Barrier/drug effects , Cytochrome P-450 Enzyme System/metabolism , Drug Discovery , Ligands , Molecular Structure , Motor Activity/drug effects , Piperazine/chemistry , Piperazines/pharmacokinetics , Rats , Structure-Activity Relationship , Xanthones/pharmacokinetics
13.
J Med Chem ; 62(17): 8011-8027, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31411468

ABSTRACT

Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disease whose pathogenesis cannot be defined by one single element but consists of various factors; thus, there is a call for alternative approaches to tackle the multifaceted aspects of AD. Among the potential alternative targets, we aim to focus on glutaminyl cyclase (QC), which reduces the toxic pyroform of ß-amyloid in the brains of AD patients. On the basis of a putative active conformation of the prototype inhibitor 1, a series of N-substituted thiourea, urea, and α-substituted amide derivatives were developed. The structure-activity relationship analyses indicated that conformationally restrained inhibitors demonstrated much improved QC inhibition in vitro compared to nonrestricted analogues, and several selected compounds demonstrated desirable therapeutic activity in an AD mouse model. The conformational analysis of a representative inhibitor indicated that the inhibitor appeared to maintain the Z-E conformation at the active site, as it is critical for its potent activity.


Subject(s)
Alzheimer Disease/drug therapy , Aminoacyltransferases/antagonists & inhibitors , Anti-Anxiety Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Alzheimer Disease/metabolism , Aminoacyltransferases/metabolism , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mice , Mice, Inbred ICR , Molecular Structure , Quantum Theory , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 29(18): 2670-2674, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31358468

ABSTRACT

This letter describes the further optimization of a series of mGlu3 NAMs based on an N-aryl phenoxyethoxy pyridinone core. A multidimensional optimization campaign, with focused matrix libraries, quickly established challenging SAR, enantiospecific activity, differences in assay read-outs (Ca2+ flux via a promiscuous G protein (Gα15) versus native coupling to GIRK channels), identified both full and partial mGlu3 NAMs and a new in vivo tool compound, VU6017587. This mGlu3 NAM showed efficacy in tail suspension, elevated zero maze and marble burying, suggesting selective inhibition of mGlu3 affords anxiolytic-like and antidepressant-like phenotypes in mice.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Pyridones/pharmacology , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Antidepressive Agents/chemical synthesis , Antidepressive Agents/chemistry , Dose-Response Relationship, Drug , Mice , Molecular Structure , Pyridones/chemical synthesis , Pyridones/chemistry , Rats , Receptors, Metabotropic Glutamate/metabolism , Stereoisomerism , Structure-Activity Relationship
15.
Eur J Med Chem ; 176: 310-325, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31112892

ABSTRACT

A series of compounds generated by ring expansion/opening and molecular elongation/simplification of the 1,3-dioxolane scaffold were prepared and tested for binding affinity at 5-HT1AR and α1 adrenoceptors. The compounds with greater affinity were selected for further functional studies. N-((2,2-diphenyl-1,3-dioxan-5-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-ammonium hydrogen oxalate (12) emerged as highly potent full agonist at the 5-HT1AR (pKi 5-HT1A = 8.8; pD2 = 9.22, %Emax = 92). The pharmacokinetic data in rats showed that the orally administered 12 has a high biodistribution in the brain compartment. Thus, 12 was further investigated in-vivo, showing an anxiolytic and antidepressant effect. Moreover, in the formalin test, 12 was able to decrease the late response to the noxious stimulus, indicating a potential use in the treatment of chronic pain.


Subject(s)
Analgesics/therapeutic use , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/therapeutic use , Dioxanes/therapeutic use , Neuroprotective Agents/therapeutic use , Serotonin 5-HT1 Receptor Agonists/therapeutic use , Analgesics/chemical synthesis , Analgesics/pharmacokinetics , Analgesics/toxicity , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/pharmacokinetics , Anti-Anxiety Agents/toxicity , Antidepressive Agents/chemical synthesis , Antidepressive Agents/pharmacokinetics , Antidepressive Agents/toxicity , Brain/metabolism , Dioxanes/chemical synthesis , Dioxanes/pharmacokinetics , Dioxanes/toxicity , Male , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/toxicity , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Adrenergic, alpha-1/metabolism , Serotonin 5-HT1 Receptor Agonists/chemical synthesis , Serotonin 5-HT1 Receptor Agonists/pharmacokinetics , Serotonin 5-HT1 Receptor Agonists/toxicity , Stereoisomerism , Structure-Activity Relationship
16.
Hormones (Athens) ; 18(2): 215-221, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30980254

ABSTRACT

The corticotrophin-releasing factor (CRF) and its type 1 receptor (CRF1R) regulate the hypothalamic-pituitary-adrenal axis, as well as other systems, thus playing a crucial role in the maintenance of homeostasis. Non-peptide CRF1R-selective antagonists exert therapeutic effects on experimental animals with abnormal regulation of their homeostatic mechanisms. However, none of them is as yet in clinical use. In an effort to develop novel small non-peptide CRF1R-selective antagonists, we have synthesized a series of substituted pyrimidines described in a previous study. These small molecules bind to CRF1R, with analog 3 having the highest affinity. Characteristic structural features of analog 3 are a N,N-bis(methoxyethyl)amino group at position 6 and a methyl in the alkythiol group at position 5. Based on the binding profile of analog 3, we selected it in the present study for further pharmacological characterization. The results of this study suggest that analog 3 is a potent CRF1R-selective antagonist, blocking the ability of sauvagine, a CRF-related peptide, to stimulate cAMP accumulation in HEK 293 cells via activation of CRF1R, but not via CRF2R. Moreover, analog 3 blocked sauvagine to stimulate the proliferation of macrophages, further supporting its antagonistic properties. We have also constructed molecular models of CRF1R to examine the interactions of this receptor with analog 3 and antalarmin, a prototype CRF1R-selective non-peptide antagonist, which lacks the characteristic structural features of analog 3. Our data facilitate the design of novel non-peptide CRF1R antagonists for clinical use.


Subject(s)
Anti-Anxiety Agents/chemical synthesis , Antidepressive Agents/chemical synthesis , Pyrimidines/chemistry , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Amphibian Proteins/chemistry , Amphibian Proteins/pharmacology , Animals , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Cell Proliferation/drug effects , Drug Design , HEK293 Cells , Humans , Mice , Models, Molecular , Peptide Hormones/chemistry , Peptide Hormones/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , RAW 264.7 Cells , Structure-Activity Relationship
17.
J Enzyme Inhib Med Chem ; 34(1): 761-772, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30836795

ABSTRACT

Ursolic acid (UA), a plant-derived compound, has many properties beneficial to health. In the present study, we synthesised three series of novel UA derivatives and evaluated their anti-Toxoplasma gondii activity both in vitro and in vivo. Most derivatives exhibited an improved anti-T. gondii activity in vitro when compared with UA (parent compound), whereas compound 3d exhibited the most potent anti-T. gondii activity in vivo. Spiramycin served as the positive control. Additionally, determination of biochemical parameters, including the liver and spleen indexes, indicated compound 3d to effectively reduce hepatotoxicity and significantly enhance anti-oxidative effects, as compared with UA. Furthermore, our molecular docking study indicated compound 3d to possess a strong binding affinity for T. gondii calcium-dependent protein kinase 1 (TgCDPK1). Based on these findings, we conclude that compound 3d, a derivative of UA, could act as a potential inhibitor of TgCDPK1.


Subject(s)
Anti-Anxiety Agents/pharmacology , Cysteine Endopeptidases/metabolism , Protein Kinase Inhibitors/pharmacology , Toxoplasma/drug effects , Toxoplasmosis, Animal/drug therapy , Triterpenes/pharmacology , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , HeLa Cells , Humans , Mice , Mice, Inbred Strains , Molecular Conformation , Molecular Docking Simulation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Triterpenes/chemical synthesis , Triterpenes/chemistry , Ursolic Acid
18.
Cent Nerv Syst Agents Med Chem ; 19(2): 146-151, 2019.
Article in English | MEDLINE | ID: mdl-30827267

ABSTRACT

BACKGROUND: Approach for green chemistry for chemical synthesis is found to be very efficient as it makes the reaction more easily, less tedious, maximize desired products and minimize by-products. MATERIALS & METHODS: Utilizing this approach 1, 5-benzodiazepines and its derivatives have been synthesized and evaluated for skeletal muscle and antianxiety activity. 1, 5-benzodiazepine derivatives have attracted great attention due to its diversity of pharmacological activities and its application in heterocyclic synthesis and medicines. The target compounds were synthesized by first reacting o-phenylenediamine with acetophenone to yield 1, 5-benzodiazepines. In the next step the NH of 1, 5-benzodiazepines were chloroacetylated and then the chloro group was substituted with different anilines. The structures were confirmed on the basis of their TLC, IR, 1H NMR and CHN elemental studies. The physicochemical parameters were determined for BBB penetration through online software. RESULTS: The Log P values of the compounds tested showed that compounds have the potential to be CNS active. The compounds were evaluated for the skeletal muscle relaxant activity and antianxiety activity. It was investigated that 1, 5-benzodiazepines derivatives possess significant differences between control group and treated group. CONCLUSION: Among these derivatives, the compound bearing chloro group possesses the highest skeletal muscle relaxant and antianxiety activity.


Subject(s)
Acetic Acid/chemical synthesis , Anti-Anxiety Agents/chemical synthesis , Benzodiazepines/chemical synthesis , Central Nervous System Agents/chemical synthesis , Green Chemistry Technology/methods , Muscle Relaxants, Central/chemical synthesis , Acetic Acid/pharmacology , Acetic Acid/therapeutic use , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Anxiety/psychology , Benzodiazepines/pharmacology , Benzodiazepines/therapeutic use , Catalysis , Central Nervous System Agents/pharmacology , Central Nervous System Agents/therapeutic use , Maze Learning/drug effects , Maze Learning/physiology , Mice , Muscle Relaxants, Central/pharmacology , Muscle Relaxants, Central/therapeutic use , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 29(3): 481-486, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30554955

ABSTRACT

Phosphodiesterase 2 (PDE2) has received much attention for the potential treatment of the central nervous system (CNS) disorders. Herein, based on the existing PDE2 inhibitors and their binding modes, a series of purin-6-one derivatives were designed, synthesized and evaluated for PDE2 inhibitory activities, which led to the discovery of the best compounds 6p and 6s with significant inhibitory potency (IC50: 72 and 81 nM, respectively). Docking simulation was performed to insert compound 6s into the crystal structure of PDE2 at the active site to determine the binding mode. Furthermore, compound 6s significantly protected HT-22 cells against corticosterone-induced cytotoxicity and rescued corticosterone-induced decreases in cAMP and cGMP levels. It also produced anxiolytic-like effect in the elevated plus-maze test and exhibited favorable pharmacokinetic properties in vivo. These results might bring significant instruction for further development of potent PDE2 inhibitors.


Subject(s)
Anti-Anxiety Agents/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Drug Design , Neuroprotective Agents/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Purinones/pharmacology , Animals , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Cell Line , Cell Survival/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry , Purinones/chemical synthesis , Purinones/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL