Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.140
Filter
1.
PeerJ ; 12: e17578, 2024.
Article in English | MEDLINE | ID: mdl-38948222

ABSTRACT

In the eastern coastal regions of Odisha, wilt caused by Fusarium oxysporum f. sp.capsici is an extremely damaging disease in chilli. This disease is very difficult to manage with chemical fungicides since it is soil-borne in nature. The natural rhizosphere soil of the chilli plant was used to isolate and test bacterial antagonists for their effectiveness and ability to promote plant growth. Out of the fifty-five isolates isolated from the rhizosphere of healthy chilli plants, five isolates, namely Iso 01, Iso 17, Iso 23, Iso 24, and Iso 32, showed their highly antagonistic activity against F. oxysporum f. sp. capsici under in vitro. In a dual culture, Iso 32 (73.3%) and Iso 24 (71.5%) caused the highest level of pathogen inhibition. In greenhouse trials, artificially inoculated chilli plants treated with Iso 32 (8.8%) and Iso 24 (10.2%) had decreased percent disease incidence (PDI), with percent disease reduction over control of 85.6% and 83.3%, respectively. Iso 32 and Iso 24 treated chilli seeds have shown higher seed vigor index of 973.7 and 948.8, respectively, as compared to untreated control 636.5. Furthermore, both the isolates significantly increased plant height as well as the fresh and dry weight of chilli plants under the rolled paper towel method. Morphological, biochemical, and molecular characterization identified Bacillus amyloliquefaciens (MH491049) as the key antagonist. This study demonstrates that rhizobacteria, specifically Iso 32 and Iso 24, can effectively protect chilli plants against Fusarium wilt while promoting overall plant development. These findings hold promise for sustainable and eco-friendly management of Fusarium wilt in chilli cultivation.


Subject(s)
Fusarium , Plant Diseases , Rhizosphere , Soil Microbiology , Fusarium/isolation & purification , Fusarium/pathogenicity , Fusarium/drug effects , Fusarium/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Capsicum/microbiology , Capsicum/growth & development , Antibiosis/physiology , Plant Development
2.
Toxins (Basel) ; 16(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39057954

ABSTRACT

Chemical pesticides help reduce crop loss during production and storage. However, the carbon footprints and ecological costs associated with this strategy are unsustainable. Here, we used three in vitro models to characterize how different Trichoderma species interact with two aflatoxin producers, Aspergillus flavus and Aspergillus parasiticus, to help develop a climate-resilient biological control strategy against aflatoxigenic Aspergillus species. The growth rate of Trichoderma species is a critical factor in suppressing aflatoxigenic strains via physical interactions. The dual plate assay suggests that Trichoderma mainly suppresses A. flavus via antibiosis, whereas the suppression of A. parasiticus occurs through mycoparasitism. Volatile organic compounds (VOCs) produced by Trichoderma inhibited the growth of A. parasiticus (34.6 ± 3.3%) and A. flavus (20.9 ± 1.6%). The VOCs released by T. asperellum BTU and T. harzianum OSK-34 were most effective in suppressing A. flavus growth. Metabolites secreted by T. asperellum OSK-38, T. asperellum BTU, T. virens OSK-13, and T. virens OSK-36 reduced the growth of both aflatoxigenic species. Overall, T. asperellum BTU was the most effective at suppressing the growth and aflatoxin B1 production of both species across all models. This work will guide efforts to screen for effective biological control agents to mitigate aflatoxin accumulation.


Subject(s)
Aflatoxins , Aspergillus flavus , Aspergillus , Trichoderma , Volatile Organic Compounds , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism , Aspergillus flavus/drug effects , Aspergillus/metabolism , Aspergillus/growth & development , Aspergillus/drug effects , Aflatoxins/biosynthesis , Trichoderma/metabolism , Trichoderma/physiology , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Pest Control, Biological/methods , Biological Control Agents/pharmacology , Antibiosis , Models, Biological
3.
Food Microbiol ; 123: 104583, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038889

ABSTRACT

Gray mold, caused by Botrytis cinerea, is a prevalent postharvest disease of apple that limits their shelf life, resulting in significant economic losses. The use of antagonistic microorganisms has been shown to be an effective approach for managing postharvest diseases of fruit. In the present study, an endophytic yeast strain PGY-2 was isolated from apples and evaluated for its biocontrol efficacy against gray mold and its mechanisms of action. Results indicated that strain PGY-2, identified as Bullera alba, reduced the occurrence of gray mold on apples and significantly inhibited lesion development in pathogen-inoculated wounds. Gray mold control increased with the use of increasing concentrations of PGY-2, with the best disease control observed at 108 cells/mL. Notably, Bullera alba PGY-2 did not inhibit the growth of Botrytis cinerea in vitro indicating that the yeast antagonist did not produce antimicrobial compounds. The rapid colonization and stable population of PGY-2 in apple wounds at 4 °C and 25 °C confirmed its ability to compete with pathogens for nutrients and space. PGY-2 also had a strong ability to form a biofilm and enhanced the activity of multiple defense-related enzymes (POD, PPO, APX, SOD, PAL) in host tissues. Our study is the first time to report the use of Bullera alba PGY-2 as a biocontrol agent for postharvest diseases of apple and provide evidence that Bullera alba PGY-2 represents an endophytic antagonistic yeast with promising biocontrol potential and alternative to the use of synthetic, chemical fungicides for the control of postharvest gray mold in apples.


Subject(s)
Antibiosis , Botrytis , Endophytes , Fruit , Malus , Plant Diseases , Malus/microbiology , Botrytis/growth & development , Botrytis/physiology , Botrytis/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Endophytes/physiology , Endophytes/isolation & purification , Fruit/microbiology , Yeasts/physiology , Yeasts/isolation & purification , Biofilms/growth & development
4.
Food Microbiol ; 123: 104590, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038895

ABSTRACT

Apple ring rot, one of the most common apple postharvest diseases during storage, is caused by Botryosphaeria dothidea. Presently, the disease management is primarily dependent on chemical fungicide application. Here we demonstrated an endophyte bacterium Bacillus tequilensis QNF2, isolated from Chinese leek (Allium tuberosum) roots considerably suppressed B. dothidea mycelial growth, with the highest suppression of 73.56 % and 99.5 % in the PDA and PDB medium, respectively in vitro confront experiments. In in vivo experiments, B. tequilensis QNF2 exhibited a control efficacy of 88.52 % and 100 % on ring rot disease on postharvest apple fruits inoculated with B. dothidea disc and dipped into B. dothidea culture, respectively. In addition, B. tequilensis QNF2 volatile organic compounds (VOCs) also manifested markedly inhibition against B. dothidea mycelial growth and the ring rot on postharvest apple fruits. Moreover, B. tequilensis QNF2 severely damaged the mycelial morphology of B. dothidea. Finally, B. tequilensis QNF2 significantly repressed the expression of six pathogenicity-related genes, such as adh, aldh, aldh3, galm, pdc1, pdc2, involved in glycolysis/gluconeogenesis of B. dothidea. The findings of the study proved that B. tequilensis QNF2 was a promising alternative for controlling apple ring rot of postharvest apple fruit.


Subject(s)
Ascomycota , Bacillus , Endophytes , Fruit , Malus , Plant Diseases , Malus/microbiology , Plant Diseases/microbiology , Ascomycota/growth & development , Ascomycota/drug effects , Ascomycota/genetics , Ascomycota/physiology , Bacillus/genetics , Bacillus/physiology , Bacillus/isolation & purification , Endophytes/genetics , Endophytes/metabolism , Endophytes/isolation & purification , Endophytes/classification , Endophytes/physiology , Fruit/microbiology , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Antibiosis , Mycelium/growth & development , Mycelium/drug effects
5.
Sci Rep ; 14(1): 15365, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965302

ABSTRACT

Endophytic fungal-based biopesticides are sustainable and ecologically-friendly biocontrol agents of several pests and diseases. However, their potential in managing tomato fusarium wilt disease (FWD) remains unexploited. This study therefore evaluated effectiveness of nine fungal isolates against tomato fusarium wilt pathogen, Fusarium oxysporum f. sp. lycopersici (FOL) in vitro using dual culture and co-culture assays. The efficacy of three potent endophytes that inhibited the pathogen in vitro was assessed against FWD incidence, severity, and ability to enhance growth and yield of tomatoes in planta. The ability of endophytically-colonized tomato (Solanum lycopersicum L.) plants to systemically defend themselves upon exposure to FOL were also assessed through defence genes expression using qPCR. In vitro assays showed that endophytes inhibited and suppressed FOL mycelial growth better than entomopathogenic fungi (EPF). Endophytes Trichoderma asperellum M2RT4, Hypocrea lixii F3ST1, Trichoderma harzianum KF2R41, and Trichoderma atroviride ICIPE 710 had the highest (68.84-99.61%) suppression and FOL radial growth inhibition rates compared to EPF which exhibited lowest (27.05-40.63%) inhibition rates. Endophytes T. asperellum M2RT4, H. lixii F3ST1 and T. harzianum KF2R41 colonized all tomato plant parts. During the in planta experiment, endophytically-colonized and FOL-infected tomato plants showed significant reduction of FWD incidence and severity compared to non-inoculated plants. In addition, these endophytes contributed to improved growth promotion parameters and yield. Moreover, there was significantly higher expression of tomato defence genes in T. asperellum M2RT4 colonized than in un-inoculated tomato plants. These findings demonstrated that H. lixii F3ST1 and T. asperellum M2RT4 are effective biocontrol agents against FWD and could sustainably mitigate tomato yield losses associated with fusarium wilt.


Subject(s)
Endophytes , Fusarium , Plant Diseases , Solanum lycopersicum , Fusarium/pathogenicity , Fusarium/physiology , Solanum lycopersicum/microbiology , Solanum lycopersicum/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Endophytes/physiology , Hypocreales/physiology , Hypocreales/pathogenicity , Antibiosis , Pest Control, Biological/methods , Biological Control Agents
6.
BMC Microbiol ; 24(1): 255, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982358

ABSTRACT

BACKGROUND: Alternaria alternata is the primary pathogen of potato leaf spot disease, resulting in significant potato yield losses globally. Endophytic microorganism-based biological control, especially using microorganisms from host plants, has emerged as a promising and eco-friendly approach for managing plant diseases. Therefore, this study aimed to isolate, identify and characterize the endophytic fungi from healthy potato leaves which had great antifungal activity to the potato leaf spot pathogen of A. alternata in vitro and in vivo. RESULTS: An endophytic fungal strain SD1-4 was isolated from healthy potato leaves and was identified as Talaromyces muroii through morphological and sequencing analysis. The strain SD1-4 exhibited potent antifungal activity against the potato leaf spot pathogen A. alternata Lill, with a hyphal inhibition rate of 69.19%. Microscopic and scanning electron microscope observations revealed that the strain SD1-4 grew parallel to, coiled around, shrunk and deformed the mycelia of A. alternata Lill. Additionally, the enzyme activities of chitinase and ß-1, 3-glucanase significantly increased in the hyphae of A. alternata Lill when co-cultured with the strain SD1-4, indicating severe impairment of the cell wall function of A. alternata Lill. Furthermore, the mycelial growth and conidial germination of A. alternata Lill were significantly suppressed by the aseptic filtrate of the strain SD1-4, with inhibition rates of 79.00% and 80.67%, respectively. Decrease of leaf spot disease index from 78.36 to 37.03 was also observed in potato plants treated with the strain SD1-4, along with the significantly increased plant growth characters including plant height, root length, fresh weight, dry weight, chlorophyll content and photosynthetic rate of potato seedlings. CONCLUSION: The endophyte fungus of T. muroii SD1-4 isolated from healthy potato leaves in the present study showed high biocontrol potential against potato leaf spot disease caused by A. alternata via direct parasitism or antifungal metabolites, and had positive roles in promoting potato plant growth.


Subject(s)
Alternaria , Endophytes , Plant Diseases , Plant Leaves , Solanum tuberosum , Talaromyces , Alternaria/growth & development , Alternaria/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Solanum tuberosum/microbiology , Talaromyces/genetics , Talaromyces/growth & development , Endophytes/physiology , Endophytes/isolation & purification , Endophytes/genetics , Plant Leaves/microbiology , Hyphae/growth & development , Antibiosis , Chitinases/metabolism , Biological Control Agents , Pest Control, Biological/methods
7.
Microb Ecol ; 87(1): 94, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008061

ABSTRACT

Common bean (Phaseolus vulgaris L.) is an essential food staple and source of income for small-holder farmers across Africa. However, yields are greatly threatened by fungal diseases like root rot induced by Rhizoctonia solani. This study aimed to evaluate an integrated approach utilizing vermicompost tea (VCT) and antagonistic microbes for effective and sustainable management of R. solani root rot in common beans. Fourteen fungal strains were first isolated from infected common bean plants collected across three Egyptian governorates, with R. solani being the most virulent isolate with 50% dominance. Subsequently, the antagonistic potential of vermicompost tea (VCT), Serratia sp., and Trichoderma sp. was assessed against this destructive pathogen. Combinations of 10% VCT and the biocontrol agent isolates displayed potent inhibition of R. solani growth in vitro, prompting in planta testing. Under greenhouse conditions, integrated applications of 5 or 10% VCT with Serratia marcescens, Trichoderma harzianum, or effective microorganisms (EM1) afforded up to 95% protection against pre- and post-emergence damping-off induced by R. solani in common bean cv. Giza 6. Similarly, under field conditions, combining VCT with EM1 (VCT + EM1) or Trichoderma harzianum (VCT + Trichoderma harzianum) substantially suppressed disease severity by 65.6% and 64.34%, respectively, relative to untreated plants. These treatments also elicited defense enzyme activity and distinctly improved growth parameters including 136.68% and 132.49% increases in pod weight per plant over control plants. GC-MS profiling of Trichoderma harzianum, Serratia marcescens, and vermicompost tea (VCT) extracts revealed unique compounds dominated by cyclic pregnane, fatty acid methyl esters, linoleic acid derivatives, and free fatty acids like oleic, palmitic, and stearic acids with confirmed biocontrol and plant growth-promoting activities. The results verify VCT-mediated delivery of synergistic microbial consortia as a sustainable platform for integrated management of debilitating soil-borne diseases, enhancing productivity and incomes for smallholder bean farmers through regeneration of soil health. Further large-scale validation can pave the adoption of this climate-resilient approach for securing food and nutrition security.


Subject(s)
Phaseolus , Plant Diseases , Plant Roots , Rhizoctonia , Serratia marcescens , Phaseolus/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Serratia marcescens/physiology , Serratia marcescens/metabolism , Rhizoctonia/physiology , Plant Roots/microbiology , Biological Control Agents/pharmacology , Pest Control, Biological , Antibiosis , Hypocreales/physiology , Hypocreales/metabolism , Egypt , Composting , Soil Microbiology
8.
Int J Food Microbiol ; 422: 110809, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38955023

ABSTRACT

Sterigmatocystin (STC) is an emerging mycotoxin that poses a significant threat to the food security of cereal crops. To mitigate STC contamination in maize, this study employed selected lactic acid bacteria as biocontrol agents against Aspergillus versicolor, evaluating their biocontrol potential and analyzing the underlying mechanisms. Lactiplantibacillus plantarum HJ10, isolated from pickle, exhibited substantial in vitro antifungal activity and passed safety assessments, including antibiotic resistance and hemolysis tests. In vivo experiments demonstrated that L. plantarum HJ10 significantly reduced the contents of A. versicolor and STC in maize (both >84 %). The impact of heat, enzymes, alkali, and other treatments on the antifungal activity of cell-free supernatant (CFS) was investigated. Integrated ultra-high-performance liquid chromatography (UPLC) and gas chromatography-mass spectrometry (GC-MS) analysis revealed that lactic acid, acetic acid, and formic acid are the key substances responsible for the in vitro antifungal activity of L. plantarum HJ10. These metabolites induced mold apoptosis by disrupting cell wall structure, increasing cell membrane fluidity, reducing enzyme activities, and disrupting energy metabolism. However, in vivo antagonism by L. plantarum HJ10 primarily occurs through organic acid production and competition for growth space and nutrients. This study highlights the potential of L. plantarum HJ10 in reducing A. versicolor and STC contamination in maize.


Subject(s)
Aspergillus , Lactobacillales , Sterigmatocystin , Zea mays , Zea mays/microbiology , Aspergillus/metabolism , Aspergillus/growth & development , Lactobacillales/metabolism , Antifungal Agents/pharmacology , Food Contamination/prevention & control , Antibiosis
9.
mSphere ; 9(7): e0033524, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38980073

ABSTRACT

Over 160,000 people worldwide suffer from cystic fibrosis (CF), a genetic condition that causes mucus to accumulate in internal organs. Lung decline is a significant health burden for people with CF (pwCF), and chronic bacterial pulmonary infections are a major cause of death. Stenotrophomonas maltophilia complex (Smc) is an emerging, multidrug-resistant CF pathogen that can cause pulmonary exacerbations and result in higher mortality. However, little is known about the antagonistic interactions that occur between Smc isolates from pwCF and competitor bacteria. We obtained 13 Smc isolates from adult and pediatric pwCF located in the United States or Australia. We co-cultured these isolates with Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. We also performed whole-genome sequencing of these Smc isolates and compared their genomes using average nucleotide identity analyses. We observed that some Smc CF isolates can engage in antagonistic interactions with P. aeruginosa and S. aureus but recovered a substantial number of P. aeruginosa and S. aureus cells following co-cultures with all tested Smc isolates. By contrast, we discovered that most Smc CF isolates display strong antibacterial properties against E. coli cells and reduce recovery below detectable limits. Finally, we demonstrate that Smc CF strains from this study belong to diverse phylogenetic lineages. IMPORTANCE: Antagonism toward competitor bacteria may be important for the survival of Stenotrophomonas maltophilia complex (Smc) in external environments, for the elimination of commensal species and colonization of upper respiratory tracts to enable early infections, and for competition against other pathogens after establishing chronic infections. These intermicrobial interactions could facilitate the acquisition of Smc by people with cystic fibrosis from environmental or nosocomial sources. Elucidating the mechanisms used by Smc to eliminate other bacteria could lead to new insights into the development of novel treatments.


Subject(s)
Anti-Bacterial Agents , Cystic Fibrosis , Gram-Negative Bacterial Infections , Pseudomonas aeruginosa , Stenotrophomonas maltophilia , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Stenotrophomonas maltophilia/genetics , Stenotrophomonas maltophilia/drug effects , Humans , Gram-Negative Bacterial Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Whole Genome Sequencing , Antibiosis , Australia , Genome, Bacterial , Adult , Coculture Techniques , United States , Child
10.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39003242

ABSTRACT

AIMS: Developing energy-saving and ecofriendly strategies for treating harvested Microcystis biomass. METHODS AND RESULTS: Streptomyces amritsarensis HG-16 was first reported to effectively kill various morphotypes of natural Microcystis colonies at very high cell densities. Concurrently, HG-16 grown on lysed Microcystis maintained its antagonistic activity against plant pathogenic fungus Fusarium graminearum. It could completely inhibit spore germination and destroy mycelial structure of F. graminearum. Transcriptomic analysis revealed that HG-16 attacked F. graminearum in a comprehensive way: interfering with replication, transcription, and translation processes, inhibiting primary metabolisms, hindering energy production and simultaneously destroying stress-resistant systems of F. graminearum. CONCLUSIONS: The findings of this study provide a sustainable and economical option for resource reclamation from Microcystis biomass: utilizing Microcystis slurry to propagate HG-16, which can subsequently be employed as a biocontrol agent for managing F. graminearum.


Subject(s)
Fusarium , Microcystis , Spores, Fungal , Streptomyces , Fusarium/growth & development , Fusarium/physiology , Streptomyces/genetics , Streptomyces/physiology , Streptomyces/growth & development , Streptomyces/metabolism , Microcystis/growth & development , Microcystis/genetics , Microcystis/physiology , Spores, Fungal/growth & development , Antibiosis
11.
PLoS Pathog ; 20(7): e1012384, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39024393

ABSTRACT

Interbacterial competition is known to shape the microbial communities found in the host, however the interplay between this competition and host defense are less clear. Here, we use the zebrafish hindbrain ventricle (HBV) as an in vivo platform to investigate host responses to defined bacterial communities with distinct forms of interbacterial competition. We found that antibacterial activity of the type VI secretion system (T6SS) from both Vibrio cholerae and Acinetobacter baylyi can induce host inflammation and sensitize the host to infection independent of any individual effector. Chemical suppression of inflammation could resolve T6SS-dependent differences in host survival, but the mechanism by which this occurred differed between the two bacterial species. By contrast, colicin-mediated antagonism elicited by an avirulent strain of Shigella sonnei induced a negligible host response despite being a more potent bacterial killer, resulting in no impact on A. baylyi or V. cholerae virulence. Altogether, these results provide insight into how different modes of interbacterial competition in vivo affect the host in distinct ways.


Subject(s)
Type VI Secretion Systems , Vibrio cholerae , Zebrafish , Animals , Zebrafish/microbiology , Type VI Secretion Systems/metabolism , Vibrio cholerae/pathogenicity , Acinetobacter , Virulence , Host-Pathogen Interactions , Antibiosis/physiology , Rhombencephalon/microbiology , Rhombencephalon/metabolism
12.
Front Cell Infect Microbiol ; 14: 1375872, 2024.
Article in English | MEDLINE | ID: mdl-38846355

ABSTRACT

Introduction: Pseudomonas aeruginosa is notorious for its multidrug resistance and its involvement in hospital-acquired infections. In this study, 20 bacterial strains isolated from soil samples near the Hindan River in Ghaziabad, India, were investigated for their biochemical and morphological characteristics, with a focus on identifying strains with exceptional drug resistance and pyocyanin production. Methods: The isolated bacterial strains were subjected to biochemical and morphological analyses to characterize their properties, with a particular emphasis on exopolysaccharide production. Strain GZB16/CEES1, exhibiting remarkable drug resistance and pyocyanin production. Biochemical and molecular analyses, including sequencing of its 16S rRNA gene (accession number LN735036.1), plasmid-curing assays, and estimation of plasmid size, were conducted to elucidate its drug resistance mechanisms and further pyocynin based target the Candida albicans Strain GZB16/CEES1 demonstrated 100% resistance to various antibiotics used in the investigation, with plasmid-curing assays, suggesting plasmid-based resistance gene transmission. The plasmid in GZB16/CEES1 was estimated to be approximately 24 kb in size. The study focused on P. aeruginosa's pyocyanin production, revealing its association with anticandidal activity. The minimum inhibitory concentration (MIC) of the bacterial extract against Candida albicans was 50 µg/ml, with a slightly lower pyocyanin-based MIC of 38.5 µg/ml. Scanning electron microscopy illustrated direct interactions between P. aeruginosa strains and Candida albicans cells, leading to the destruction of the latter. Discussion: These findings underscore the potential of P. aeruginosa in understanding microbial interactions and developing strategies to combat fungal infections. The study highlights the importance of investigating bacterial-fungal interactions and the role of pyocyanin in antimicrobial activity. Further research in this area could lead to the development of novel therapeutic approaches for combating multidrug-resistant infections.


Subject(s)
Antifungal Agents , Candida albicans , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Plasmids , Pseudomonas aeruginosa , Pyocyanine , RNA, Ribosomal, 16S , Soil Microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pyocyanine/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/growth & development , RNA, Ribosomal, 16S/genetics , India , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Antibiosis
13.
BMC Microbiol ; 24(1): 194, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849775

ABSTRACT

Soybean is the main oilseed cultivated worldwide. Even though Brazil is the world's largest producer and exporter of soybean, its production is severely limited by biotic factors. Soil borne diseases are the most damaging biotic stressors since they significantly reduce yield and are challenging to manage. In this context, the present study aimed to evaluate the potential of a bacterial strain (Ag109) as a biocontrol agent for different soil pathogens (nematodes and fungi) of soybean. In addition, the genome of Ag109 was wholly sequenced and genes related to secondary metabolite production and plant growth promotion were mined. Ag109 showed nematode control in soybean and controlled 69 and 45% of the populations of Meloidogyne javanica and Pratylenchus brachyurus, respectively. Regarding antifungal activity, these strains showed activity against Macrophomia phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. For S. sclerotiorum, this strain increased the number of healthy plants and root dry mass compared to the control (with inoculation). Based on the average nucleotide identity and digital DNA-DNA hybridization, this strain was identified as Bacillus velezensis. Diverse clusters of specific genes related to secondary metabolite biosynthesis and root growth promotion were identified, highlighting the potential of this strain to be used as a multifunctional microbial inoculant that acts as a biological control agent while promoting plant growth in soybean.


Subject(s)
Ascomycota , Bacillus , Genome, Bacterial , Glycine max , Plant Diseases , Animals , Bacillus/genetics , Glycine max/microbiology , Glycine max/parasitology , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Genome, Bacterial/genetics , Ascomycota/genetics , Rhizoctonia/genetics , Pest Control, Biological , Biological Control Agents , Whole Genome Sequencing , Tylenchoidea , Phylogeny , Antibiosis , Brazil
14.
BMC Microbiol ; 24(1): 227, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937715

ABSTRACT

This study investigated the influence of bacterial cyclic lipopeptides (LP; surfactins, iturins, fengycins) on microbial interactions. The objective was to investigate whether the presence of bacteria inhibits fungal growth and whether this inhibition is due to the release of bacterial metabolites, particularly LP. Selected endophytic bacterial strains with known plant-growth promoting potential were cultured in the presence of Fusarium oxysporum f.sp. strigae (Fos), which was applied as model fungal organism. The extracellular metabolome of tested bacteria, with a focus on LP, was characterized, and the inhibitory effect of bacterial LP on fungal growth was investigated. The results showed that Bacillus velezensis GB03 and FZB42, as well as B. subtilis BSn5 exhibited the strongest antagonism against Fos. Paraburkholderia phytofirmans PsJN, on the other hand, tended to have a slight, though non-significant growth promotion effect. Crude LP from strains GB03 and FZB42 had the strongest inhibitory effect on Fos, with a significant inhibition of spore germination and damage of the hyphal structure. Liquid chromatography tandem mass spectrometry revealed the production of several variants of iturin, fengycin, and surfactin LP families from strains GB03, FZB42, and BSn5, with varying intensity. Using plate cultures, bacillomycin D fractions were detected in higher abundance in strains GB03, FZB42, and BSn5 in the presence of Fos. Additionally, the presence of Fos in dual plate culture triggered an increase in bacillomycin D production from the Bacillus strains. The study demonstrated the potent antagonistic effect of certain Bacillus strains (i.e., GB03, FZB42, BSn5) on Fos development. Our findings emphasize the crucial role of microbial interactions in shaping the co-existence of microbial assemblages.


Subject(s)
Antibiosis , Antifungal Agents , Bacillus , Fusarium , Lipopeptides , Fusarium/drug effects , Fusarium/growth & development , Lipopeptides/pharmacology , Lipopeptides/metabolism , Bacillus/metabolism , Antifungal Agents/pharmacology , Peptides, Cyclic/pharmacology , Microbial Interactions , Burkholderiaceae/growth & development , Burkholderiaceae/metabolism , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Hyphae/drug effects , Hyphae/growth & development
15.
NPJ Biofilms Microbiomes ; 10(1): 52, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918415

ABSTRACT

It is becoming increasingly apparent that commensal skin bacteria have an important role in wound healing and infection progression. However, the precise mechanisms underpinning many of these probiotic interactions remain to be fully uncovered. In this work, we demonstrate that the common skin commensal Cutibacterium acnes can limit the pathogenicity of the prevalent wound pathogen Pseudomonas aeruginosa in vivo. We show that this impact on pathogenicity is independent of any effect on growth, but occurs through a significant downregulation of the Type Three Secretion System (T3SS), the primary toxin secretion system utilised by P. aeruginosa in eukaryotic infection. We also show a downregulation in glucose acquisition systems, a known regulator of the T3SS, suggesting that glucose availability in a wound can influence infection progression. C. acnes is well known as a glucose fermenting organism, and we demonstrate that topically supplementing a wound with glucose reverses the probiotic effects of C. acnes. This suggests that introducing carbon source competition within the wound microenvironment may be an effective way to prevent or limit wound infection.


Subject(s)
Glucose , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Glucose/metabolism , Animals , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Propionibacterium acnes/growth & development , Propionibacterium acnes/physiology , Propionibacterium acnes/metabolism , Wound Infection/microbiology , Mice , Pseudomonas Infections/microbiology , Skin/microbiology , Carbon/metabolism , Wound Healing , Antibiosis , Disease Progression , Humans
16.
Sci Rep ; 14(1): 13580, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866928

ABSTRACT

Rhizoctonia solani, the causal agent of banded leaf and sheath blight (BL&SB), poses a significant threat to maize and various crops globally. The increasing concerns surrounding the environmental and health impacts of chemical fungicides have encouraged intensified concern in the development of biological control agents (BCAs) as eco-friendly alternatives. In this study, we explored the potential of 22 rhizobacteria strains (AS1-AS22) isolates, recovered from the grasslands of the Pithoragarh region in the Central Himalayas, as effective BCAs against BL&SB disease. Among these strains, two Pseudomonas isolates, AS19 and AS21, exhibited pronounced inhibition of fungal mycelium growth in vitro, with respective inhibition rates of 57.04% and 54.15% in cell cultures and 66.56% and 65.60% in cell-free culture filtrates. Additionally, both strains demonstrated effective suppression of sclerotium growth. The strains AS19 and AS21 were identified as Pseudomonas sp. by 16S rDNA phylogeny and deposited under accession numbers NAIMCC-B-02303 and NAIMCC-B-02304, respectively. Further investigations revealed the mechanisms of action of AS19 and AS21, demonstrating their ability to induce systemic resistance (ISR) and exhibit broad-spectrum antifungal activity against Alternaria triticina, Bipolaris sorokiniana, Rhizoctonia maydis, and Fusarium oxysporum f. sp. lentis. Pot trials demonstrated significant reductions in BL&SB disease incidence (DI) following foliar applications of AS19 and AS21, with reductions ranging from 25 to 38.33% compared to control treatments. Scanning electron microscopy revealed substantial degradation of fungal mycelium by the strains, accompanied by the production of hydrolytic enzymes. These findings suggest the potential of Pseudomonas strains AS19 and AS21 as promising BCAs against BL&SB and other fungal pathogens. However, further field trials are warranted to validate their efficacy under natural conditions and elucidate the specific bacterial metabolites responsible for inducing systemic resistance. This study contributes to the advancement of sustainable disease management strategies and emphasizes the potential of Pseudomonas strains AS19 and AS21 in combating BL&SB and other fungal diseases affecting agricultural crops.


Subject(s)
Plant Diseases , Pseudomonas , Rhizoctonia , Zea mays , Plant Diseases/microbiology , Plant Diseases/prevention & control , Zea mays/microbiology , Pseudomonas/metabolism , Rhizoctonia/physiology , Rhizoctonia/drug effects , Plant Leaves/microbiology , Biological Control Agents , Pest Control, Biological/methods , Antibiosis , Phylogeny
17.
Cell Host Microbe ; 32(6): 779-781, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870893

ABSTRACT

In a recent issue of Nature, Zhao et al. have demonstrated that Streptomyces spp. produce "umbrella"-shaped polymorphic toxin particles, a novel class of non-lethal toxins that gently inhibit competitors by arresting hyphal growth in closely related bacteria, unveiling a unique bacterial defense strategy in microbial ecological interactions.1.


Subject(s)
Bacterial Toxins , Streptomyces , Streptomyces/metabolism , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Antibiosis , Hyphae/growth & development , Microbial Interactions
18.
Science ; 384(6701): eado0713, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870284

ABSTRACT

Bacteria can repurpose their own bacteriophage viruses (phage) to kill competing bacteria. Phage-derived elements are frequently strain specific in their killing activity, although there is limited evidence that this specificity drives bacterial population dynamics. Here, we identified intact phage and their derived elements in a metapopulation of wild plant-associated Pseudomonas genomes. We discovered that the most abundant viral cluster encodes a phage remnant resembling a phage tail called a tailocin, which bacteria have co-opted to kill bacterial competitors. Each pathogenic Pseudomonas strain carries one of a few distinct tailocin variants that target the variable polysaccharides in the outer membrane of co-occurring pathogenic Pseudomonas strains. Analysis of herbarium samples from the past 170 years revealed that the same tailocin and bacterial receptor variants have persisted in Pseudomonas populations. These results suggest that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control.


Subject(s)
Bacteriocins , Pseudomonas Phages , Pseudomonas , Viral Tail Proteins , Antibiosis , Bacterial Outer Membrane/metabolism , Bacteriocins/genetics , Bacteriocins/metabolism , Genetic Variation , Genome, Bacterial , Polysaccharides, Bacterial/metabolism , Pseudomonas/metabolism , Pseudomonas/virology , Pseudomonas Phages/genetics , Pseudomonas Phages/metabolism , Viral Tail Proteins/metabolism , Viral Tail Proteins/genetics , Phage Therapy/methods
19.
Environ Microbiol ; 26(6): e16635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899724

ABSTRACT

Actinomycetes are a phylogenetically diverse bacterial group which are widely distributed across terrestrial and aquatic ecosystems. Within this order, the genus Pseudonocardia and their specialised metabolites have been the focus of previous ecological studies due to their antagonistic interactions with other microorganisms and their mutualistic interactions with insects. However, the chemical ecology of free-living Pseudonocardia remains understudied. This study applies a multi-omics approach to investigate the chemical ecology of free-living actinomycetes from the genus Pseudonocardia. In a comparative genomics analysis, it was observed that the biosynthetic gene cluster family distribution was influenced mainly by phylogenetic distance rather than the geographic or ecological origin of strains. This finding was also observed in the mass spectrometry-based metabolomic profiles of nine Pseudonocardia species isolated from marine sediments and two terrestrial species. Antagonist interactions between these 11 species were examined, and matrix-assisted laser desorption/ionisation-mass spectrometry imaging was used to examine in situ chemical interactions between the Southern Ocean strains and their phylogenetically close relatives. Overall, it was demonstrated that phylogeny was the main predictor of antagonistic interactions among free-living Pseudonocardia. Moreover, two features at m/z 441.15 and m/z 332.20 were identified as metabolites related to these interspecies interactions.


Subject(s)
Ecosystem , Metabolomics , Phylogeny , Pseudonocardia , Antibiosis , Genomics , Geologic Sediments/microbiology , Multigene Family , Multiomics , Pseudonocardia/genetics
20.
Microb Pathog ; 193: 106750, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906491

ABSTRACT

The antifungal activity of Serratia plymuthica CCGG2742, a bacterial strain isolated from grapes berries skin, against a phytopathogenic fungus isolated from blueberries was evaluated in vitro and in vivo. In order to characterize the wild fungal isolate, phylogenetic analysis using concatenated DNA sequences from the RPB2 and TEF1 genes and of the ITS region was performed, allowing the identification of the fungal isolate that was called Alternaria tenuissima CC17. Hyphae morphology, mycelium ultrastructure, conidia and reproductive structures were in agreement with the phylogenetic analysis. The antifungal activity of the S. plymuthica strain was dependent on the composition of the culture medium. The greatest inhibition of mycelial growth of A. tenuissima CC17 by S. plymuthica CCGG2742 was observed on YTS medium, which lacks of an easily assimilable carbon source. Fungal growth medium supplemented with 50 % of bacterial supernatant decreased the conidia germination of A. tenuissima CC17 up to 32 %. Preventive applications of S. plymuthica CCGG2742 to blueberries and tomato leaves at conidia:bacteria ratio of 1:100, protected in 77.8 ± 4.6 % and 98.2 ± 0.6 % to blueberries and tomato leaves from infection caused by A. tenuissima CC17, respectively. To the best of our knowledge, this is the first report on the antifungal activity of S. plymuthica against A. tenuissima, which could be used as a biological control agent of plant diseases caused by this fungal species. In addition, the results of this work could be a starting point to attribute the real importance of A. tenuissima as a pathogen of blueberries in Chile, which until now had been considered almost exclusively to A. alternata. Likewise, this research could be relevant to start developing highly effective strategies based on S. plymuthica CCGG2742 for the control of this important phytopathogenic fungus.


Subject(s)
Alternaria , Antibiosis , Phylogeny , Plant Diseases , Serratia , Spores, Fungal , Plant Diseases/microbiology , Plant Diseases/prevention & control , Alternaria/growth & development , Alternaria/genetics , Serratia/genetics , Serratia/physiology , Spores, Fungal/growth & development , Mycelium/growth & development , Antifungal Agents/pharmacology , Solanum lycopersicum/microbiology , Hyphae/growth & development , Culture Media/chemistry , Plant Leaves/microbiology , Vitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL