Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.935
Filter
1.
J Nanobiotechnology ; 22(1): 372, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918811

ABSTRACT

Hemangioma of infancy is the most common vascular tumor during infancy and childhood. Despite the proven efficacy of propranolol treatment, certain patients still encounter resistance or face recurrence. The need for frequent daily medication also poses challenges to patient adherence. Bleomycin (BLM) has demonstrated effectiveness against vascular anomalies, yet its use is limited by dose-related complications. Addressing this, this study proposes a novel approach for treating hemangiomas using BLM-loaded hyaluronic acid (HA)-based microneedle (MN) patches. BLM is encapsulated during the synthesis of polylactic acid (PLA) microspheres (MPs). The successful preparation of PLA MPs and MN patches is confirmed through scanning electron microscopy (SEM) images. The HA microneedles dissolve rapidly upon skin insertion, releasing BLM@PLA MPs. These MPs gradually degrade within 28 days, providing a sustained release of BLM. Comprehensive safety assessments, including cell viability, hemolysis ratio, and intradermal reactions in rabbits, validate the safety of MN patches. The BLM@PLA-MNs exhibit an effective inhibitory efficiency against hemangioma formation in a murine hemangioma model. Of significant importance, RNA-seq analysis reveals that BLM@PLA-MNs exert their inhibitory effect on hemangiomas by regulating the P53 pathway. In summary, BLM@PLA-MNs emerge as a promising clinical candidate for the effective treatment of hemangiomas.


Subject(s)
Bleomycin , Delayed-Action Preparations , Drug Delivery Systems , Hemangioma , Hyaluronic Acid , Needles , Polyesters , Bleomycin/pharmacology , Animals , Mice , Rabbits , Hemangioma/drug therapy , Hyaluronic Acid/chemistry , Delayed-Action Preparations/chemistry , Drug Delivery Systems/methods , Polyesters/chemistry , Humans , Microspheres , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Drug Liberation
2.
Int J Nanomedicine ; 19: 6057-6084, 2024.
Article in English | MEDLINE | ID: mdl-38911501

ABSTRACT

Introduction: The design of delivery tools that efficiently transport drugs into cells remains a major challenge in drug development for most pathological conditions. Triple-negative breast cancer (TNBC) is a very aggressive subtype of breast cancer with poor prognosis and limited effective therapeutic options. Purpose: In TNBC treatment, chemotherapy remains the milestone, and doxorubicin (Dox) represents the first-line systemic treatment; however, its non-selective distribution causes a cascade of side effects. To address these problems, we developed a delivery platform based on the self-assembly of amphiphilic peptides carrying several moieties on their surfaces, aimed at targeting, enhancing penetration, and therapy. Methods: Through a single-step self-assembly process, we used amphiphilic peptides to obtain nanofibers decorated on their surfaces with the selected moieties. The surface of the nanofiber was decorated with a cell-penetrating peptide (gH625), an EGFR-targeting peptide (P22), and Dox bound to the cleavage sequence selectively recognized and cleaved by MMP-9 to obtain on-demand drug release. Detailed physicochemical and cellular analyses were performed. Results: The obtained nanofiber (NF-Dox) had a length of 250 nm and a diameter of 10 nm, and it was stable under dilution, ionic strength, and different pH environments. The biological results showed that the presence of gH625 favored the complete internalization of NF-Dox after 1h in MDA-MB 231 cells, mainly through a translocation mechanism. Interestingly, we observed the absence of toxicity of the carrier (NF) on both healthy cells such as HaCaT and TNBC cancer lines, while a similar antiproliferative effect was observed on TNBC cells after the treatment with the free-Dox at 50 µM and NF-Dox carrying 7.5 µM of Dox. Discussion: We envision that this platform is extremely versatile and can be used to efficiently carry and deliver diverse moieties. The knowledge acquired from this study will provide important guidelines for applications in basic research and biomedicine.


Subject(s)
Doxorubicin , Drug Delivery Systems , Nanofibers , Triple Negative Breast Neoplasms , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/pharmacokinetics , Doxorubicin/administration & dosage , Triple Negative Breast Neoplasms/drug therapy , Humans , Nanofibers/chemistry , Cell Line, Tumor , Female , Drug Delivery Systems/methods , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacokinetics , Drug Liberation , Cell Survival/drug effects , Peptides/chemistry , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , ErbB Receptors/metabolism , Matrix Metalloproteinase 9/metabolism , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
3.
Int J Nanomedicine ; 19: 5781-5792, 2024.
Article in English | MEDLINE | ID: mdl-38882546

ABSTRACT

Background: While nanoplatform-based cancer theranostics have been researched and investigated for many years, enhancing antitumor efficacy and reducing toxic side effects is still an essential problem. Methods: We exploited nanoparticle coordination between ferric (Fe2+) ions and telomerase-targeting hairpin DNA structures to encapsulate doxorubicin (DOX) and fabricated Fe2+-DNA@DOX nanoparticles (BDDF NPs). This work studied the NIR fluorescence imaging and pharmacokinetic studies targeting the ability and biodistribution of BDDF NPs. In vitro and vivo studies investigated the nano formula's toxicity, imaging, and synergistic therapeutic effects. Results: The enhanced permeability and retention (EPR) effect and tumor targeting resulted in prolonged blood circulation times and high tumor accumulation. Significantly, BDDF NPs could reduce DOX-mediated cardiac toxicity by improving the antioxidation ability of cardiomyocytes based on the different telomerase activities and iron dependency in normal and tumor cells. The synergistic treatment efficacy is enhanced through Fe2+-mediated ferroptosis and the ß-catenin/p53 pathway and improved the tumor inhibition rate. Conclusion: Harpin DNA-based nanoplatforms demonstrated prolonged blood circulation, tumor drug accumulation via telomerase-targeting, and synergistic therapy to improve antitumor drug efficacy. Our work sheds new light on nanomaterials for future synergistic chemotherapy.


Subject(s)
Doxorubicin , Telomerase , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Animals , Humans , Telomerase/metabolism , Cell Line, Tumor , Mice , DNA/chemistry , DNA/pharmacokinetics , DNA/administration & dosage , Tissue Distribution , Nanoparticles/chemistry , Neoplasms/drug therapy , Ferroptosis/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Mice, Inbred BALB C , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
4.
Mol Pharm ; 21(7): 3173-3185, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38798088

ABSTRACT

This study aimed to investigate the effect of in vivo pH-responsive doxorubicin (DOX) release and the targetability of pilot molecules in folic acid (FA)-modified micelles using a pharmacokinetic-pharmacodynamic (PK-PD) model. The time profiles of intratumoral DOX concentrations in Walker256 tumor-bearing rats were monitored using a microdialysis probe, followed by compartmental analysis, to evaluate intratumoral tissue pharmacokinetics. Maximal DOX was released from micelles 350 min after the administration of pH-responsive DOX-releasing micelles. However, FA modification of the micelles shortened the time to peak drug concentration to 150 min. Additionally, FA modification resulted in a 27-fold increase in the tumor inflow rate constant. Walker256 tumor-bearing rats were subsequently treated with DOX, pH-responsive DOX-releasing micelles, and pH-responsive DOX-releasing FA-modified micelles to monitor the tumor growth-time profiles. An intratumoral threshold concentration of DOX (55-64 ng/g tumor) was introduced into the drug efficacy compartment to construct a PD model, followed by PK-PD analysis of the tumor growth-time profiles. Similar results of threshold concentration and drug potency of DOX were obtained across all three formulations. Cell proliferation was delayed as the drug delivery ability of DOX was improved. The PK model, which was developed using the microdialysis method, revealed the intratumoral pH-responsive DOX distribution profiles. This facilitated the estimation of intratumoral PK parameters. The PD model with threshold concentrations contributed to the estimation of PD parameters in the three formulations, with consistent mechanisms observed. We believe that our PK-PD model can objectively assess the contributions of pH-responsive release ability and pilot molecule targetability to pharmacological effects.


Subject(s)
Doxorubicin , Folic Acid , Micelles , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Animals , Rats , Hydrogen-Ion Concentration , Folic Acid/chemistry , Folic Acid/pharmacokinetics , Drug Liberation , Cell Proliferation/drug effects , Drug Delivery Systems/methods , Cell Line, Tumor , Drug Carriers/chemistry , Female , Rats, Wistar , Humans , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology
5.
Pharmacol Res ; 205: 107244, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821149

ABSTRACT

Doxorubicin (Dox) is an anti-tumor drug with a broad spectrum, whereas the cardiotoxicity limits its further application. In clinical settings, liposome delivery vehicles are used to reduce Dox cardiotoxicity. Here, we substitute extracellular vesicles (EVs) for liposomes and deeply investigate the mechanism for EV-encapsulated Dox delivery. The results demonstrate that EVs dramatically increase import efficiency and anti-tumor effects of Dox in vitro and in vivo, and the efficiency increase benefits from its unique entry pattern. Dox-loading EVs repeat a "kiss-and-run" motion before EVs internalization. Once EVs touch the cell membrane, Dox disassociates from EVs and directly enters the cytoplasm, leading to higher and faster Dox import than single Dox. This unique entry pattern makes the adhesion between EVs and cell membrane rather than the total amount of EV internalization the key factor for regulating the Dox import. Furthermore, we recognize ICAM1 as the molecule mediating the adhesion between EVs and cell membranes. Interestingly, EV-encapsulated Dox can induce ICAM1 expression by irritating IFN-γ and TNF-α secretion in TME, thereby increasing tumor targeting of Dox-loading EVs. Altogether, EVs and EV-encapsulated Dox synergize via ICAM1, which collectively enhances the curative effects for tumor treatment.


Subject(s)
Antibiotics, Antineoplastic , Doxorubicin , Extracellular Vesicles , Intercellular Adhesion Molecule-1 , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Animals , Humans , Intercellular Adhesion Molecule-1/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/administration & dosage , Cell Line, Tumor , Mice, Inbred BALB C , Mice , Female , Neoplasms/drug therapy , Neoplasms/metabolism , Cell Adhesion/drug effects , Drug Delivery Systems , Mice, Nude , Tumor Necrosis Factor-alpha/metabolism
6.
Int J Pharm ; 659: 124285, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38821433

ABSTRACT

The main treatment modalities for breast cancer include surgery, chemotherapy, and radiotherapy, and each treatment will bring different side effects. Design and synthesizing a novel nanostructure for chemo-radiotherapy has been proposed as an effective method in consideration to enhance the drug efficiency as well as improve the effect of radiotherapy. This study aimed to synthesize zinc nanoparticles (ZnNPs) coated with alginate conjugated with Doxorubicin (Dox) drug and investigate its effects along with X-irradiation on MDA-MB-231 triple-negative breast cancer cell line. ZnNPs coated with alginate were synthesized and conjugated to Dox by covalent bonding and characterized using various physicochemical tests. A hemolysis test was used to assess blood biocompatibility. The radiosensitization properties and anti-cancer effects of the synthesized nanostructures were tested by cell uptake, cell viability, apoptosis, cell cycle, and scratch assays with and without radiation exposure. The physicochemical characterization results showed that the synthesis of nanostructures was successfully carried out. The obtained results from the cell uptake assay showed the effective absorption of nanostructures by the cells. The Zn@Alg-Dox NPs significantly reduced cell growth, increased apoptosis, inhibited cell migration, and led to the arrest of different cell cycle phases in both conditions with and without X-ray exposure. Coating ZnNPs with alginate and Doxorubicin conjugation leads to an increase the radiation sensitivity in radiotherapy as well as therapeutic efficiency. Therefore, Zn@Alg-Dox NPs can be used as radiosensitizing nanomedicine for in vivo studies in the future.


Subject(s)
Alginates , Apoptosis , Cell Survival , Doxorubicin , Metal Nanoparticles , Radiation-Sensitizing Agents , Triple Negative Breast Neoplasms , Zinc , Alginates/chemistry , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Triple Negative Breast Neoplasms/drug therapy , Cell Line, Tumor , Zinc/chemistry , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/administration & dosage , Radiation-Sensitizing Agents/pharmacology , Cell Survival/drug effects , Apoptosis/drug effects , Metal Nanoparticles/chemistry , Metal Nanoparticles/administration & dosage , Female , Cell Movement/drug effects , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Hemolysis/drug effects
7.
Int J Pharm ; 659: 124245, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38772497

ABSTRACT

Doxorubicin (DOX) is a chemotherapeutic drug used in osteosarcoma treatments, usually administrated in very high dosages. This study proposes novel DOX microcarriers based on chitosan (CHT) physically crosslinked with copper(II) ions that will act synergically to inhibit tumor growth at lower drug dosage without affecting the healthy cells. Spherical CHT-Cu microparticles with a smooth surface and an average size of 30.1 ± 9.1 µm were obtained by emulsion. The release of Cu2+ ions from the CHT-Cu microparticles showed that 99.4 % of added cupric ions were released in 72 h of incubation in a complete cell culture medium (CCM). DOX entrapment in microparticles was conducted in a phosphate buffer solution (pH 6), utilizing the pH sensitivity of the polymer. The successful drug-loading process was confirmed by DOX emitting red fluorescence from drug-loaded microcarriers (DOX@CHT-Cu). The drug release in CCM showed an initial burst release, followed by sustained release. Biological assays indicated mild toxicity of CHT-Cu microparticles on the MG-63 osteosarcoma cell line, without affecting the viability of human mesenchymal stem cells (hMSCs). The DOX@CHT-Cu microparticles at concentration of 0.5 mg mL‒1 showed selective toxicity toward MG-63 cells.


Subject(s)
Bone Neoplasms , Cell Survival , Chitosan , Copper , Doxorubicin , Drug Carriers , Drug Liberation , Osteosarcoma , Chitosan/chemistry , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Copper/chemistry , Copper/administration & dosage , Cell Line, Tumor , Bone Neoplasms/drug therapy , Drug Carriers/chemistry , Cell Survival/drug effects , Osteosarcoma/drug therapy , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Particle Size , Mesenchymal Stem Cells/drug effects , Microspheres
8.
ACS Nano ; 18(22): 14441-14456, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38758604

ABSTRACT

The active targeting drug delivery system based on special types of endogenous cells such as macrophages has emerged as a promising strategy for tumor therapy, owing to its tumor homing property and biocompatibility. In this work, the active tumor-targeting drug delivery system carrying doxorubicin-loaded nanoparticles (DOX@MPF127-MCP-1, DMPM) on macrophage (RAW264.7) surfaces via the mediation of interaction with the CCR2/MCP-1 axis was exploited. Initially, the amphiphilic block copolymer Pluronic F127 (PF127) was carboxylated to MPF127 at the hydroxyl terminus. Subsequently, MPF127 was modified with MCP-1 peptide to prepare MPF127-MCP-1 (MPM). The DOX was wrapped in MPM to form DMPM nanomicelles (approximately 100 nm) during the self-assembly process of MPM. The DMPM spontaneously bound to macrophages (RAW264.7), which resulted in the construction of an actively targeting delivery system (macrophage-DMPM, MA-DMPM) in vitro and in vivo. The DOX in MA-DMPM was released in the acidic tumor microenvironment (TME) in a pH-responsive manner to increase DOX accumulation and enhance the tumor treatment effect. The ratio of MA-DMPM homing reached 220% in vitro compared with the control group, indicating that the MA-DMPM was excellently capable of tumor-targeting delivery. In in vivo experiments, nonsmall cell lung cancer cell (NCI-H1299) tumor models were established. The results of the fluorescence imaging system (IVIS) showed that MA-DMPM demonstrated tremendous tumor-targeting ability in vivo. The antitumor effects of MA-DMPM in vivo indicated that the proportion of tumor cell apoptosis in the DMPM-treated group was 63.33%. The findings of the tumor-bearing mouse experiment proved that MA-DMPM significantly suppressed tumor cell growth, which confirmed its immense potential and promising applications in tumor therapy.


Subject(s)
Doxorubicin , Macrophages , Nanoparticles , Poloxamer , Tumor Microenvironment , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Animals , Tumor Microenvironment/drug effects , Mice , Poloxamer/chemistry , Nanoparticles/chemistry , Macrophages/metabolism , Macrophages/drug effects , RAW 264.7 Cells , Drug Delivery Systems , Humans , Drug Carriers/chemistry , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Mice, Inbred BALB C , Chemokine CCL2/metabolism
9.
Anal Chem ; 96(22): 9254-9261, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38778440

ABSTRACT

Targeted therapy to the tumor would greatly advance precision medicine. Many drug delivery vehicles have emerged, but liposomes are cited as the most successful to date. Recent efforts to develop liposomal drug delivery systems focus on drug distribution in tissues and ignore liposomal fate. In this study, we developed a novel method to elucidate both drug and liposomal bilayer distribution in a three-dimensional cell culture model using quantitative matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI qMSI) alongside fluorescence microscopy. Imaging liposomal distribution in a cell culture model is challenging, as lipids forming the bilayer are endogenous to the model system. To resolve this issue, we functionalized the bilayer by chemically cross-linking a fluorescent tag to the alkyne-containing lipid hexynoyl phosphoethanolamine (HPE). We synthesized liposomes incorporating the tagged HPE lipid and encapsulated within them doxorubicin, yielding a theranostic liposome capable of both drug delivery and monitoring liposomal uptake. We employed an "in-tissue" MALDI qMSI approach to generate a calibration curve with R2 = 0.9687, allowing for quantification of doxorubicin within spheroid sections at multiple time points. After 72 h of treatment with the theranostic liposomes, full doxorubicin penetration was observed. The metabolites doxorubicinone and 7-deoxydoxorubicinone were also detected after 48 h. Modification of the bilayer allowed for fluorescence microscopy tracking of liposomes, while MALDI MSI simultaneously permitted the imaging of drugs and metabolites. While we demonstrated the utility of our method with doxorubicin, this system could be applied to examine the uptake, release, and metabolism of many other liposome-encapsulated drugs.


Subject(s)
Doxorubicin , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/analogs & derivatives , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Drug Delivery Systems , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Liposomes/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Polyethylene Glycols/chemistry , Microscopy, Fluorescence , Cell Line, Tumor
10.
Int J Pharm ; 658: 124203, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38705249

ABSTRACT

Most nanomedicines with suitable sizes (normally 100-200 nm) exhibit favorable accumulation in the periphery of tumors but hardly penetrate into deep tumors. Effective penetration of nanomedicines requires smaller sizes (less than 30 nm) to overcome the elevated tumor interstitial fluid pressure. Moreover, integrating an efficient diagnostic agent in the nanomedicines is in high demand for precision theranostics of tumors. To this end, a near-infrared light (NIR) -triggered size-shrinkable micelle system (Fe3O4@AuNFs/DOX-M) coloaded antitumor drug doxorubicin (DOX) and biomodal imaging agent magnetic gold nanoflower (Fe3O4@AuNFs) was developed to achieve efficient theranostic of tumors. Upon the accumulation of Fe3O4@AuNFs/DOX-M in the tumor periphery, a NIR laser was irradiated near the tumor sites, and the loaded Fe3O4@Au NFs could convert the light energy to heat, which triggered the cleavage of DOX-M to the ultra-small micelles (∼5 nm), thus realizing the deep penetration of micelles and on-demand drug release. Moreover, Fe3O4@AuNFs in the micelles could also be used as CT/MRI dual-modal contrast agent to "visualize" the tumor. Up to 92.6 % of tumor inhibition was achieved for the developed Fe3O4@AuNFs/DOX-M under NIR irradiation. This versatile micelle system provided a promising drug carrier platform realizing efficient tumor dual-modal diagnosis and photothermal-chemotherapy integration.


Subject(s)
Doxorubicin , Gold , Infrared Rays , Micelles , Theranostic Nanomedicine , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Animals , Gold/chemistry , Gold/administration & dosage , Theranostic Nanomedicine/methods , Humans , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/diagnostic imaging , Drug Liberation , Mice , Antibiotics, Antineoplastic/administration & dosage , Magnetic Resonance Imaging/methods , Mice, Inbred BALB C , Drug Delivery Systems/methods , Contrast Media/chemistry , Contrast Media/administration & dosage , Drug Carriers/chemistry , Particle Size , Female , Mice, Nude
11.
Int J Pharm ; 658: 124231, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38759741

ABSTRACT

Two frequent problems hindering clinical translation of nanomedicine are low drug loading and low colloidal stability. Previous efforts to achieve ultrahigh drug loading (>30 %) introduce new hurdles, including lower colloidal stability and others, for clinical translation. Herein, we report a new class of drug nano-carriers based on our recent finding in protein-nanoparticle co-assembly supraparticle (PNCAS), with both ultrahigh drug loading (58 % for doxorubicin, i.e., DOX) and ultrahigh colloidal stability (no significant change in hydrodynamic size after one year). We further show that our PNCAS-based drug nano-carrier possesses a built-in environment-responsive drug release feature: once in lysosomes, the loaded drug molecules are released instantly (<1 min) and completely (∼100 %). Our PNCAS-based drug delivery system is spontaneously formed by simple mixing of hydrophobic nanoparticles, albumin and drugs. Several issues related to industrial production are studied. The ultrahigh drug loading and stability of DOX-loaded PNCAS enabled the delivery of an exceptionally high dose of DOX into a mouse model of breast cancer, yielding high efficacy and no observed toxicity. With further developments, our PNCAS-based delivery systems could serve as a platform technology to meet the multiple requirements of clinical translation of nanomedicines.


Subject(s)
Doxorubicin , Drug Liberation , Lysosomes , Nanoparticles , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Animals , Nanoparticles/chemistry , Female , Drug Carriers/chemistry , Mice , Colloids/chemistry , Humans , Drug Delivery Systems , Mice, Inbred BALB C , Drug Stability , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Cell Line, Tumor , Breast Neoplasms/drug therapy
12.
ACS Nano ; 18(20): 12716-12736, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38718220

ABSTRACT

Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.


Subject(s)
Blood-Brain Barrier , Doxorubicin , Drug Delivery Systems , Nanoparticles , Silicon Dioxide , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Silicon Dioxide/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Nanoparticles/chemistry , Animals , Porosity , Mice , Humans , Polyethylene Glycols/chemistry , Drug Carriers/chemistry , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Particle Size , Cell Line, Tumor , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Ligands , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage
13.
Int J Pharm ; 657: 124183, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38692500

ABSTRACT

We developed cyclic RGD-tagged polymeric micellar nanoassemblies for sustained delivery of Doxorubicin (Dox) endowed with significant cytotoxic effect against MG63, SAOS-2, and U2-OS osteosarcoma cells without compromising the viability of healthy osteoblasts (hFOBs). Targeted polymeric micellar nanoassemblies (RGD-NanoStar@Dox) enabled Dox to reach the nucleus of MG63, SAOS-2, and U2-OS cells causing the same cytotoxic effect as free Dox, unlike untargeted micellar nanoassemblies (NanoStar@Dox) which failed to reach the nucleus and resulted ineffective, demonstrating the crucial role of cyclic RGD peptide in driving cellular uptake and accumulation mechanisms in osteosarcoma cells. Micellar nanoassemblies were obtained by nanoformulation of three-armed star PLA-PEG copolymers properly synthetized with and without decoration with the cyclic-RGDyK peptide (Arg-Gly-Asp-D-Tyr-Lys). The optimal RGD-NanoStar@Dox nanoformulation obtained by nanoprecipitation method (8 % drug loading; 35 % encapsulation efficiency) provided a prolonged and sustained drug release with a rate significantly lower than the free drug under the same experimental conditions. Moreover, the nanosystem preserved Dox from the natural degradation occurring under physiological conditions (i.e., dimerization and consequent precipitation) serving as a slow-release "drug reservoir" ensuring an extended biological activity over the time.


Subject(s)
Bone Neoplasms , Cell Survival , Doxorubicin , Micelles , Oligopeptides , Osteosarcoma , Polyethylene Glycols , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Doxorubicin/chemistry , Osteosarcoma/drug therapy , Humans , Polyethylene Glycols/chemistry , Cell Line, Tumor , Oligopeptides/chemistry , Oligopeptides/administration & dosage , Bone Neoplasms/drug therapy , Cell Survival/drug effects , Nanoparticles/chemistry , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Drug Liberation , Drug Carriers/chemistry
14.
Mol Pharm ; 21(6): 2970-2980, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38742943

ABSTRACT

One of the most significant reasons hindering the clinical translation of nanomedicines is the rapid clearance of intravenously injected nanoparticles by the mononuclear phagocyte system, particularly by Kupffer cells in the liver, leading to an inefficient delivery of nanomedicines for tumor treatment. The threshold theory suggests that the liver's capacity to clear nanoparticles is limited, and a single high dose of nanoparticles can reduce the hepatic clearance efficiency, allowing more nanomedicines to reach tumor tissues and enhance therapeutic efficacy. Building upon this theory, researchers have conducted numerous validation studies based on the same nanoparticle carrier systems. These studies involve the use of albumin nanoparticles to improve the therapeutic efficacy of albumin nanomedicines as well as polyethylene glycol (PEG)-modified liposomal nanoparticles to enhance the efficacy of PEGylated liposomal nanomedicines. However, there is no research indicating the feasibility of the threshold theory when blank nanoparticles and nanomedicine belong to different nanoparticle carrier systems currently. In this study, we prepared two different sizes of albumin nanoparticles by using bovine serum albumin. We used the marketed nanomedicine liposomal doxorubicin hydrochloride injection (trade name: LIBOD, manufacturer: Shanghai Fudan-zhangjiang Biopharmaceutical Co., Ltd.), as the representative nanomedicine. Through in vivo experiments, we found that using threshold doses of albumin nanoparticles still can reduce the clearance rate of LIBOD, prolong its time in vivo, increase the area under the plasma concentration-time curve (AUC), and also lead to an increased accumulation of the drug at the tumor site. Furthermore, evaluation of in vivo efficacy and safety further indicates that threshold doses of 100 nm albumin nanoparticles can enhance the antitumor effect of LIBOD without causing harm to the animals. During the study, we found that the particle size of albumin nanoparticles influenced the in vivo distribution of the nanomedicine at the same threshold dose. Compared with 200 nm albumin nanoparticles, 100 nm albumin nanoparticles more effectively reduce the clearance efficiency of LIBOD and enhance nanomedicine accumulation at the tumor site, warranting further investigation. This study utilized albumin nanoparticles to reduce hepatic clearance efficiency and enhance the delivery efficiency of nonalbumin nanocarrier liposomal nanomedicine, providing a new avenue to improve the efficacy and clinical translation of nanomedicines with different carrier systems.


Subject(s)
Doxorubicin , Nanoparticles , Polyethylene Glycols , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/analogs & derivatives , Animals , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Mice , Liposomes/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/administration & dosage , Tissue Distribution , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Mice, Inbred BALB C , Liver/drug effects , Liver/metabolism , Particle Size , Nanomedicine/methods , Humans , Male , Female
15.
Vet J ; 305: 106134, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750812

ABSTRACT

Doxorubicin is an anthracycline antitumor antibiotic with dose-dependent and cumulative cardiotoxicity. However, the necessity for serial cardiac evaluation is unknown in dogs without risk factors for dilated cardiomyopathy (DCM). This study aimed to investigate serial changes in echocardiographic and electrocardiographic measures in small- and medium-sized dogs after four doxorubicin doses. We included 17 dogs, weighting < 20 kg, with multicentric lymphoma. All dogs received doxorubicin over 30 min every 4 weeks as part of a multi-drug chemotherapy protocol. The average doxorubicin dose was 3.8 times per dog. Clinical cardiotoxicity was not observed during the monitoring period. The incidence of developing arrhythmia was not significantly associated with the number of doxorubicin doses received (P = 0.600). The development of valvular regurgitations and mitral regurgitation in these dogs was not significantly associated with the number of doxorubicin doses (P = 0.363 and P = 0.779, respectively). The other echocardiographic results were not significantly different between each evaluation. In conclusion, our results showed no significant cardiotoxicity under echocardiogram and electrocardiogram in small- and medium-sized dogs without risk factors for DCM after four doses of doxorubicin in a 30-minute infusion method.


Subject(s)
Antibiotics, Antineoplastic , Dog Diseases , Doxorubicin , Echocardiography , Electrocardiography , Lymphoma , Animals , Dogs , Doxorubicin/therapeutic use , Doxorubicin/administration & dosage , Dog Diseases/drug therapy , Antibiotics, Antineoplastic/therapeutic use , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/adverse effects , Female , Male , Lymphoma/veterinary , Lymphoma/drug therapy , Echocardiography/veterinary , Electrocardiography/veterinary , Cardiotoxicity/veterinary , Cardiotoxicity/etiology
16.
ACS Biomater Sci Eng ; 10(5): 3425-3437, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38622760

ABSTRACT

Triple-negative breast cancer (TNBC) lacks expressed protein targets, making therapy development challenging. Hydrogels offer a promising new route in this regard by improving the chemotherapeutic efficacy through increased solubility and sustained release. Moreover, subcutaneous hydrogel administration reduces patient burden by requiring less therapy and shorter treatment times. We recently established the design principles for the supramolecular assembly of single-domain coiled-coils into hydrogels. Using a modified computational design algorithm, we designed Q8, a hydrogel with rapid assembly for faster therapeutic hydrogel preparation. Q8 encapsulates and releases doxorubicin (Dox), enabling localized sustained release via subcutaneous injection. Remarkably, a single subcutaneous injection of Dox-laden Q8 (Q8•Dox) significantly suppresses tumors within just 1 week. This work showcases the bottom-up engineering of a fully protein-based drug delivery vehicle for improved TBNC treatment via noninvasive localized therapy.


Subject(s)
Delayed-Action Preparations , Doxorubicin , Hydrogels , Triple Negative Breast Neoplasms , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/therapeutic use , Hydrogels/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Female , Humans , Animals , Delayed-Action Preparations/chemistry , Cell Line, Tumor , Protein Engineering , Mice , Drug Liberation , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Antibiotics, Antineoplastic/chemistry
17.
Biomacromolecules ; 25(5): 2980-2989, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38587905

ABSTRACT

We developed a supramolecular system for codelivery of doxorubicin (Dox) and p53 gene based on a ß-CD-containing star-shaped cationic polymer. First, a star-shaped cationic polymer consisting of a ß-CD core and 3 arms of oligoethylenimine (OEI), named CD-OEI, was used to form a supramolecular inclusion complex with hydrophobic Dox. The CD-OEI/Dox complex was subsequently used to condense plasmid DNA via electrostatic interactions to form CD-OEI/Dox/DNA polyplex nanoparticles with positive surface charges that enhanced the cellular uptake of both Dox and DNA. This supramolecular drug and gene codelivery system showed high gene transfection efficiency and effective protein expression in cancer cells. The codelivery of Dox and DNA encoding the p53 gene resulted in reduced cell viability and enhanced antitumor effects at low Dox concentrations. With its enhanced cellular uptake and anticancer efficacy, the system holds promise as a delivery carrier for potential combination cancer therapies.


Subject(s)
Doxorubicin , Nanoparticles , Static Electricity , Tumor Suppressor Protein p53 , Humans , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , beta-Cyclodextrins/chemistry , Cell Survival/drug effects , DNA/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Drug Carriers/chemistry , Gene Transfer Techniques , Nanoparticles/chemistry , Tumor Suppressor Protein p53/genetics
18.
J Clin Oncol ; 42(18): 2174-2185, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38603646

ABSTRACT

PURPOSE: Measurable residual disease (MRD) by using flow cytometry after induction therapy is strongly prognostic in pediatric AML, and hematopoietic stem-cell transplant (hSCT) may counteract a poor response. We designed a phase III study with intensified response-guided induction and MRD-based risk stratification and treated poor induction response with hSCT. The efficacy of liposomal daunorubicin (DNX) in induction was compared with mitoxantrone. METHODS: The study planned to randomly assign 300 patients, but the production of DNX ceased in 2017. One hundred ninety-four patients were randomly assigned to mitoxantrone or experimental DNX in induction 1. Ninety-three non-randomly assigned patients served as an observation cohort. Primary end point was fraction of patients with MRD <0.1% on day 22 after induction 1. Patients with MRD ≥15% after induction 1 or ≥0.1% after induction 2 or FLT3-ITD with NPM1 wildtype were stratified to high-risk therapy, including hSCT. RESULTS: Outcome for all 287 children was good with 5-year event-free survival (EFS5y) 66.7% (CI, 61.4 to 72.4) and 5-year overall survival (OS5y) 79.6% (CI, 75.0 to 84.4). Overall, 75% were stratified to standard-risk and 19% to high-risk. There was no difference in the proportion of patients with MRD <0.1% on day 22 after induction 1 (34% mitoxantrone, etoposide, araC [MEC], 30% DNX, P = .65), but the proportion increased to 61% for MEC versus 47% for DNX (P = .061) at the last evaluation before induction 2. EFS5y was significantly lower, 56.6% (CI, 46.7 to 66.5) versus 71.9% (CI, 63.0 to 80.9), and cumulative incidence of relapse (CIR) was higher, 35.1% (CI, 25.7 to 44.7) versus 18.8% (CI, 11.6 to 27.2) for DNX. The inferior outcome for DNX was only in standard-risk patients with EFS5y 55.3% (CI, 45.1 to 67.7) versus 79.9% (CI, 71.1 to 89.9), CIR 39.5% (CI, 28.4 to 50.3) versus 18.7% (CI, 10.5 to 28.7), and OS5y 76.2% (CI, 67.2 to 86.4) versus 88.6% (CI, 81.4 to 96.3). As-treated analyses, including the observation cohort, supported these results. For all high-risk patients, 85% received hSCT, and EFS5y was 77.7 (CI, 67.3 to 89.7) and OS5y was 83.0 (CI, 73.5 to 93.8). CONCLUSION: The intensification of induction therapy with risk stratification on the basis of response to induction and hSCT for high-risk patients led to improved outcomes. Mitoxantrone had a superior anti-leukemic effect than liposomal daunorubicin.


Subject(s)
Daunorubicin , Flow Cytometry , Leukemia, Myeloid, Acute , Liposomes , Mitoxantrone , Neoplasm, Residual , Nucleophosmin , Humans , Mitoxantrone/administration & dosage , Daunorubicin/administration & dosage , Daunorubicin/therapeutic use , Child , Leukemia, Myeloid, Acute/drug therapy , Male , Child, Preschool , Female , Infant , Adolescent , Risk Assessment , Hematopoietic Stem Cell Transplantation/methods , Induction Chemotherapy/methods , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/therapeutic use
19.
Mol Pharm ; 21(5): 2394-2405, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38647653

ABSTRACT

Doxorubicin (DOX) is one of the most commonly used anticancer drugs; however, its clinical application is greatly limited due to its toxicity and chemotherapy resistance. The delivery of DOX by liposomes (Lipos) can improve the blood circulation time in vivo and reduce toxic side effects, but the drug's accumulation in the tumor is often insufficient for effective treatment. In this study, we present a calcium cross-linked liposome gel for the encapsulation of DOX, demonstrating its superior long-term release capabilities compared to conventional Lipos. By leveraging this enhanced long-term release, we can enhance drug accumulation within tumors, ultimately leading to improved antitumor efficacy. Lipos were prepared using the thin-film dispersion method in this study. We utilized the ion-responsiveness of glutathione-gelatin (GSH-GG) to form the gel outside the Lipos and named the nanoparticles coated with GSH-GG on the outside of Lipos as Lipos@GSH-GG. The average size of Lipos@GSH-GG was around 342.9 nm, with a negative charge of -25.6 mV. The in vitro experiments revealed that Lipos@GSH-GG exhibited excellent biocompatibility and slower drug release compared to conventional Lipos. Further analysis of cellular uptake and cytotoxicity demonstrated that Lipos@GSH-GG loading DOX (DOX&Lipos@GSH-GG) exhibited superior long-term release effects and lower toxic side effects compared to Lipos loading DOX (DOX&Lipos). Additionally, the findings regarding the long-term release effect in vivo and the tumor accumulation within tumor-bearing mice of Lipos@GSH-GG suggested that, compared to Lipos, it demonstrated superior long-term release capabilities and achieved greater drug accumulation within tumors. In vivo antitumor efficacy experiments showed that DOX&Lipos@GSH-GG demonstrated superior antitumor efficacy to DOX&Lipos. Our study highlights Lipos@GSH-GG as a promising nanocarrier with the potential to enhance efficacy and safety by means of long-term release effects and may offer an alternative approach for effective antitumor therapy in the future.


Subject(s)
Calcium , Doxorubicin , Drug Liberation , Glutathione , Liposomes , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Animals , Mice , Liposomes/chemistry , Humans , Calcium/chemistry , Calcium/metabolism , Glutathione/chemistry , Female , Gels/chemistry , Gelatin/chemistry , Mice, Nude , Nanoparticles/chemistry , Mice, Inbred BALB C , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Cross-Linking Reagents/chemistry , Drug Delivery Systems/methods
20.
J Colloid Interface Sci ; 667: 1-11, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38615618

ABSTRACT

A major challenge in combining cancer immunotherapy is the efficient delivery of multiple types of immunological stimulators to elicit a robust anti-tumor immune response and reprogram the immunosuppressive tumor microenvironment (TME). Here, we developed a DNA nanodevice that was generated by precisely assembling three types of immunological stimulators. The doxorubicin (Dox) component induced immunogenic cell death (ICD) in tumor cells and enhanced phagocytosis of antigen-presenting cells (APCs). Exogenous double-stranded DNA (dsDNA) could act as a molecular adjuvant to activate the stimulator of interferon genes (STING) signaling in APCs by engulfing dying tumor cells. Interleukin (IL)-12 and small hairpin programmed cell death-ligand 1 (shPD-L1) transcription templates were designed to regulate TME. Additionally, for targeted drug delivery, multiple cyclo[Arg-Gly-Asp-(d-Phe)-Cys] (cRGD) peptide units on DNA origami were employed. The incorporation of disulfide bonds allowed the release of multiple modules in response to intracellular glutathione (GSH) in tumors. The nanodevice promoted the infiltration of CD8+ and CD4+ cells into the tumor and generated a highly inflamed TME, thereby enhancing the effectiveness of cancer immunotherapy. Our research results indicate that the nanodevice we constructed can effectively inhibit tumor growth and prevent lung metastasis without obvious systemic toxicity, providing a promising strategy for cancer combination treatment.


Subject(s)
DNA , Doxorubicin , Immunotherapy , DNA/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Mice , Animals , Tumor Microenvironment/drug effects , Humans , Drug Delivery Systems , Mice, Inbred C57BL , Mice, Inbred BALB C , Cell Line, Tumor , Antigen-Presenting Cells/immunology , Nanoparticles/chemistry , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/immunology , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...