Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44.780
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 354-361, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710518

Objective To prepare a monoclonal antibody (mAb) against mouse NOD-like receptor family pyrin domain-containing 3 (NLRP3) and assess its specificity. Methods A gene fragment encoding mouse NLRP3 exon3 (Ms-N3) was inserted into the vector p36-G3-throhFc to construct a recombinant plasmid named Ms-N3-throhFc. This plasmid was then transfected into HEK293F cells for eukaryotic expression. NLRP3-/- mice were immunized with Ms-N3 protein purified using a protein A chromatography column, and splenocytes from the immunized mice were fused with SP2/0 myeloma cells to generate hybridoma cells. Specific mAbs against murine NLRP3 from hybridoma cells were screened using ELISA and immunofluorescence assay(IFA). Results The Ms-N3-throhFc recombinant plasmid was successfully constructed and exhibited stable expression in HEK293F cells. Twelve hybridoma cell lines were initially screened using ELISA. IFA revealed that the mAb secreted by the 9-B8-3-2-C5 cell line specifically recognized the native form of mouse NLRP3 protein. The heavy and light chain subtypes of this mAb were identified as IgM and κ, respectively. Conclusion A monoclonal antibody against mouse NLRP3 has been successfully prepared.


Antibodies, Monoclonal , Hybridomas , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , Humans , Mice , HEK293 Cells , Hybridomas/immunology , Enzyme-Linked Immunosorbent Assay , Antibody Specificity/immunology , Female , Mice, Inbred BALB C
2.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1571-1583, 2024 May 25.
Article Zh | MEDLINE | ID: mdl-38783817

The antibodies to the microtubule-associated protein tau play a role in basic and clinical studies of Alzheimer's disease (AD) and other tauopathies. With the recombinant human tau441 as the immunogen, the hybridoma cell strains secreting the anti-human tau N-terminal domain (NTD-tau) monoclonal antibodies were generated by cell fusion and screened by limiting dilution. The purified monoclonal antibodies were obtained by inducing the mouse ascites and affinity chromatography. The sensitivity and specificity of the monoclonal antibodies were examined by indirect ELISA and Western blotting, respectively. A double antibody sandwich ELISA method for detecting human tau protein was established and optimized. The results showed that the positive cloning rate of hybridoma cells was 83.6%. A stable cell line producing ZD8F7 antibodies was established, and the antibody titer in the supernatant of the cell line was 1:16 000. The antibody titer in the ascitic fluid was higher than 1:256 000; and the titer of purified ZD8F7 monoclonal antibodies was higher than 1:128 000. The epitope analysis showed that the ZD8F7 antibody recognized tau21-37 amino acid in the N-terminal domain. The Western blotting results showed that the ZD8F7 antibody recognized the recombinant human tau protein of 50-70 kDa and the human tau protein of 50 kDa in the brain tissue of transgenic AD model mice (APP/PS1/tau). With ZD8F7 as a capture antibody, a quantitative detection method for human tau protein was established, which showed a linear range of 7.8-500.0 pg/mL and could identify human tau protein in the brain tissue of AD transgenic mice and human plasma but not recognize the mouse tau protein. In conclusion, the human NTD-tau-specific monoclonal antibody and the double antibody sandwich ELISA method established in this study are highly sensitive and can serve as a powerful tool for the detection of tau protein in neurodegenerative diseases.


Alzheimer Disease , Antibodies, Monoclonal , tau Proteins , tau Proteins/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/biosynthesis , Humans , Mice , Alzheimer Disease/immunology , Alzheimer Disease/diagnosis , Alzheimer Disease/blood , Enzyme-Linked Immunosorbent Assay , Recombinant Proteins/immunology , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Hybridomas/immunology , Mice, Inbred BALB C , Antibody Specificity , Protein Domains , Epitopes/immunology
3.
Life Sci ; 347: 122676, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38688384

Antibody-drug conjugates (ADCs) are immunoconjugates that combine the specificity of monoclonal antibodies with a cytotoxic agent. The most appealing aspects of ADCs include their potential additive or synergistic effects of the innate backbone antibody and cytotoxic effects of the payload on tumors without the severe toxic side effects often associated with traditional chemotherapy. Recent advances in identifying new targets with tumor-specific expression, along with improved bioactive payloads and novel linkers, have significantly expanded the scope and optimism for ADCs in cancer therapeutics. In this paper, we will first provide a brief overview of antibody specificity and the structure of ADCs. Next, we will discuss the mechanisms of action and the development of resistance to ADCs. Finally, we will explore opportunities for enhancing ADC efficacy, overcoming drug resistance, and offer future perspectives on leveraging ADCs to improve the outcome of ADC therapy for cancer treatment.


Immunoconjugates , Neoplasms , Humans , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Neoplasms/drug therapy , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Antibody Specificity
4.
Viruses ; 16(4)2024 04 12.
Article En | MEDLINE | ID: mdl-38675937

Antibodies that specifically bind to individual human fragment crystallizable γ receptors (FcγRs) are of interest as research tools in studying immune cell functions, as well as components in bispecific antibodies for immune cell engagement in cancer therapy. Monoclonal antibodies for human low-affinity FcγRs have been successfully generated by hybridoma technology and are widely used in pre-clinical research. However, the generation of monoclonal antibodies by hybridoma technology that specifically bind to the high-affinity receptor FcγRI is challenging. Monomeric mouse IgG2a, IgG2b, and IgG3 bind human FcγRI with high affinity via the Fc part, leading to an Fc-mediated rather than a fragment for antigen binding (Fab)-mediated selection of monoclonal antibodies. Blocking the Fc-binding site of FcγRI with an excess of human IgG or Fc during screening decreases the risk of Fc-mediated interactions but can also block the potential epitopes of new antibody candidates. Therefore, we replaced hybridoma technology with phage display of a single-chain fragment variable (scFv) antibody library that was generated from mice immunized with FcγRI-positive cells and screened it with a cellular panning approach assisted by next-generation sequencing (NGS). Seven new FcγRI-specific antibody sequences were selected with this methodology, which were produced as Fc-silent antibodies showing FcγRI-restricted specificity.


Antibodies, Monoclonal , Receptors, IgG , Receptors, IgG/immunology , Receptors, IgG/metabolism , Animals , Mice , Humans , Antibodies, Monoclonal/immunology , Immunoglobulin G/immunology , Immunization , Single-Chain Antibodies/immunology , Single-Chain Antibodies/genetics , Peptide Library , Cell Surface Display Techniques , Hybridomas , Antibody Specificity , Female , Mice, Inbred BALB C
5.
Monoclon Antib Immunodiagn Immunother ; 43(2): 53-58, 2024 Apr.
Article En | MEDLINE | ID: mdl-38593441

The giant panda (Ailuropoda melanoleuca) is one of the important species in worldwide animal conservation. Because it is essential to understand the disease of giant panda for conservation, histopathological analyses of tissues are important to understand the pathogenesis. However, monoclonal antibodies (mAbs) against giant panda-derived proteins are limited. Podoplanin (PDPN) is an essential marker of lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. PDPN is also overexpressed in various human tumors, which are associated with poor prognosis. Here, an anti-giant panda PDPN (gpPDPN) mAb, PMab-314 (mouse IgG1, kappa) was established using the Cell-Based Immunization and Screening method. PMab-314 recognized N-terminal PA16-tagged gpPDPN-overexpressed Chinese hamster ovary-K1 cells (CHO/PA16-gpPDPN) in flow cytometry. The KD value of PMab-314 for CHO/PA16-gpPDPN was determined as 1.3 × 10-8 M. Furthermore, PMab-314 is useful for detecting gpPDPN in western blot analysis. These findings indicate that PMab-314 is a useful tool for the analyses of gpPDPN-expressed cells.


Antibodies, Monoclonal , Ursidae , Cricetinae , Mice , Animals , Humans , Cricetulus , CHO Cells , Endothelial Cells/metabolism , Membrane Glycoproteins , Antibody Specificity , Transcription Factors
6.
Methods Mol Biol ; 2768: 15-27, 2024.
Article En | MEDLINE | ID: mdl-38502385

The enzyme-linked immunospot (ELISpot) assay is a highly useful and sensitive method to detect total immunoglobulin and antigen-specific antibody-secreting cells. In addition, this method can measure biological activity and immunological secretions from immune cells. In general, membrane-bound antigen allows binding of antibody secreted by B cells, or a membrane-bound analyte-specific antibody binds to the specific analyte (e.g., cytokines) elicited from cells added to the well containing the bound antibody. The response from added cells is then detected by using an anti-Ig antibody and a colorimetric substrate, while in the case of non-B cells, the elicited antigen is detected with appropriate antibodies and enzyme-conjugated antibodies. Specificity of antibodies binding the protein of interest is necessary to achieve correct results. Western blotting can be used for this with/without siRNA knockdown of proteins of interest or with the use of peptide inhibitors to inhibit the binding of specific antibodies to the target protein. Despite its general simplicity, western blotting is a powerful technique for immunodetection of proteins (notably low abundance proteins) as it provides simultaneous resolution of multiple immunogenic antigens within a sample for detection by specific antibodies. Now, we have plethora of immunoblotting methods to validate antibodies for ELISpot.


Antibodies , Antigens , Antibody Specificity , Blotting, Western , Cytokines
7.
BMC Bioinformatics ; 25(1): 122, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38515052

BACKGROUND: Nanobodies, also known as VHH or single-domain antibodies, are unique antibody fragments derived solely from heavy chains. They offer advantages of small molecules and conventional antibodies, making them promising therapeutics. The paratope is the specific region on an antibody that binds to an antigen. Paratope prediction involves the identification and characterization of the antigen-binding site on an antibody. This process is crucial for understanding the specificity and affinity of antibody-antigen interactions. Various computational methods and experimental approaches have been developed to predict and analyze paratopes, contributing to advancements in antibody engineering, drug development, and immunotherapy. However, existing predictive models trained on traditional antibodies may not be suitable for nanobodies. Additionally, the limited availability of nanobody datasets poses challenges in constructing accurate models. METHODS: To address these challenges, we have developed a novel nanobody prediction model, named NanoBERTa-ASP (Antibody Specificity Prediction), which is specifically designed for predicting nanobody-antigen binding sites. The model adopts a training strategy more suitable for nanobodies, based on an advanced natural language processing (NLP) model called BERT (Bidirectional Encoder Representations from Transformers). To be more specific, the model utilizes a masked language modeling approach named RoBERTa (Robustly Optimized BERT Pretraining Approach) to learn the contextual information of the nanobody sequence and predict its binding site. RESULTS: NanoBERTa-ASP achieved exceptional performance in predicting nanobody binding sites, outperforming existing methods, indicating its proficiency in capturing sequence information specific to nanobodies and accurately identifying their binding sites. Furthermore, NanoBERTa-ASP provides insights into the interaction mechanisms between nanobodies and antigens, contributing to a better understanding of nanobodies and facilitating the design and development of nanobodies with therapeutic potential. CONCLUSION: NanoBERTa-ASP represents a significant advancement in nanobody paratope prediction. Its superior performance highlights the potential of deep learning approaches in nanobody research. By leveraging the increasing volume of nanobody data, NanoBERTa-ASP can further refine its predictions, enhance its performance, and contribute to the development of novel nanobody-based therapeutics. Github repository: https://github.com/WangLabforComputationalBiology/NanoBERTa-ASP.


Single-Domain Antibodies , Binding Sites, Antibody , Single-Domain Antibodies/chemistry , Antibodies , Binding Sites , Antibody Specificity
8.
HLA ; 103(3): e15429, 2024 Mar.
Article En | MEDLINE | ID: mdl-38450943

HLA studies in patients with autoimmune neutropenia (AIN) have shown very consistent results for the association with HLA class II alleles at low resolution. This study aimed to examine the association of both HLA class I and class II at high resolution to clarify the contribution of risk alleles to the disease. A total of 107 AIN patients were genotyped for six loci of HLA class I (HLA-A, -B and -C) and class II (HLA-DRB1, -DQB1, and -DPB1) genes by a high-resolution (3-field, 6-digit) analysis and compared with HLA typing of 1000 healthy controls. Compared with the controls, the allele frequencies were significantly higher in AIN patients for A*02:17:01G, C*01:02:01G, DRB1*10:01:01G, DRB1*14:01:01G, DRB1*16:01:01G, DQB1*05:02:01G, and DQB1*05:03:01G but lower significant for C*03:04:01G, DRB1*04:01:01G, DRB1*13:02:01G, DQB1*03:02:01G, and DQB1*06:04:01G. Frequently associated two-locus haplotypes were found to be DRB1*10:01:01G-DQB1*05:01:01G and DRB1*16:01:01G-DQB1*05:02:01G, while the S2 (Q- or D-KRAA) shared epitope (SE) was associated with lower risk. A unique association with HLA alleles was observed between patients with specific anti-HNA-1a antibodies and broad-reacting anti-FcγRIIIb. Anti-HNA-1a antibody-positive patients were associated with C*01:02:01G, DRB1*01:01:01G, DRB1*16:01:01G, DQB1*05:01:01G, DQB1*05:02:01G, DQB1*06:04:01G, and DPB1*10:01:01G; the two-locus haplotypes DRB1*01:01:01G-DQB1*05:01:01G and DRB1*16:01:01G-DQB1*05:02:01G; and the S3P (Q- or R-RRAA) SE. Anti-FcγRIIIb antibody-positive patients were associated with the alleles A*02:17:01G, DRB1*10:01:01G, and DQB1*05:02:01G; the haplotypes DRB1*10:01:01G-DQB1*05:01:01G and DRB1*11:01:02G-DQB1*05:02:01G; and the S3D (DRRAA) SE. The different associations regarding FcγRIIIb antibody specificities could indicate disease heterogeneity.


Neutropenia , Child, Preschool , Humans , Alleles , Genotype , Antibody Specificity , Epitopes , Neutropenia/genetics , Denmark
9.
Commun Biol ; 7(1): 149, 2024 Feb 03.
Article En | MEDLINE | ID: mdl-38310133

Anti-DNA antibodies (Abs), serological hallmarks of systemic lupus erythematosus (SLE) and markers for diagnosis and disease activity, show a specificity for non-nucleic acid molecules, such as N-pyrrolated proteins (pyrP) containing Nε-pyrrole-L-lysine (pyrK) residues. However, the detailed mechanism for the binding of anti-DNA Abs to pyrP remains unknown. In the present study, to gain structural insights into the dual-specificity of anti-DNA Abs, we used phage display to obtain DNA-binding, single-chain variable fragments (scFvs) from SLE-prone mice and found that they also cross-reacted with pyrP. It was revealed that a variable heavy chain (VH) domain is sufficient for the recognition of DNA/pyrP. Identification of an antigenic sequence containing pyrK in pyrP suggested that the presence of both pyrK and multiple acidic amino acid residues plays important roles in the electrostatic interactions with the Abs. X-ray crystallography and computer-predicted simulations of the pyrK-containing peptide-scFv complexes identified key residues of Abs involved in the interaction with the antigens. These data provide a mechanistic insight into the molecular basis of the dual-specificity of the anti-DNA Abs and provide a basis for therapeutic intervention against SLE.


Lupus Erythematosus, Systemic , Single-Chain Antibodies , Mice , Animals , Antibodies, Antinuclear/metabolism , Antibody Specificity , Lupus Erythematosus, Systemic/genetics , DNA/genetics
10.
Nat Commun ; 15(1): 609, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38242876

Antibodies reactive to human leukocyte antigens (HLA) represent a barrier for patients awaiting transplantation. Based on reactivity patterns in single-antigen bead (SAB) assays, various epitope matching algorithms have been proposed to improve transplant outcomes. However, some antibody reactivities cannot be explained by amino acid motifs, leading to uncertainty about their clinical relevance. Antibodies against the HLA class II molecule, DQß0603:DQα0103, present in some candidates, represent one such example. Here, we show that peptides derived from amino acids 119-148 of the HLA class I heavy chain are bound to DQß0603:DQα0103 proteins and contribute to antibody reactivity through an HLA-DM-dependent process. Moreover, antibody reactivity is impacted by the specific amino acid sequence presented. In summary, we demonstrate that polymorphic HLA class I peptides, bound to HLA class II proteins, can directly or indirectly be part of the antibody binding epitope. Our findings have potential important implications for the field of transplant immunology and for our understanding of adaptive immunity.


HLA Antigens , Histocompatibility Antigens Class I , Humans , Antibody Specificity , Histocompatibility Antigens Class I/genetics , Antibodies , Epitopes , Peptides
11.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(2): 163-167, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38284257

Objective To synthesize carbendazim artificial antigens, prepare carbendazim polyclonal antibodies and identify their characteristics. Methods Active carboxyl groups were introduced to prepare the carbendazim haptens by the mixed anhydride method. The artificial antigens and coating antigens were obtained by coupling the small molecule haptens with carriers of bovine serum albumin (BSA) and ovalbumin (OVA). Sodium dodecyl sulfate polycrylamide gel electropheresis (SDS-PAGE) was used to identify carbendazim artificial antigens. Mice were immunized with the prepared artificial antigens to obtain polyclonal antibodies against carbendazim, and the antibody titers and specificity were identified by indirect ELISA. Results Carbendazim artificial antigens were successfully prepared. The titer of polyclonal antibody was above 1:12 800 and the half-maximal inhibitory concentration ( IC50) of the antibody was 0.107 µg/mL. The cross-reactivity rates with both benomyl and thiabendazole were less than 1%. Conclusion Polyclonal antibodies with high sensitivity and high specificity were successfully prepared, laying the foundation for the establishment of a rapid detection method for carbendazim residues.


Antibodies , Antigens , Benzimidazoles , Carbamates , Animals , Mice , Enzyme-Linked Immunosorbent Assay , Antigens/chemistry , Haptens/chemistry , Serum Albumin, Bovine/chemistry , Vaccines, Synthetic , Antibody Specificity
12.
Am J Physiol Renal Physiol ; 326(3): F511-F533, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38234298

Antibodies are one of the most used reagents in scientific laboratories and are critical components for a multitude of experiments in physiology research. Over the past decade, concerns about many biological methods, including those that use antibodies, have arisen as several laboratories were unable to reproduce the scientific data obtained in other laboratories. The lack of reproducibility could be largely attributed to inadequate reporting of detailed methods, no or limited verification by authors, and the production and use of unvalidated antibodies. The goal of this guideline article is to review best practices concerning commonly used techniques involving antibodies, including immunoblotting, immunohistochemistry, and flow cytometry. Awareness and integration of best practices will increase the rigor and reproducibility of these techniques and elevate the quality of physiology research.


Antibodies , Reproducibility of Results , Immunohistochemistry , Flow Cytometry , Antibody Specificity
13.
J Agric Food Chem ; 72(6): 3160-3170, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38197248

Flunixin (FLU) is a nonsteroidal drug that is widely used in animals, causing severe drug residues in animal-derived foods and environment. The development of antibody-based rapid immunoassay methods is of great significance for the monitoring of FLU and its metabolite 5-hydroxyflunixin (5-FLU). We prepared monoclonal antibodies (mAbs) with different recognition spectra through FLU-keyhole limpet hemocyanin conjugates as immunogen coupled with antibody screening strategies. mAb5E6 and mAb6D7 recognized FLU with high affinity, and mAb2H5 and mAb4A4 recognized FLU and 5-FLU with broad specificity. Through evaluating the recognition of these mAbs against more than 11 structural analogues and employing computational chemistry, molecular docking, and molecular dynamics methodologies, we preliminarily determined the recognition epitope and recognition mechanism of these mAbs. Finally, an indirect competitive enzyme-linked immunosorbent assay for FLU based on mAb6D7 was developed, which exhibited limits of detection as low as 0.016-0.042 µg kg -1 (L-1) in milk and muscle samples.


Antibodies, Monoclonal , Antibody Formation , Clonixin/analogs & derivatives , Animals , Molecular Docking Simulation , Immunoassay , Enzyme-Linked Immunosorbent Assay/methods , Antibody Specificity
14.
Chembiochem ; 25(5): e202300828, 2024 03 01.
Article En | MEDLINE | ID: mdl-38236789

An efficient and easy-to-use approach is presented for obtaining biocompatible polysaccharide-based nanoparticles (NP) that can act as tumor-specific drug delivery agents. Two antibodies are directly immobilized onto reactive xylan phenyl carbonate (XPC) NP; namely Cetuximab (CTX) that binds to human epidermal growth factor receptor (EGFR) and Atezolizumab (ATZ) that binds to programmed death-ligand 1 (PD-L1). High coupling efficiency (up to 100 %) are achieved without any pre-activation and no aggregation occurs during antibody immobilization. By quartz crystal microbalance experiments with dissipation monitoring (QCM-D), flow cytometry assays, and confocal laser scanning microscopy imaging it is demonstrated that the functionalized XPC-NP specifically bind to cells carrying the corresponding antigens. Moreover, the NP retain the antibody specific bioactivities (growth inhibition for CTX and induction of T-cell cytotoxicity for ATZ).


Polysaccharides , Xylans , Humans , Antibody Specificity , Biological Assay , Carbonates , Cetuximab/pharmacology
15.
Appl Biochem Biotechnol ; 196(3): 1399-1418, 2024 Mar.
Article En | MEDLINE | ID: mdl-37410352

The pentaspan transmembrane glycoprotein CD133, prominin-1, is expressed in cancer stem cells in many tumors and is promising as a novel target for the delivery of cytotoxic drugs to cancer-initiating cells. In this study, we prepared a mouse library of single-chain variable fragment (scFv) antibodies using mRNAs isolated from mice immunized with the third extracellular domain of a recombinant CD133 (D-EC3). First, the scFvs were directly exposed to D-EC3 to select a new specific scFv with high affinity against CD133 using the ribosome display method. Then, the selected scFv was characterized by the indirect enzyme-linked immunosorbent assay (ELISA), immunocytochemistry (ICC), and in silico analyses included molecular docking and molecular dynamics simulations. Based on ELISA results, scFv 2 had a higher affinity for recombinant CD133, and it was considered for further analysis. Next, the immunocytochemistry and flow cytometry experiments confirmed that the obtained scFv could bind to the CD133 expressing HT-29 cells. Furthermore, the results of in silico analysis verified the ability of the scFv 2 antibody to bind and detect the D-EC3 antigen through key residues employed in antigen-antibody interactions. Our results suggest that ribosome display could be applied as a rapid and valid method for isolation of scFv with high affinity and specificity. Also, studying the mechanism of interaction between CD133's scFv and D-EC3 with two approaches of experimental and in silico analysis has potential importance for the design and development of antibody with improved properties.


Single-Chain Antibodies , Animals , Mice , Single-Chain Antibodies/genetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Enzyme-Linked Immunosorbent Assay/methods , Ribosomes , Peptide Library , Antibody Specificity
17.
Monoclon Antib Immunodiagn Immunother ; 42(6): 189-193, 2023 Dec.
Article En | MEDLINE | ID: mdl-38156889

In small animal models of severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) infection, ferrets (Mustela putorius furo) have been used to investigate the pathogenesis. Podoplanin (PDPN) is an essential marker in lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. Monoclonal antibodies (mAbs) against ferret PDPN (ferPDPN) are useful for the pathological analyses of those tissues. We previously established an anti-ferPDPN mAb, PMab-292 using the Cell-Based Immunization and Screening (CBIS) method. In this study, we determined the critical epitope of PMab-292 using flow cytometry. The ferPDPN deletion mutants analysis revealed that the Val34 is located at the N-terminus of the PMab-292 epitope. Furthermore, the PA tag-substituted analysis (PA scanning) showed that Asp39 is located at the C-terminus of PMab-292 epitope. The epitope sequence (VRPEDD) also exists between Val26 and Asp31 of ferPDPN, indicating that PMab-292 recognizes the tandem repeat of the VRPEDD sequence of ferPDPN.


Ferrets , Severe acute respiratory syndrome-related coronavirus , Animals , Cricetinae , Epitope Mapping/methods , Antibodies, Monoclonal , Endothelial Cells , SARS-CoV-2 , Membrane Glycoproteins/genetics , Epitopes , CHO Cells , Transcription Factors , Cricetulus , Antibody Specificity
18.
Monoclon Antib Immunodiagn Immunother ; 42(6): 209-215, 2023 Dec.
Article En | MEDLINE | ID: mdl-38150189

Immunohistochemistry staining is an essential method in pathological diagnoses. Podoplanin (PDPN) is a specific maker of alveolar epithelium, lymphatic vessels, and glomeruli. In this study, we established a novel anti-giraffe PDPN (girPDPN) mAb, PMab-301, using the Cell-Based Immunization and Screening (CBIS) method. PMab-301 (mouse IgG1, kappa) detected girPDPN in various applications, such as flow cytometry, western blot, and immunohistochemistry. PMab-301 specifically stained type-I alveolar cells using formalin-fixed paraffin-embedded giraffe lung tissues. Our findings suggest the potential usefulness of PMab-301 for the pathophysiological analyses of giraffe tissues.


Antibodies, Monoclonal , Giraffes , Cricetinae , Mice , Animals , Immunohistochemistry , Epitopes , Cricetulus , Membrane Glycoproteins , Antibody Specificity , CHO Cells , Transcription Factors
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(12): 1118-1124, 2023 Dec.
Article Zh | MEDLINE | ID: mdl-38140872

Objective To prepare rabbit polyclonal antibody specifically against human lactate dehydrogenase C4 (LDHC4). Methods Site-directed mutation was performed by PCR to generate the mutated LDHC gene, and the mutated gene was ligated into the pET-28a vector to form the pET-28a-LDHC recombinant expression vector. The recombinant vector was introduced into E. coli BL21 (DE3), and LDHC4 protein was obtained by induced expression. The recombinant protein was used as an antigen to immunize New Zealand rabbits, and the antiserum was obtained after three boosted immunizations. The titer of the antiserum against LDHC4 were detected by ELISA. Western blot was used to detect the specificity of the antiserum, and immunohistochemistry was used to detect the expression of LDHC4 in human triple-negative breast cancer tissue. Results A specific rabbit anti-human LDHC4 polyclonal antibody was obtained with an antibody titer of 1:51 200. The antibody can be used for Western blot and immunohistochemistry. Conclusion The specific rabbit anti-human LDHC4 polyclonal antibody is successfully prepared.


Antibodies , Escherichia coli , Humans , Rabbits , Animals , Escherichia coli/genetics , Enzyme-Linked Immunosorbent Assay , L-Lactate Dehydrogenase/metabolism , Blotting, Western , Antibody Specificity
20.
Elife ; 122023 11 14.
Article En | MEDLINE | ID: mdl-37962204

A strategy to identify high-quality commercially available antibodies for research reveals extensive use of non-specific antibodies and offers solutions for future large-scale testing.


Antibodies , Antibody Specificity
...