Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.603
Filter
1.
Eur J Pharmacol ; 978: 176792, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38950834

ABSTRACT

The lithium-pilocarpine model is commonly used to recapitulate characteristics of human intractable focal epilepsy. In the current study, we explored the impact of topiramate (TPM) alone and in combination with pregabalin and lacosamide administration for 6 weeks on the evolution of spontaneous recurrent seizures (SRS) and disease-modifying potential on associated neuropsychiatric comorbidities. In addition, redox impairments and neurodegeneration in hippocampus regions vulnerable to temporal lobe epilepsy (TLE) were assessed by cresyl violet staining. Results revealed that acute electrophysiological (EEG) profiling of the ASD cocktail markedly halted sharp ictogenic spikes as well as altered dynamics of brain wave oscillations thus validating the need for polytherapy vs. monotherapy. In TLE animals, pharmacological intervention for 6 weeks with topiramate 10 mg/kg in combination with PREG and LAC at the dose of 20 mg/kg exhibited marked protection from SRS incidence, improved body weight, offensive aggression, anxiety-like behavior, cognitive impairments, and depressive-like behavior (p < 0.05). Moreover, combination therapy impeded redox impairments as evidenced by decreased MDA and AchE levels and increased activity of antioxidant SOD, GSH enzymes. Furthermore, polytherapy rescued animals from SE-induced neurodegeneration with increased neuronal density in CA1, CA3c, CA3ab, hilus, and granular cell layer (GCL) of the dentate gyrus. In conclusion, early polytherapy with topiramate in combination with pregabalin and lacosamide prompted synergy and prevented epileptogenesis with associated psychological and neuropathologic alterations.


Subject(s)
Disease Models, Animal , Electroencephalography , Lacosamide , Neuroprotective Agents , Pregabalin , Topiramate , Animals , Lacosamide/pharmacology , Lacosamide/therapeutic use , Topiramate/pharmacology , Topiramate/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Male , Pregabalin/pharmacology , Pregabalin/therapeutic use , Rats , Behavior, Animal/drug effects , Drug Resistant Epilepsy/drug therapy , Drug Therapy, Combination , Hippocampus/drug effects , Hippocampus/physiopathology , Hippocampus/pathology , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Status Epilepticus/drug therapy , Status Epilepticus/chemically induced , Status Epilepticus/physiopathology , Rats, Wistar , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/chemically induced
2.
J Psychiatr Pract ; 30(4): 273-278, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39058526

ABSTRACT

This column is the second of a 3-part series describing cases where general medical knowledge, including psychiatric and clinical pharmacology, were instrumental in determining dereliction and direct cause in a malpractice suit. This case summarizes how lamotrigine can cause dangerous consequences if its pharmacology is not properly understood. The case also illustrates how the 4 Ds of a forensic malpractice suit were met in this case. First, there was duty on the part of the prescriber which, if followed, would have prevented or minimized the damages experienced by the patient. Dereliction in the performance of a patient-physician treatment contract was a direct cause of the development of Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) in this patient. An immune-mediated reaction to lamotrigine or one of its metabolites has been extensively reported in the literature, with the risk of this reaction increasing at higher doses and with more rapid titration, fulfilling the elements of direct cause. Dereliction implies a deviation from the standard of care. On the basis of the clinical information from the package insert, more likely than not a deviation from the standard of care occurred in this case when lamotrigine was titrated faster than recommended by the package insert.


Subject(s)
Lamotrigine , Stevens-Johnson Syndrome , Humans , Lamotrigine/adverse effects , Lamotrigine/pharmacology , Stevens-Johnson Syndrome/etiology , Triazines/adverse effects , Adult , Female , Malpractice , Male , Anticonvulsants/adverse effects , Anticonvulsants/pharmacology , Exanthema/chemically induced
3.
Int Rev Neurobiol ; 177: 135-147, 2024.
Article in English | MEDLINE | ID: mdl-39029983

ABSTRACT

Cannabidiol (CBD) has been investigated as a pharmacological approach for treating a myriad of neurological and psychiatric disorders, the most successful of them being its use as an antiseizure drug (ASD). Indeed, CBD has reached the clinics for the treatment of certain epileptic syndromes. This chapter aims to overview the pharmacology of CBD and its potential mechanisms of action as an ASD. First, we give an outline of the concepts, mechanisms and pharmacology pertaining to the field of study of epilepsy and epileptic seizures. In the second section, we will summarize the effects of CBD as an ASD. Next, we will discuss its potential mechanisms of action to alleviate epileptic seizures, which seem to entail multiple neurotransmitters, receptors and intracellular pathways. Finally, we will conclude and present some limitations and perspectives for future studies.


Subject(s)
Anticonvulsants , Cannabidiol , Epilepsy , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Humans , Epilepsy/drug therapy , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Animals
4.
Int Rev Neurobiol ; 177: 1-9, 2024.
Article in English | MEDLINE | ID: mdl-39029980

ABSTRACT

Cannabidiol (CBD) is one of over 200 cannabinoids present in the Cannabis plant. Unlike the plant's primary cannabinoid, delta-9-tetrahydrocannabinol (THC), CBD does not produce psychotomimetic effects nor induce dependence. Initially considered an inactive cannabinoid, interest in its pharmacological properties and therapeutic potential has grown exponentially over the last 20 years. Currently employed as a medication for certain epileptic syndromes, numerous pre-clinical and clinical studies support its potential use in various other disorders. In this chapter, we provide a brief historical overview of how this compound evolved from an "inactive substance" to a multifunctional clinical agent. Additionally, we discuss the current challenges in researching its potential therapeutic effects.


Subject(s)
Cannabidiol , Cannabidiol/therapeutic use , Cannabidiol/pharmacology , Cannabidiol/history , Humans , History, 20th Century , History, 21st Century , Animals , Anticonvulsants/history , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , History, 19th Century
5.
Drug Dev Res ; 85(5): e22236, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032052

ABSTRACT

The novel cinnamic acid (CA) (H4-CA, H5-CA, and H7-CA) and caffeic acid (KA) (H4-KA, H5-KA, and H7-KA) hemorphin analogs have recently been synthesized and their trans isomers have been tested for antiseizure and antinociceptive activity. In the present study, the cis forms of these compounds were tested and compared with their trans isomers in seizure and nociception tests in mice. The cis-H5-CA and H7-CA compounds showed efficacy against psychomotor seizures, whereas the trans isomers were ineffective. Both the cis and trans KA isomers were ineffective in the 6-Hz test. In the maximal electroshock (MES) test, the cis isomers showed superior antiseizure activity to the trans forms of CA and KA conjugates, respectively. The suppression of seizure propagation by cis-H5-CA and the cis-H5-KA was reversed by a kappa opioid receptor (KOR) antagonist. Naloxone and naltrindole were not effective. The cis-isomers of CA conjugates and cis-H7-KA produced significantly stronger antinociceptive effects than their trans-isomers. The cis-H5-CA antinociception was blocked by naloxone in the acute phase and by naloxone and KOR antagonists in the inflammatory phase of the formalin test. The antinociception of the KA conjugates was not abolished by opioid receptor blockade. None of the tested conjugates affected the thermal nociceptive threshold. The results of the docking analysis also suggest a model-specific mechanism related to the activity of the cis-isomers of CA and KA conjugates in relation to opioid receptors. Our findings pave the way for the further development of novel opioid-related antiseizure and antinociceptive therapeutics.


Subject(s)
Analgesics , Anticonvulsants , Caffeic Acids , Cinnamates , Seizures , Animals , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/chemical synthesis , Anticonvulsants/pharmacology , Anticonvulsants/chemistry , Anticonvulsants/chemical synthesis , Mice , Male , Seizures/drug therapy , Cinnamates/pharmacology , Cinnamates/chemistry , Cinnamates/chemical synthesis , Cinnamates/therapeutic use , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Caffeic Acids/therapeutic use , Caffeic Acids/chemical synthesis , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Peptides/therapeutic use , Molecular Docking Simulation , Isomerism
6.
Transl Psychiatry ; 14(1): 272, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961057

ABSTRACT

Valproic acid (VPA) is one of the most effective antiepileptic drugs, and exposing animals to VPA during gestation has been used as a model for autism spectrum disorder (ASD). Numerous studies have shown that impaired synaptic transmission in the cerebellar cortical circuits is one of the reasons for the social deficits and repetitive behavior seen in ASD. In this study, we investigated the effect of VPA exposure during pregnancy on tactile stimulation-evoked cerebellar mossy fiber-granule cell (MF-GC) synaptic transmission in mice anesthetized with urethane. Three-chamber testing showed that mice exposed to VPA mice exhibited a significant reduction in social interaction compared with the control group. In vivo electrophysiological recordings revealed that a pair of air-puff stimulation on ipsilateral whisker pad evoked MF-GC synaptic transmission, N1, and N2. The evoked MF-GC synaptic responses in VPA-exposed mice exhibited a significant increase in the area under the curve (AUC) of N1 and the amplitude and AUC of N2 compared with untreated mice. Cerebellar surface application of the selective N-methyl-D-aspartate (NMDA) receptor blocker D-APV significantly inhibited facial stimulation-evoked MF-GC synaptic transmission. In the presence of D-APV, there were no significant differences between the AUC of N1 and the amplitude and AUC of N2 in the VPA-exposed mice and those of the untreated mice. Notably, blockade of the GluN2A subunit-containing, but not the GluN2B subunit-containing, NMDA receptor, significantly inhibited MF-GC synaptic transmission and decreased the AUC of N1 and the amplitude and AUC of N2 in VPA-exposed mice to levels similar to those seen in untreated mice. In addition, the GluN2A subunit-containing NMDA receptor was expressed at higher levels in the GC layer of VPA-treated mice than in control mice. These results indicate that gestational VPA exposure in mice produces ASD-like behaviors, accompanied by increased cerebellar MF-GC synaptic transmission and an increase in GluN2A subunit-containing NMDA receptor expression in the offspring.


Subject(s)
Autism Spectrum Disorder , Disease Models, Animal , Prenatal Exposure Delayed Effects , Receptors, N-Methyl-D-Aspartate , Synaptic Transmission , Valproic Acid , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Valproic Acid/pharmacology , Pregnancy , Female , Mice , Prenatal Exposure Delayed Effects/physiopathology , Synaptic Transmission/drug effects , Autism Spectrum Disorder/chemically induced , Male , Cerebellum/drug effects , Cerebellum/metabolism , Anticonvulsants/pharmacology
7.
Sci Rep ; 14(1): 16562, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020064

ABSTRACT

Due to considerable global prevalence and high recurrence rate, the pursuit of effective new medication for epilepsy treatment remains an urgent and significant challenge. Drug repurposing emerges as a cost-effective and efficient strategy to combat this disorder. This study leverages the transformer-based deep learning methods coupled with molecular binding affinity calculation to develop a novel in-silico drug repurposing pipeline for epilepsy. The number of candidate inhibitors against 24 target proteins encoded by gain-of-function genes implicated in epileptogenesis ranged from zero to several hundreds. Our pipeline has repurposed the medications with most anti-epileptic drugs and nearly half psychiatric medications, highlighting the effectiveness of our pipeline. Furthermore, Lomitapide, a cholesterol-lowering drug, first emerged as particularly noteworthy, exhibiting high binding affinity for 10 targets and verified by molecular dynamics simulation and mechanism analysis. These findings provided a novel perspective on therapeutic strategies for other central nervous system disease.


Subject(s)
Anticonvulsants , Deep Learning , Drug Repositioning , Epilepsy , Molecular Dynamics Simulation , Drug Repositioning/methods , Epilepsy/drug therapy , Epilepsy/genetics , Humans , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Anticonvulsants/chemistry , Computer Simulation
8.
Int J Mol Sci ; 25(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39000004

ABSTRACT

Epilepsy is one of the most common neurological diseases worldwide. Anti-seizure medications (ASMs) with anticonvulsants remain the mainstay of epilepsy treatment. Currently used ASMs are, however, ineffective to suppress seizures in about one third of all patients. Moreover, ASMs show no significant impact on the pathogenic mechanisms involved in epilepsy development or disease progression and may cause serious side-effects, highlighting the need for the identification of new drug targets for a more causal therapy. Compelling evidence has demonstrated a role for purinergic signalling, including the nucleotide adenosine 5'-triphosphate (ATP) during the generation of seizures and epilepsy. Consequently, drugs targeting specific ATP-gated purinergic receptors have been suggested as promising treatment options for epilepsy including the cationic P2X7 receptor (P27XR). P2X7R protein levels have been shown to be increased in the brain of experimental models of epilepsy and in the resected brain tissue of patients with epilepsy. Animal studies have provided evidence that P2X7R blocking can reduce the severity of acute seizures and the epileptic phenotype. The current review will provide a brief summary of recent key findings on P2X7R signalling during seizures and epilepsy focusing on the potential clinical use of treatments based on the P2X7R as an adjunctive therapeutic strategy for drug-refractory seizures and epilepsy.


Subject(s)
Anticonvulsants , Drug Resistant Epilepsy , Purinergic P2X Receptor Antagonists , Receptors, Purinergic P2X7 , Receptors, Purinergic P2X7/metabolism , Humans , Animals , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Purinergic P2X Receptor Antagonists/therapeutic use , Purinergic P2X Receptor Antagonists/pharmacology , Drug Resistant Epilepsy/drug therapy , Drug Resistant Epilepsy/metabolism , Signal Transduction/drug effects , Molecular Targeted Therapy , Epilepsy/drug therapy , Epilepsy/metabolism , Seizures/drug therapy , Seizures/metabolism
9.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000059

ABSTRACT

There is growing concern about the potential ecological risks posed by pharmaceutical residues in the aquatic environment. However, our understanding of the toxic effects of antiepileptic pharmaceuticals, such as carbamazepine (CBZ), on aquatic animal larvae is still limited. In this study, the tadpoles of the black-spotted pond frog (Pelophylax nigromaculatus) were exposed to environmentally relevant concentrations of CBZ (0.3 and 3.0 µg/L) for 30 days, and their growth, intestinal microbial composition, and metabolites were investigated to assess the potential toxic effects of CBZ in non-targeted aquatic organisms. Some tadpoles died during exposure, but there was no significant among-group difference in the survival and growth rates. CBZ exposure significantly altered the composition of tadpole intestinal microbiota. Relative abundances of some bacterial genera (e.g., Blautia, Prevotella, Bacillus, Microbacterium, etc.) decreased, while others (e.g., Paucibacter, etc.) increased in CBZ-exposed tadpoles. Interestingly, CBZ-induced alterations in some bacteria might not necessarily lead to adverse outcomes for animals. Meanwhile, small molecular intestinal metabolites related to energy metabolism, and antioxidant and anti-inflammatory activities were also altered after exposure. Taken together, environmentally relevant levels of CBZ might alter the metabolic and immune performances of amphibian larvae by modifying the abundance of some specific bacteria and the level of metabolites in their intestines, thereby potentially causing a long-term effect on their fitness.


Subject(s)
Anticonvulsants , Carbamazepine , Gastrointestinal Microbiome , Larva , Water Pollutants, Chemical , Animals , Larva/drug effects , Carbamazepine/pharmacology , Gastrointestinal Microbiome/drug effects , Anticonvulsants/pharmacology , Water Pollutants, Chemical/toxicity , Bacteria/drug effects
10.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000086

ABSTRACT

Currently, pharmacotherapy provides successful seizure control in around 70% of patients with epilepsy; however, around 30% of cases are still resistant to available treatment. Therefore, effective anti-epileptic therapy still remains a challenge. In our study, we utilized two mouse lines selected for low (LA) and high (HA) endogenous opioid system activity to investigate the relationship between down- or upregulation of the opioid system and susceptibility to seizures. Pentylenetetrazole (PTZ) is a compound commonly used for kindling of generalized tonic-clonic convulsions in animal models. Our experiments revealed that in the LA mice, PTZ produced seizures of greater intensity and shorter latency than in HA mice. This observation suggests that proper opioid system tone is crucial for preventing the onset of generalized tonic-clonic seizures. Moreover, a combination of an opioid receptor antagonist-naloxone-and a GABA receptor agonist-diazepam (DZP)-facilitates a significant DZP-sparing effect. This is particularly important for the pharmacotherapy of neurological patients, since benzodiazepines display high addiction risk. In conclusion, our study shows a meaningful, protective role of the endogenous opioid system in the prevention of epileptic seizures and that disturbances in that balance may facilitate seizure occurrence.


Subject(s)
Pentylenetetrazole , Seizures , Animals , Pentylenetetrazole/toxicity , Mice , Seizures/metabolism , Seizures/drug therapy , Seizures/chemically induced , Male , Naloxone/pharmacology , Disease Models, Animal , Diazepam/pharmacology , Disease Susceptibility , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Narcotic Antagonists/pharmacology
11.
Drug Res (Stuttg) ; 74(6): 296-301, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968953

ABSTRACT

BACKGROUND: Epilepsy poses a significant global health challenge, particularly in regions with limited financial resources hindering access to treatment. Recent research highlights neuroinflammation, particularly involving cyclooxygenase-2 (COX-2) pathways, as a promising avenue for epilepsy management. METHODS: This study aimed to develop a Cyclooxygenase-2 inhibitor with potential anticonvulsant properties. A promising drug candidate was identified and chemically linked with phospholipids through docking analyses. The activation of this prodrug was assessed using phospholipase A2 (PLA2)-mediated hydrolysis studies. The conjugate's confirmation and cytotoxicity were evaluated using Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), and Sulphoramide B (SRB) assays. RESULTS: Docking studies revealed that the Celecoxib-Phospholipid conjugate exhibited a superior affinity for PLA2 compared to other drug-phospholipid conjugates. FT-IR spectroscopy confirmed the successful synthesis of the conjugate, while DSC analysis confirmed its purity and formation. PLA2-mediated hydrolysis experiments demonstrated selective activation of the prodrug depending on PLA2 concentration. SRB experiments indicated dose-dependent cytotoxic effects of Celecoxib, phospholipid non-toxicity, and efficient celecoxib-phospholipid conjugation. CONCLUSION: This study successfully developed a Celecoxib-phospholipid conjugate with potential anticonvulsant properties. The prodrug's specific activation and cytotoxicity profile makes it a promising therapeutic candidate. Further investigation into underlying mechanisms and in vivo studies is necessary to assess its translational potential fully.


Subject(s)
Anticonvulsants , Celecoxib , Molecular Docking Simulation , Phospholipases A2 , Phospholipids , Prodrugs , Celecoxib/pharmacology , Phospholipids/chemistry , Anticonvulsants/pharmacology , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Prodrugs/pharmacology , Prodrugs/chemistry , Prodrugs/chemical synthesis , Phospholipases A2/metabolism , Humans , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/chemical synthesis , Spectroscopy, Fourier Transform Infrared/methods , Animals , Calorimetry, Differential Scanning , Epilepsy/drug therapy , Hydrolysis , Cell Survival/drug effects
12.
J Physiol Pharmacol ; 75(3)2024 Jun.
Article in English | MEDLINE | ID: mdl-39042385

ABSTRACT

Pentylenetetrazole- (PTZ)-induced kindling is a broadly used experimental model to evaluate the impact of antiseizure drugs and their novel combination on seizure progression. The current study aimed to evaluate the anti-kindling effects of ivermectin (IVM) and rufinamide (RUFI) alone and their combination with vitamin E. The mice were administered 11 injections of PTZ (40 mg/kg) followed by assessment for anxiety-like behavior and cognitive abilities in a series of behavior tests with subsequent brain isolation for biochemical and histopathological evaluation. The outcomes showed a marked protection by IVM + RUFI (P<0.001) from kindling progression, anxiety-like behavior and cognitive deficit. However, additional supplementation with vitamin E worked superior to duo therapy as these mice were noted to be most fearless to visiting open, illuminated and elevated zones of open field, light/dark and elevated-plus maze (P<0.0001). Further, they showed marked remembrance of the familiar milieu in y-maze (P<0.01) and novel objection recognition (P<0.05) tests. Additionally, their recollection of aversive stimuli in passive avoidance and spatial memory in Morris water maze were evident (P<0.0001), in comparison to kindled mice. The IVM + RUFI duo therapy and its co-administration with vitamin E prevented kindling-triggered oxidative stress in brains and neuronal damage in hippocampus. We conclude that the benefits of the co-administration of vitamin E might be the results of antioxidant and anti-inflammatory effects of vitamin E which might be potentiating the antiseizure effects of RUFI and GABA-A modulating potential by ivermectin.


Subject(s)
Anticonvulsants , Behavior, Animal , Ivermectin , Kindling, Neurologic , Pentylenetetrazole , Seizures , Triazoles , Vitamin E , Animals , Kindling, Neurologic/drug effects , Vitamin E/pharmacology , Vitamin E/administration & dosage , Mice , Ivermectin/pharmacology , Ivermectin/administration & dosage , Anticonvulsants/pharmacology , Anticonvulsants/administration & dosage , Male , Seizures/drug therapy , Behavior, Animal/drug effects , Triazoles/pharmacology , Triazoles/administration & dosage , Drug Therapy, Combination , Anxiety/drug therapy , Maze Learning/drug effects , Brain/drug effects , Brain/pathology , Brain/metabolism
13.
AAPS PharmSciTech ; 25(6): 151, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954171

ABSTRACT

The intranasal route has demonstrated superior systemic bioavailability due to its extensive surface area, the porous nature of the endothelial membrane, substantial blood flow, and circumvention of first-pass metabolism. In traditional medicinal practices, Bacopa monnieri, also known as Brahmi, is known for its benefits in enhancing cognitive functions and potential effects in epilepsy. This study aimed to develop and optimize a thermosensitive in-situ nasal gel for delivering Bacoside A, the principal active compound extracted from Bacopa monnieri. The formulation incorporated Poloxamer 407 as a thermogelling agent and HPMC K4M as the Mucoadhesive polymer. A 32-factorial design approach was employed for Optimization. Among the formulations. F7 exhibited the most efficient Ex-vivo permeation through the nasal mucosa, achieving 94.69 ± 2.54% permeation, and underwent a sol-gel transition at approximately 30.48 °C. The study's factorial design revealed that gelling temperature and mucoadhesive strength were critical factors influencing performance. The potential of in-situ nasal Gel (Optimized Batch-F7) for the treatment of epilepsy was demonstrated in an in-vivo investigation using a PTZ-induced convulsion model. This formulation decreased both the occurrence and intensity of seizures. The optimized formulation F7 showcases significant promise as an effective nasal delivery system for Bacoside A, offering enhanced bioavailability and potentially increased efficacy in epilepsy treatment.


Subject(s)
Administration, Intranasal , Epilepsy , Gels , Nasal Mucosa , Triterpenes , Animals , Administration, Intranasal/methods , Epilepsy/drug therapy , Gels/chemistry , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects , Male , Triterpenes/administration & dosage , Triterpenes/pharmacokinetics , Triterpenes/pharmacology , Triterpenes/chemistry , Temperature , Saponins/administration & dosage , Saponins/chemistry , Saponins/pharmacology , Saponins/pharmacokinetics , Chemistry, Pharmaceutical/methods , Biological Availability , Rats , Poloxamer/chemistry , Anticonvulsants/administration & dosage , Anticonvulsants/pharmacokinetics , Anticonvulsants/pharmacology , Anticonvulsants/chemistry
14.
Eur J Pharmacol ; 978: 176704, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38830458

ABSTRACT

Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.


Subject(s)
Anticonvulsants , Neuroprotective Agents , Peptides , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate , Scorpion Venoms , Seizures , Animals , Male , Receptors, N-Methyl-D-Aspartate/metabolism , Scorpion Venoms/pharmacology , Scorpion Venoms/chemistry , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Seizures/drug therapy , Seizures/prevention & control , Peptides/pharmacology , Peptides/therapeutic use , Peptides/chemistry , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Anticonvulsants/chemistry , Pentylenetetrazole , p38 Mitogen-Activated Protein Kinases/metabolism , Hot Temperature , Epilepsy/drug therapy , Epilepsy/chemically induced , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Disease Models, Animal
15.
Int J Biol Macromol ; 272(Pt 1): 132739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825290

ABSTRACT

A stable Madhuca indica oil-in-water nanoemulsion (99-210 nm, zeta potential: > - 30 mV) was produced employing Tween 20 (surfactant) and Transcutol P (co-surfactant) (3:1). The nanoemulsion (oil: Smix = 3:7, 5:5, and 7:3) were subsequently incorporated into oxcarbazepine-loaded carboxymethylxanthan gum (DS = 1.23) dispersion. The hydrogel microspheres were formed using the ionic gelation process. Higher oil concentration had a considerable impact on particle size, drug entrapment efficiency, and buoyancy. The maximum 92 % drug entrapment efficiency was achieved with the microspheres having oil: Smix ratio 5:5. FESEM study revealed that the microspheres were spherical in shape and had an orange peel-like surface roughness. FTIR analysis revealed a hydrogen bonding interaction between drug and polymer. Thermal and x-ray examinations revealed the transformation of crystalline oxcarbazepine into an amorphous form. The microspheres had a buoyancy period of 7.5 h with corresponding release of around 83 % drug in 8 h in simulated stomach fluid, governed by supercase-II transport mechanism. In vivo neurobehavioral studies on PTZ-induced rats demonstrated that the microspheres outperformed drug suspension in terms of rotarod retention, number of crossings, and rearing activity in open field. Thus, Madhuca indica oil-in-water nanoemulsion-entrapped carboxymethyl xanthan gum microspheres appeared to be useful for monitoring oxcarbazepine release and managing epileptic seizures.


Subject(s)
Mannans , Microspheres , Animals , Rats , Mannans/chemistry , Hydrogels/chemistry , Particle Size , Epilepsy/drug therapy , Male , Drug Carriers/chemistry , Emulsions , Seizures/drug therapy , Drug Liberation , Plant Oils/chemistry , Plant Oils/pharmacology , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Galactose/analogs & derivatives
16.
Molecules ; 29(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38893448

ABSTRACT

Epilepsy is a prevalent neurological disorder characterized by recurrent seizures. Validamycin A (VA) is an antibiotic fungicide that inhibits trehalase activity and is widely used for crop protection in agriculture. In this study, we identified a novel function of VA as a potential anti-seizure medication in a zebrafish epilepsy model. Electroencephalogram (EEG) analysis demonstrated that VA reduced pentylenetetrazol (PTZ)-induced seizures in the brains of larval and adult zebrafish. Moreover, VA reduced PTZ-induced irregular movement in a behavioral assessment of adult zebrafish. The developmental toxicity test showed no observable anatomical alteration when the zebrafish larvae were treated with VA up to 10 µM within the effective range. The median lethal dose of VA in adult zebrafish was > 14,000 mg/kg. These results imply that VA does not demonstrate observable toxicity in zebrafish at concentrations effective for generating anti-seizure activity in the EEG and alleviating abnormal behavior in the PTZ-induced epileptic model. Furthermore, the effectiveness of VA was comparable to that of valproic acid. These results indicate that VA may have a potentially safer anti-seizure profile than valproic acid, thus offering promising prospects for its application in agriculture and medicine.


Subject(s)
Anticonvulsants , Disease Models, Animal , Epilepsy , Pentylenetetrazole , Zebrafish , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Pentylenetetrazole/adverse effects , Epilepsy/drug therapy , Epilepsy/chemically induced , Seizures/drug therapy , Seizures/chemically induced , Electroencephalography , Valproic Acid/pharmacology , Larva/drug effects , Brain/drug effects , Brain/pathology , Inositol/analogs & derivatives
17.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892264

ABSTRACT

Epilepsy is one of the most prevalent and serious brain disorders and affects over 70 million people globally. Antiseizure medications (ASMs) relieve symptoms and prevent the occurrence of future seizures in epileptic patients but have a limited effect on epileptogenesis. Addressing the multifaceted nature of epileptogenesis and its association with the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated neuroinflammation requires a comprehensive understanding of the underlying mechanisms of these medications for the development of targeted therapeutic strategies beyond conventional antiseizure treatments. Several types of NLRP3 inhibitors have been developed and their effect has been validated both in in vitro and in vivo models of epileptogenesis. In this review, we discuss the advances in understanding the regulatory mechanisms of NLRP3 activation as well as progress made, and challenges faced in the development of NLRP3 inhibitors for the treatment of epilepsy.


Subject(s)
Anticonvulsants , Drug Discovery , Epilepsy , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , Animals , Drug Discovery/methods , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Inflammasomes/metabolism , Inflammasomes/antagonists & inhibitors , Drug Development
18.
Top Curr Chem (Cham) ; 382(2): 20, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829467

ABSTRACT

Cannabis sativa has long been used for neurological and psychological healing. Recently, cannabidiol (CBD) extracted from cannabis sativa has gained prominence in the medical field due to its non-psychotropic therapeutic effects on the central and peripheral nervous systems. CBD, also acting as a potent antioxidant, displays diverse clinical properties such as anticancer, antiinflammatory, antidepressant, antioxidant, antiemetic, anxiolytic, antiepileptic, and antipsychotic effects. In this review, we summarized the structural activity relationship of CBD with different receptors by both experimental and computational techniques and investigated the mechanism of interaction between related receptors and CBD. The discovery of structural activity relationship between CBD and target receptors would provide a direction to optimize the scaffold of CBD and its derivatives, which would give potential medical applications on CBD-based therapies in various illnesses.


Subject(s)
Cannabidiol , Cannabidiol/chemistry , Cannabidiol/pharmacology , Cannabidiol/metabolism , Humans , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Cannabis/chemistry , Structure-Activity Relationship , Receptors, Cannabinoid/metabolism , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology
19.
Curr Neuropharmacol ; 22(13): e240524230306, 2024.
Article in English | MEDLINE | ID: mdl-38847378

ABSTRACT

Epilepsy is a neurological disease with no defined cause, characterized by recurrent epileptic seizures. These occur due to the dysregulation of excitatory and inhibitory neurotransmitters in the central nervous system (CNS). Psychopharmaceuticals have undesirable side effects; many patients require more than one pharmacotherapy to control crises. With this in mind, this work emphasizes the discovery of new substances from natural products that can combat epileptic seizures. Using in silico techniques, this review aims to evaluate the antiepileptic and multi-target activity of phenylpropanoid derivatives. Initially, ligand-based virtual screening models (LBVS) were performed with 468 phenylpropanoid compounds to predict biological activities. The LBVS were developed for the targets alpha- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), voltage-gated calcium channel Ttype (CaV), gamma-aminobutyric acid A (GABAA), gamma-aminobutyric acid transporter type 1 (GAT-1), voltage-gated potassium channel of the Q family (KCNQ), voltage-gated sodium channel (NaV), and N-methyl D-aspartate (NMDA). The compounds that had good results in the LBVS were analyzed for the absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters, and later, the best molecules were evaluated in the molecular docking consensus. The TR430 compound showed the best results in pharmacokinetic parameters; its oral absorption was 99.03%, it did not violate any Lipinski rule, it showed good bioavailability, and no cytotoxicity was observed either from the molecule or from the metabolites in the evaluated parameters. TR430 was able to bind with GABAA (activation) and AMPA (inhibition) targets and demonstrated good binding energy and significant interactions with both targets. The studied compound showed to be a promising molecule with a possible multi-target activity in both fundamental pharmacological targets for the treatment of epilepsy.


Subject(s)
Anticonvulsants , Epilepsy , Humans , Epilepsy/drug therapy , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Anticonvulsants/chemistry , Molecular Docking Simulation
20.
Sci Rep ; 14(1): 14239, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902338

ABSTRACT

Glutamatergic neurotransmission and oxidative stress are involved in the pathophysiology of seizures. Some anticonvulsants exert their effects through modulation of these pathways. Trigonelline (TRG) has been shown to possess various pharmacological effects like neuroprotection. Therefore, this study was performed to determine TRG's anticonvulsant effects, focusing on its potential effects on N-methyl-D-aspartate (NMDA) receptors, a type of glutamate receptor, and oxidative stress state in the prefrontal cortex (PFC) in PTZ-induced seizure in mice. Seventy-two male mice were randomly divided into nine groups. The groups included mice that received normal saline, TRG at doses of 10, 50, and 100 mg/kg, diazepam, NMDA (an agonist), ketamine (an antagonist), the effective dose of TRG with NMDA, as well as sub-effective dose of TRG with ketamine, respectively. All agents were administrated intraperitoneally 60 min before induction of seizures by PTZ. Latency to seizure, total antioxidant capacity (TAC), and malondialdehyde (MDA) levels in serum and PFC were measured. Furthermore, the gene expression of NR2A and NR2B, subunits of NMDA receptors, was measured in the PFC. TRG administration increased the latency to seizure onset and enhanced TAC while reducing MDA levels in both the PFC and serum. TRG also decreased the gene expression of NR2B in the PFC. Unexpectedly, the findings revealed that the concurrent administration of ketamine amplified, whereas NMDA mitigated, the impact of TRG on latency to seizure. Furthermore, NMDA diminished the positive effects of TRG on antioxidant capacity and oxidative stress, while ketamine amplified these beneficial effects, indicating a complex interaction between TRG and NMDA receptor modulation. In the gene expression of NMDA receptors, results showed that ketamine significantly decreased the gene expression of NR2B when co-administrated with a sub-effective dose of TRG. It was found that, at least partially, the anticonvulsant effect of TRG in PTZ-induced seizures in male mice was mediated by the attenuation of glutamatergic neurotransmission as well as the reduction of oxidative stress.


Subject(s)
Alkaloids , Anticonvulsants , Oxidative Stress , Receptors, N-Methyl-D-Aspartate , Seizures , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Oxidative Stress/drug effects , Anticonvulsants/pharmacology , Mice , Male , Alkaloids/pharmacology , Seizures/drug therapy , Seizures/metabolism , Seizures/chemically induced , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Malondialdehyde/metabolism , Ketamine/pharmacology , Pentylenetetrazole/toxicity , Antioxidants/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL