Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.727
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000223

ABSTRACT

Microparticles as a multicompartment drug delivery system are beneficial for poorly soluble drugs. Mucoadhesive polymers applied in microparticle technology prolong the contact of the drug with the mucosa surface enhancing drug bioavailability and extending drug activity. Sodium alginate (ALG) and hydroxypropyl methylcellulose (hypromellose, HPMC) are polymers of a natural or semi-synthetic origin, respectively. They are characterized by mucoadhesive properties and are applied in microparticle technology. Spray drying is a technology employed in microparticle preparation, consisting of the atomization of liquid in a stream of gas. In this study, the pharmaceutical properties of spray-dried ALG/HPMC microparticles with posaconazole were compared with the properties of physical mixtures of powders with equal qualitative and quantitative compositions. Posaconazole (POS) as a relatively novel antifungal was utilized as a model poorly water-soluble drug, and hard gelatin capsules were applied as a reservoir for designed formulations. A release study in 0.1 M HCl showed significantly prolonged POS release from microparticles compared to a mixture of powders. Such a relationship was not followed in simulated vaginal fluid (SVF). Microparticles were also characterized by stronger mucoadhesive properties, an increased swelling ratio, and prolonged residence time compared to physical mixtures of powders. The obtained results indicated that the pharmaceutical properties of hard gelatin capsules filled with microparticles were significantly different from hard gelatin capsules with mixtures of powders.


Subject(s)
Alginates , Capsules , Drug Delivery Systems , Gelatin , Hypromellose Derivatives , Triazoles , Alginates/chemistry , Gelatin/chemistry , Hypromellose Derivatives/chemistry , Drug Delivery Systems/methods , Triazoles/chemistry , Triazoles/administration & dosage , Triazoles/pharmacokinetics , Drug Liberation , Delayed-Action Preparations/chemistry , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Microspheres
2.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000395

ABSTRACT

As a widely distributed plant in Northeast China, Carex meyeriana Kunth (CMK) is generally considered to have antibacterial properties; however, there is a lack of scientific evidence for this. Therefore, we investigated the chemical composition of CMK extract and its effect against C. albicans. A total of 105 compounds were identified in the alcohol extracts of CMK by UPLC-Q-TOF-MS. Most were flavonoids, with Luteolin being the most represented. Among them, 19 compounds are found in the C. albicans lysates. After treatment with CMK ethanol extract, a significant reduction in the number of C. albicans colonies was observed in a vaginal douche solution from day 5 (p < 0.05). Furthermore, the CMK extract can reduce the number of C. albicans spores. The levels of IL-4, IL-6, IL-10, IL-1ß, and TNF-α in vaginal tissues all exhibited a significant decrease (p < 0.05) compared to those in the model group as determined by ELISA. The results of HE staining showed that CMK extract can eliminate vaginal mucosa inflammation. CMK adjusts the vaginal mucosa cells by targeting twenty-six different metabolites and five specific metabolic pathways in order to effectively eliminate inflammation. Simultaneously, the CMK regulates twenty-three types of metabolites and six metabolic pathways against C. albicans infection. So, CMK strongly inhibits the growth of C. albicans and significantly reduces vaginal inflammation, making it a promising candidate for treating C. albicans infection.


Subject(s)
Antifungal Agents , Candida albicans , Plant Extracts , Vagina , Candida albicans/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Female , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Vagina/microbiology , Vagina/drug effects , Animals , Cytokines/metabolism , Humans , Mice
3.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998972

ABSTRACT

Heterocyclic compounds, particularly those containing azole rings, have shown extensive biological activity, including anticancer, antibacterial, and antifungal properties. Among these, the imidazole ring stands out due to its diverse therapeutic potential. In the presented study, we designed and synthesized a series of imidazole derivatives to identify compounds with high biological potential. We focused on two groups: thiosemicarbazide derivatives and hydrazone derivatives. We synthesized these compounds using conventional methods and confirmed their structures via nuclear magnetic resonance spectroscopy (NMR), MS, and elemental analysis, and then assessed their antibacterial and antifungal activities in vitro using the broth microdilution method against Gram-positive and Gram-negative bacteria, as well as Candida spp. strains. Our results showed that thiosemicarbazide derivatives exhibited varied activity against Gram-positive bacteria, with MIC values ranging from 31.25 to 1000 µg/mL. The hydrazone derivatives, however, did not display significant antibacterial activity. These findings suggest that structural modifications can significantly influence the antimicrobial efficacy of imidazole derivatives, highlighting the potential of thiosemicarbazide derivatives as promising candidates for further development in antibacterial therapies. Additionally, the cytotoxic activity against four cancer cell lines was evaluated. Two derivatives of hydrazide-hydrazone showed moderate anticancer activity.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Antineoplastic Agents , Gram-Positive Bacteria , Microbial Sensitivity Tests , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Gram-Positive Bacteria/drug effects , Nitroimidazoles/pharmacology , Nitroimidazoles/chemistry , Nitroimidazoles/chemical synthesis , Cell Line, Tumor , Gram-Negative Bacteria/drug effects , Structure-Activity Relationship , Semicarbazides/chemistry , Semicarbazides/pharmacology , Semicarbazides/chemical synthesis , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Candida/drug effects , Molecular Structure
4.
Molecules ; 29(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38999100

ABSTRACT

Plant diseases caused by pathogenic fungi seriously affect the yield and quality of crops, cause huge economic losses, and pose a considerable threat to global food security. Phenylpyrrole analogues were designed and synthesized based on alkaloid lycogalic acid. All target compounds were characterized by 1H NMR, 13C NMR, and HRMS. Their antifungal activities against seven kinds of phytopathogenic fungi were evaluated. The results revealed that most compounds had broad-spectrum fungicidal activities at 50 µg/mL; 14 compounds displayed more than 60% fungicidal activities against Rhizoctonia cerealis and Sclerotinia sclerotiorum, and in particular, the fungicidal activities of compounds 8g and 8h against Rhizoctonia cerealis were more than 90%, which could be further developed as lead agents for water-soluble fungicides. The molecular docking results indicate that compounds 8g and 8h can interact with 14α-demethylase (RcCYP51) through hydrogen bonding with strong affinity.


Subject(s)
Alkaloids , Antifungal Agents , Drug Design , Molecular Docking Simulation , Pyrroles , Rhizoctonia , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/chemical synthesis , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/chemical synthesis , Rhizoctonia/drug effects , Structure-Activity Relationship , Microbial Sensitivity Tests , Molecular Structure , Ascomycota/drug effects
5.
Molecules ; 29(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38999116

ABSTRACT

The present article describes the synthesis of an isonicotinate-derived meso-arylporphyrin, that has been fully characterized by spectroscopic methods (including fluorescence spectroscopy), as well as elemental analysis and HR-MS. The structure of an n-hexane monosolvate has been determined by single-crystal X-ray diffraction analysis. The radical scavenging activity of this new porphyrin against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical has been measured. Its antifungal activity against three yeast strains (C. albicans ATCC 90028, C. glabrata ATCC 64677, and C. tropicalis ATCC 64677) has been tested using the disk diffusion and microdilution methods. Whereas the measured antioxidant activity was low, the porphyrin showed moderate but encouraging antifungal activity. Finally, a study of its effect on the germination of lentil seeds revealed interesting allelopathic properties.


Subject(s)
Antifungal Agents , Antioxidants , Porphyrins , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Porphyrins/chemistry , Porphyrins/pharmacology , Porphyrins/chemical synthesis , Isonicotinic Acids/chemistry , Isonicotinic Acids/pharmacology , Isonicotinic Acids/chemical synthesis , Molecular Structure , Biphenyl Compounds/chemistry , Picrates/chemistry , Picrates/antagonists & inhibitors , Candida albicans/drug effects , Candida albicans/growth & development , Crystallography, X-Ray , Microbial Sensitivity Tests , Lens Plant/chemistry , Germination/drug effects , Allelopathy
6.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999990

ABSTRACT

Phytopathogenic fungi are responsible for diseases in commercially important crops and cause major supply problems in the global food chain. Plants were able to protect themselves from disease before humans played an active role in protecting plants. They are known to synthesize a variety of secondary metabolites (SMs), such as terpenes, alkaloids, and phenolic compounds, which can be extracted using conventional and unconventional techniques to formulate biofungicides; plant extracts have antifungal activity and various mechanisms of action against these organisms. In addition, they are considered non-phytotoxic and potentially effective in disease control. They are a sustainable and economically viable alternative for use in agriculture, which is why biofungicides are increasingly recognized as an attractive option to solve the problems caused by synthetic fungicides. Currently, organic farming continues to grow, highlighting the importance of developing environmentally friendly alternatives for crop production. This review provides a compilation of the literature on biosynthesis, mechanisms of action of secondary metabolites against phytopathogens, extraction techniques and formulation of biofungicides, biological activity of plant extracts on phytopathogenic fungi, regulation, advantages, disadvantages and an overview of the current use of biofungicides in agriculture.


Subject(s)
Organic Agriculture , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Organic Agriculture/methods , Fungi/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Crops, Agricultural/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Secondary Metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry
7.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000051

ABSTRACT

Amidst the growing concern of antimicrobial resistance as a significant health challenge, research has emerged, focusing on elucidating the antimicrobial potential of polyphenol-rich extracts to reduce reliance on antibiotics. Previous studies explored the antifungal effects of extracts as potential alternatives to conventional therapeutic strategies. We aimed to assess the antibacterial and antifungal effects of standardised pomegranate extract (PE) and lemon extract (LE) using a range of Gram-negative and Gram-positive bacteria and two yeast species. Additionally, we assessed the antimicrobial activities of common antibiotics (Ciprofloxacin, Imipenem, Gentamicin, and Ceftazidime), either alone or in combination with extracts, against Staphylococcus aureus and Escherichia coli. PE displayed substantial antibacterial (primarily bactericidal) and antifungal effects against most pathogens, while LE exhibited antibacterial (mostly bacteriostatic) and antifungal properties to a lesser extent. When compared with antibiotics, PE showed a greater zone of inhibition (ZOI) than Ciprofloxacin and Ceftazidime (p < 0.01) and comparable ZOI to Gentamicin (p = 0.4) against Staphylococcus aureus. However, combinations of either PE or LE with antibiotics exhibited either neutral or antagonistic effects on antibiotic activity against Staphylococcus aureus and Escherichia coli. These findings contribute to the existing evidence regarding the antimicrobial effects of PE and LE. They add to the body of research suggesting that polyphenols exert both antagonistic and synergistic effects in antimicrobial activity. This highlights the importance of identifying optimal polyphenol concentrations that can enhance antibiotic activity and reduce antibiotic resistance. Further in vivo studies, starting with animal trials and progressing to human trials, may potentially lead to recommendation of these extracts for therapeutic use.


Subject(s)
Anti-Bacterial Agents , Citrus , Microbial Sensitivity Tests , Plant Extracts , Pomegranate , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Pomegranate/chemistry , Citrus/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Drug Synergism , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
8.
AAPS PharmSciTech ; 25(6): 165, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009915

ABSTRACT

CaCO3 nanoparticles (nano-CaCO3) as nano-templates were prepared using CaCl2 and Na2CO3 solutions under controlled sonication (19.5 kHz). Using the same ultrasonic device, subsequently, hollow mesoporous silica nanoparticles (HMSNs) were obtained by the hard template of nano-CaCO3. HMSNs were selected as carriers for the antifungal drug voriconazole (VOR) loading to overcome poor water solubility. Three-dimensional CaCO3 nanosheets HMSNs were obtained under gentle sonication. Three-dimensional CaCO3 nanosheets of 24.5 nm (hydrodynamic diameter) were obtained under 17.6 W for 3 min. HMSNs were synthesized by double-template method with nano-CaCO3 as the hard template. Transmission electron microscopy measurements showed that the prepared HMSNs possess hollow structures with particle size between 110 and 120 nm. Nitrogen physisorption at -196 °C revealed that the HMSNs had high surface area (401.57 m2/g), high pore volume (0.11 cm3/g), and uniform pore size (2.22 nm) that facilitated the effective encapsulation of VOR in the HMSNs. The loading capacity of VOR (wt%) on the HMSNs was 7.96%, and the total VOR release amount of VOR-HMSNs material was 71.40% at 480 min. The kinetic model confirmed that the release mechanism of HMSNs nanoparticles followed Fickian diffusion at pH = 7.4 and 37 °C. Moreover, the cumulative VOR release at 42 °C (86.05%) was higher than that at 37 °C (71.40%). The cumulative release amount of VOR from the VOR-HMSNs material was 92.37% at pH = 5.8 at the same temperature. Both nano-CaCO3 templates and HMSNs were prepared by sonication at 19.5 kHz. The as-prepared HMSNs can effectively encapsulate VOR and released drug by Fickian diffusion.


Subject(s)
Antifungal Agents , Calcium Carbonate , Nanoparticles , Particle Size , Silicon Dioxide , Voriconazole , Nanoparticles/chemistry , Calcium Carbonate/chemistry , Silicon Dioxide/chemistry , Voriconazole/chemistry , Voriconazole/administration & dosage , Porosity , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Drug Carriers/chemistry , Solubility , Drug Liberation , Sonication/methods
9.
Eur J Med Chem ; 275: 116637, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38959728

ABSTRACT

Life-threatening invasive fungal infections pose a serious threat to human health. A series of novel triazole derivatives bearing a pyrazole-methoxyl moiety were designed and synthesized in an effort to obtain antifungals with potent, broad-spectrum activity that are less susceptible to resistance. Most of these compounds exhibited moderate to excellent in vitro antifungal activities against Candida albicans SC5314 and 10,231, Cryptococcus neoformans 32,609, Candida glabrata 537 and Candida parapsilosis 22,019 with minimum inhibitory concentration (MIC) values of ≤0.125 µg/mL to 0.5 µg/mL. Use of recombinant Saccharomyces cerevisiae strains showed compounds 7 and 10 overcame the overexpression and resistant-related mutations in ERG11 of S. cerevisae and several pathogenic Candida spp. Despite being substrates of the C. albicans and Candida auris Cdr1 drug efflux pumps, compounds 7 and 10 showed moderate potency against five fluconazole (FCZ)-resistant fungi with MIC values from 2.0 µg/mL to 16.0 µg/mL. Growth kinetics confirmed compounds 7 and 10 had much stronger fungistatic activity than FCZ. For C. albicans, compounds 7 and 10 inhibited the yeast-to-hyphae transition, biofilm formation and destroyed mature biofilm more effectively than FCZ. Preliminary mechanism of action studies showed compounds 7 and 10 blocked the ergosterol biosynthesis pathway at Erg11, ultimately leading to cell membrane disruption. Further investigation of these novel triazole derivatives is also warranted by their predicted ADMET properties and low cytotoxicity.


Subject(s)
Antifungal Agents , Candida , Microbial Sensitivity Tests , Pyrazoles , Triazoles , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Structure-Activity Relationship , Candida/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Cryptococcus neoformans/drug effects , Humans , Drug Resistance, Fungal/drug effects , Saccharomyces cerevisiae/drug effects , Candida albicans/drug effects
10.
Biochemistry ; 63(14): 1824-1836, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38968244

ABSTRACT

Faced with the emergence of multiresistant microorganisms that affect human health, microbial agents have become a serious global threat, affecting human health and plant crops. Antimicrobial peptides have attracted significant attention in research for the development of new microbial control agents. This work's goal was the structural characterization and analysis of antifungal activity of chitin-binding peptides from Capsicum baccatum and Capsicum frutescens seeds on the growth of Candida and Fusarium species. Proteins were initially submitted to extraction in phosphate buffer pH 5.4 and subjected to chitin column chromatography. Posteriorly, two fractions were obtained for each species, Cb-F1 and Cf-F1 and Cb-F2 and Cf-F2, respectively. The Cb-F1 (C. baccatum) and Cf-F1 (C. frutescens) fractions did not bind to the chitin column. The electrophoresis results obtained after chromatography showed two major protein bands between 3.4 and 14.2 kDa for Cb-F2. For Cf-F2, three major bands were identified between 6.5 and 14.2 kDa. One band from each species was subjected to mass spectrometry, and both bands showed similarity to nonspecific lipid transfer protein. Candida albicans and Candida tropicalis had their growth inhibited by Cb-F2. Cf-F2 inhibited the development of C. albicans but did not inhibit the growth of C. tropicalis. Both fractions were unable to inhibit the growth of Fusarium species. The toxicity of the fractions was tested in vivo on Galleria mellonella larvae, and both showed a low toxicity rate at high concentrations. As a result, the fractions have enormous promise for the creation of novel antifungal compounds.


Subject(s)
Antifungal Agents , Candida , Chitin , Fusarium , Molecular Docking Simulation , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Chitin/chemistry , Chitin/metabolism , Fusarium/drug effects , Candida/drug effects , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Animals , Capsicum/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Proteins/pharmacology , Microbial Sensitivity Tests , Protein Binding , Protein Conformation
11.
Nat Commun ; 15(1): 5636, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965232

ABSTRACT

Natural antimicrobial peptides (AMPs) and enzymes (AMEs) are promising non-antibiotic candidates against antimicrobial resistance but suffer from low efficiency and poor stability. Here, we develop peptide nanozymes which mimic the mode of action of AMPs and AMEs through de novo design and peptide assembly. Through modelling a minimal building block of IHIHICI is proposed by combining critical amino acids in AMPs and AMEs and hydrophobic isoleucine to conduct assembly. Experimental validations reveal that IHIHICI assemble into helical ß-sheet nanotubes with acetate modulation and perform phospholipase C-like and peroxidase-like activities with Ni coordination, demonstrating high thermostability and resistance to enzymatic degradation. The assembled nanotubes demonstrate cascade antifungal actions including outer mannan docking, wall disruption, lipid peroxidation and subsequent ferroptotic death, synergistically killing >90% Candida albicans within 10 min on disinfection pad. These findings demonstrate an effective de novo design strategy for developing materials with multi-antimicrobial mode of actions.


Subject(s)
Antifungal Agents , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Candida albicans/drug effects , Microbial Sensitivity Tests , Nanotubes/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Lipid Peroxidation/drug effects , Peptides/pharmacology , Peptides/chemistry
12.
BMC Microbiol ; 24(1): 269, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030474

ABSTRACT

Candida auris (C. auris) is a yeast that has caused several outbreaks in the last decade. Cell wall chitin plays a primary role in the antifungal resistance of C. auris. Herein, we investigated the potential of chitinase immobilized with UiO-66 to act as a potent antifungal agent against C. auris. Chitinase was produced from Talaromyces varians SSW3 in a yield of 8.97 U/g dry substrate (ds). The yield was statistically enhanced to 120.41 U/g ds by using Plackett-Burman and Box-Behnken design. We synthesized a UiO-66 framework that was characterized by SEM, TEM, XRD, FTIR, a particle size analyzer, and a zeta sizer. The produced framework had a size of 70.42 ± 8.43 nm with a uniform cubic shape and smooth surface. The produced chitinase was immobilized on UiO-66 with an immobilization yield of 65% achieved after a 6 h loading period. The immobilization of UiO-66 increased the enzyme activity and stability, as indicated by the obtained Kd and T1/2 values. Furthermore, the hydrolytic activity of chitinase was enhanced after immobilization on UiO-66, with an increase in the Vmax and a decrease in the Km of 2- and 38-fold, respectively. Interestingly, the antifungal activity of the produced chitinase was boosted against C. auris by loading the enzyme on UiO-66, with an MIC50 of 0.89 ± 0.056 U/mL, compared to 5.582 ± 0.57 U/mL for the free enzyme. This study offers a novel promising alternative approach to combat the new emerging pathogen C. auris.


Subject(s)
Antifungal Agents , Candida auris , Chitinases , Microbial Sensitivity Tests , Nanoparticles , Chitinases/pharmacology , Chitinases/metabolism , Chitinases/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Nanoparticles/chemistry , Candida auris/drug effects , Candida auris/genetics , Enzymes, Immobilized/chemistry , Talaromyces/drug effects , Talaromyces/chemistry , Talaromyces/enzymology , Drug Resistance, Multiple, Fungal , Hydrolysis , Chitin/chemistry , Chitin/pharmacology
13.
Curr Microbiol ; 81(8): 258, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960917

ABSTRACT

Imidazole-chalcone compounds are recognised for their broad-spectrum antimicrobial properties. Probiotic-friendly, selective new-generation antimicrobials prove to be more efficient in combating gastrointestinal system pathogens. The aim of this study is to identify imidazole-chalcone derivatives that probiotics tolerate and evaluate their in vitro synergistic antimicrobial effects on pathogens. In this study, fifteen previously identified imidazole-chalcone derivatives were analyzed for their in vitro antimicrobial properties against gastrointestinal microorganisms. Initially, the antimicrobial activity of pathogens was measured using the agar well diffusion method, while the susceptibility of probiotics was determined by microdilution. The chosen imidazole-chalcone derivatives were assessed for synergistic effects using the checkerboard method. Four imidazole-chalcone derivatives to which probiotic bacteria were tolerant exhibited antibacterial and antifungal activity against the human pathogens tested. To our knowledge, this study is the first to reveal the fractional inhibitory concentration (FIC) of combinations of imidazole-chalcone derivatives. Indeed, the minimum inhibitory concentrations (MIC) for morpholinyl- (ZDO-3f) and 4-ethylpiperazinyl- (ZDO-3 m) imidazole-chalcones were notably low when tested against E. coli and B. subtilis, with values of 31.25 µg/mL and 125 µg/mL, respectively. The combination of morpholinyl- and 4-ethylpiperazinyl derivatives demonstrated an indifferent effect against E. coli, but an additive effect was observed for B. subtilis. Additionally, it was observed that imidazole-chalcone derivatives did not exhibit any inhibitory effects on probiotic organisms like Lactobacillus fermentum (CECT-5716), Lactobacillus rhamnosus (GG), and Lactobacillus casei (RSSK-591). This study demonstrates that imidazole-chalcone derivatives that are well tolerated by probiotics can potentially exert a synergistic effect against gastrointestinal system pathogens.


Subject(s)
Drug Synergism , Imidazoles , Microbial Sensitivity Tests , Probiotics , Probiotics/pharmacology , Imidazoles/pharmacology , Imidazoles/chemistry , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Chalcones/pharmacology , Chalcones/chemistry , Gastrointestinal Tract/microbiology , Humans , Bacteria/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry
14.
Food Res Int ; 191: 114674, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059936

ABSTRACT

Ultrasonic-assisted extraction using a natural deep eutectic solvent (UAE-NADES) is an efficient method for extracting grape seed polyphenols (GSPs). In this study, response surface methodology was used to optimize the extraction of GSPs with UAE-NADES, and the theoretical extraction rate of GSPs was 139.014 mg GAE/g, the actual extraction rate was 135.78 ± 1.3 mg GAE/g. A pseudo-second-order kinetic extraction fitting was established to simulate the extraction process and mechanism (R2 > 0.99). Analysis of antioxidant capacity, Fourier-infrared spectroscopy and scanning electron microscopy revealed that UAE-NADES works synergetically to maintain the stability of extracted GSPs. The results of high-performance liquid chromatography showed that catechin (41.14 mg/g) is the main component of GSPs in the extract. The UAE-NADES extraction of GSPs can inhibit the growth of Alternaria alternata at 0.25 mg GAE/g, while the GSPs extracted by other methods can effectively inhibit the growth of Alternaria alternata at 0.35 mg GAE/g. Thus, this study demonstrates that UAE-NADES is a high-efficiency means of extracting GSPs and, in a wider sense, is a promising extraction technology for the green utilization of waste resources.


Subject(s)
Alternaria , Polyphenols , Seeds , Solvents , Vitis , Polyphenols/chemistry , Polyphenols/isolation & purification , Polyphenols/pharmacology , Solvents/chemistry , Vitis/chemistry , Seeds/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Grape Seed Extract/chemistry , Grape Seed Extract/pharmacology , Chromatography, High Pressure Liquid , Ultrasonics/methods , Spectroscopy, Fourier Transform Infrared
15.
Int J Mol Sci ; 25(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063186

ABSTRACT

The present study investigates the interactions between eight glucosinolate hydrolysis products (GHPs) sourced from broccoli by-products and the detoxifying enzymes of Botrytis cinerea, namely eburicol 14-alpha-demethylase (CYP51) and glutathione-S-transferase (GST), through in silico analysis. Additionally, in vitro assays were conducted to explore the impact of these compounds on fungal growth. Our findings reveal that GHPs exhibit greater efficacy in inhibiting conidia germination compared to mycelium growth. Furthermore, the results demonstrate the antifungal activity of glucosinolate hydrolysis products derived from various parts of the broccoli plant, including inflorescences, leaves, and stems, against B. cinerea. Importantly, the results suggest that these hydrolysis products interact with the detoxifying enzymes of the fungus, potentially contributing to their antifungal properties. Extracts rich in GHPs, particularly iberin and indole-GHPs, derived from broccoli by-products emerge as promising candidates for biofungicidal applications, offering a sustainable and novel approach to plant protection by harnessing bioactive compounds from agricultural residues.


Subject(s)
Antifungal Agents , Botrytis , Brassica , Glucosinolates , Botrytis/drug effects , Glucosinolates/chemistry , Glucosinolates/pharmacology , Glucosinolates/metabolism , Brassica/microbiology , Hydrolysis , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Molecular Docking Simulation , Microbial Sensitivity Tests
16.
Int J Mol Sci ; 25(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063231

ABSTRACT

Chemical residues in food pose health risks such as cancer and liver issues. This has driven the search for safer natural alternatives to synthetic fungicides and preservatives. The aim of this study was to characterize the chemical composition of the essential oils (EO), determine the polyphenolic contents, and evaluate the in vitro antioxidant and antifungal activities of methanol extracts (ME), essential oils (EO), and powders from Rosmarinus officinalis L. (rosemary) and Thymus ciliatus (Desf) Benth. (thyme) from the M'sila region, Algeria. The chemical composition of the EOs was determined by GC-MS. R. officinalis EO was composed of 31 components, mainly camphor (41.22%), camphene (18.14%), and α-pinene (17.49%); T. ciliatus EO was composed of 58 components, mainly, in percentage, α-pinene (22.18), myrcene (13.13), ß-pinene (7.73), ß-caryophyllene (10.21), and germacrene D (9.90). The total phenols and flavonoids were determined spectrophotometrically, and the rosemary ME was found to possess the highest polyphenolic content (127.1 ± 2.40 µg GAE/mg), while the thyme ME had the highest flavonoid content (48.01 ± 0.99 µg QE/mg). The antioxidant activity was assessed using three methods: rosemary ME was the most potent, followed by DPPH (IC50 = 13.43 ± 0.14 µg/mL), ß-carotene/linoleic acid (IC50 = 39.01 ± 2.16 µg/mL), and reducing power (EC50 = 15.03 ± 1.43 µg/mL). Antifungal activity was assessed for 32 pathogenic and foodborne fungi. Four methods were applied to the solid medium. Incorporating the powdered plant into the culture medium (at 10%) reduced the fungal growth to greater than 50% in 21.88% and 6.25% of all fungal isolates, for R. officinalis and T. ciliatus, respectively. The ME, applied by the well diffusion method (0.1 g/mL), was less effective. Different concentrations of EO were tested. Incorporating the EO into the culture medium (1500 µL/L) inhibited 50% of the molds to levels of 50 and 75% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of four fungi. Fumigated EO (15 µL) inhibited 65% of the molds to levels of 65 and 81.25% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of five fungi. There was little to no sporulation in conjunction with the inhibition. Our results revealed some of the potential of the studied plants to fight foodborne molds and presented their promising characteristics as a source of alternatives to chemical pesticides and synthetic preservatives. Further studies are needed to find adequate application techniques in the food safety area.


Subject(s)
Antifungal Agents , Antioxidants , Oils, Volatile , Plant Extracts , Rosmarinus , Thymus Plant , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Thymus Plant/chemistry , Rosmarinus/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/analysis , Bicyclic Monoterpenes/pharmacology , Bicyclic Monoterpenes/chemistry , Methanol/chemistry , Powders , Acyclic Monoterpenes/pharmacology , Monoterpenes/pharmacology , Monoterpenes/analysis , Monoterpenes/chemistry , Camphor/pharmacology , Camphor/analysis , Camphor/chemistry , Alkenes
17.
Arch Microbiol ; 206(7): 334, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951200

ABSTRACT

Ionic liquids (ILs) are interesting chemical compounds that have a wide range of industrial and scientific applications. They have extraordinary properties, such as the tunability of many of their physical properties and, accordingly, their activities; and the ease of synthesis methods. Hence, they became important building blocks in catalysis, extraction, electrochemistry, analytics, biotechnology, etc. This study determined antifungal activities of various imidazolium-based ionic liquids against yeast Saccharomyces cerevisiae via minimum inhibitory concentration (MIC) estimation method. Increasing the length of the alkyl group attached to the imidazolium cation, enhanced the antifungal activity of the ILs, as well as their ability of the disruption of the cell membrane integrity. FTIR studies performed on the S. cerevisiae cells treated with the ILs revealed alterations in the biochemical composition of these cells. Interestingly, the alterations in fatty acid content occurred in parallel with the increase in the activity of the molecules upon the increase in the length of the attached alkyl group. This trend was confirmed by statistical analysis and machine learning methodology. The classification of antifungal activities based on FTIR spectra of S. cerevisiae cells yielded a prediction accuracy of 83%, indicating the pharmacy and medicine industries could benefit from machine learning methodology. Furthermore, synthesized ionic compounds exhibit significant potential for pharmaceutical and medical applications.


Subject(s)
Antifungal Agents , Cell Membrane , Imidazoles , Ionic Liquids , Microbial Sensitivity Tests , Saccharomyces cerevisiae , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/chemistry , Ionic Liquids/pharmacology , Ionic Liquids/chemistry , Imidazoles/pharmacology , Imidazoles/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Cell Membrane/drug effects , Spectroscopy, Fourier Transform Infrared
18.
Proc Natl Acad Sci U S A ; 121(32): e2314087121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39083421

ABSTRACT

Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement toward the catalytic pocket by the N terminus upon ligand binding and identifies residues required for substrate binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved among Cryptococcal species and closely related basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.


Subject(s)
Antifungal Agents , Cryptococcus neoformans , Glucosyltransferases , Trehalose , Cryptococcus neoformans/enzymology , Cryptococcus neoformans/metabolism , Cryptococcus neoformans/genetics , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Trehalose/metabolism , Trehalose/analogs & derivatives , Trehalose/biosynthesis , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Models, Molecular , Humans , Catalytic Domain , Crystallography, X-Ray
19.
Sci Rep ; 14(1): 15665, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977720

ABSTRACT

Rice brown spot is an important disease of rice worldwide that inflicts substantial yield losses. The antimicrobial potential of methanol, acetone and dimethyl sulfoxide (DMSO) extracts of different medicinal plants, viz., Syzygium aromaticum, Saussurea costus, Acorus calamus, Bergenia ciliate, Geranium pratense, Mentha longifolia, Inula racemosa, Podophyllum hexandrum, Heracleum candicans and Picrorhiza kurroa, against the brown spot pathogen Bipolaris oryzae in vitro was evaluated via mycelial growth inhibition and spore germination inhibition assays. Among the plant extracts tested, 100% mycelial inhibition was observed for the methanol extract of Syzygium aromaticum at all three concentrations (2000 ppm, 3000 ppm and 4000 ppm), followed by the methanol extract of Inula racemosa (90.33%) at 4000 ppm. A maximum conidial germination inhibition of 83.54% was exhibited by the Heracleum candicans leaf extract. Phytochemical profiling of Syzygium aromaticum and Inula racemosa through liquid chromatography and mass spectrometry (HR-LCMS) revealed the presence of several compounds, such as eugenol, ursolic acid, quercetin, chlorogenic acid, and noscapine. A molecular docking approach was used to identify key inhibitory molecules against B. oryzae. Among the compounds detected in S. aromaticum and Inula racemosa, ursolic acid and noscapine were found to have the greatest binding affinity for the Big Mitogen Activated Protein Kinase (BMK-1) enzyme present in B. oryzae. In conclusion, S. aromaticum and Inula racemosa are potent compounds that could serve as lead compounds for drug discovery in the future.


Subject(s)
Antifungal Agents , Molecular Docking Simulation , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Ascomycota/drug effects , Plants, Medicinal/chemistry , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Plant Diseases/microbiology , Oryza/microbiology
20.
J Nat Prod ; 87(7): 1860-1871, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39012621

ABSTRACT

A chemical investigation of Laburnicola nematophila, isolated from cysts of the plant parasitic nematode Heterodera filipjevi, affored three dactylfungin derivatives (1-3) and three tetralone congeners (4-6). Dactylfungin C (1), laburnicolin (4), and laburnicolenone (5) are previously undescribed natural products. Chemical structures of the isolated compounds were determined based on 1D and 2D NMR spectroscopic analyses together with HR-ESI-MS spectrometry and comparison with data reported in the literature. The relative configurations of compounds 1, 2, and 4-6 were determined based on their ROESY data and analysis of their coupling constants (J values). The absolute configurations of 4-6 were determined through the comparison of their measured and calculated TDDFT-ECD spectra. Compounds 1-3 were active against azole-resistant Aspergillus fumigatus.


Subject(s)
Tetralones , Animals , Molecular Structure , Tetralones/pharmacology , Tetralones/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Tylenchoidea/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL