Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.574
Filter
1.
Virulence ; 15(1): 2375549, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38982595

ABSTRACT

CagA is a significant oncogenic factor injected into host cells by Helicobacter pylori, which is divided into two subtypes: East Asian type (CagAE), characterized by the EPIYA-D motif, and western type (CagAW), harboring the EPIYA-C motif. CagAE has been reported to have higher carcinogenicity than CagAW, although the underlying reason is not fully understood. SHIP2 is an intracellular phosphatase that can be recruited by CagA to perturb the homeostasis of intracellular signaling pathways. In this study, we found that SHIP2 contributes to the higher oncogenicity of CagAE. Co-Immunoprecipitation and Pull-down assays showed that CagAE bind more SHIP2 than CagAW. Immunofluorescence staining showed that a higher amount of SHIP2 recruited by CagAE to the plasma membrane catalyzes the conversion of PI(3,4,5)P3 into PI(3,4)P2. This alteration causes higher activation of Akt signaling, which results in enhanced IL-8 secretion, migration, and invasion of the infected cells. SPR analysis showed that this stronger interaction between CagAE and SHIP2 stems from the higher affinity between the EPIYA-D motif of CagAE and the SH2 domain of SHIP2. Structural analysis revealed the crucial role of the Phe residue at the Y + 5 position in EPIYA-D. After mutating Phe of CagAE into Asp (the corresponding residue in the EPIYA-C motif) or Ala, the activation of downstream Akt signaling was reduced and the malignant transformation of infected cells was alleviated. These findings revealed that CagAE hijacks SHIP2 through its EPIYA-D motif to enhance its carcinogenicity, which provides a better understanding of the higher oncogenic risk of H. pylori CagAE.


Subject(s)
Amino Acid Motifs , Antigens, Bacterial , Bacterial Proteins , Helicobacter Infections , Helicobacter pylori , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Helicobacter pylori/genetics , Helicobacter pylori/pathogenicity , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Antigens, Bacterial/metabolism , Antigens, Bacterial/genetics , Helicobacter Infections/microbiology , Signal Transduction , Carcinogenesis , Protein Binding , East Asian People
2.
Front Immunol ; 15: 1321657, 2024.
Article in English | MEDLINE | ID: mdl-38975346

ABSTRACT

Tuberculosis (TB) remains a significant global health challenge, with approximately 1.5 million deaths per year. The Bacillus Calmette-Guérin (BCG) vaccine against TB is used in infants but shows variable protection. Here, we introduce a novel approach using a double gene knockout mutant (DKO) from wild-type Mycobacterium tuberculosis (Mtb) targeting fbpA and sapM genes. DKO exhibited enhanced anti-TB gene expression in mouse antigen-presenting cells, activating autophagy and inflammasomes. This heightened immune response improved ex vivo antigen presentation to T cells. Subcutaneous vaccination with DKO led to increased protection against TB in wild-type C57Bl/6 mice, surpassing the protection observed in caspase 1/11-deficient C57Bl/6 mice and highlighting the critical role of inflammasomes in TB protection. The DKO vaccine also generated stronger and longer-lasting protection than the BCG vaccine in C57Bl/6 mice, expanding both CD62L-CCR7-CD44+/-CD127+ effector T cells and CD62L+CCR7+/-CD44+CD127+ central memory T cells. These immune responses correlated with a substantial ≥ 1.7-log10 reduction in Mtb lung burden. The DKO vaccine represents a promising new approach for TB immunization that mediates protection through autophagy and inflammasome pathways.


Subject(s)
Macrophages , Mice, Inbred C57BL , Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Animals , Mycobacterium tuberculosis/immunology , Mice , Macrophages/immunology , Tuberculosis/immunology , Tuberculosis/prevention & control , Tuberculosis Vaccines/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Inflammasomes/immunology , Female , BCG Vaccine/immunology , Autophagy/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Disease Models, Animal
3.
Bull Exp Biol Med ; 177(1): 79-83, 2024 May.
Article in English | MEDLINE | ID: mdl-38960955

ABSTRACT

A new Mycoplasma hominis phenotype forming mini-colonies (MC) on agar and distinct from the phenotype forming typical colonies (TC) not only in size, but also in morphology, growth rate, and resistance to adverse factors, has been previously identified. In this study, the phenotype of colonies was determined and a comparative analysis of the amino acid sequence of the main variable antigen Vaa of the laboratory strain N-34 and seven clinical isolates of M. hominis was performed. It is demonstrated that the amino acid sequence of Vaa in clinical isolates forming TC (similar to the laboratory strain N-34) is entirely analogous to that of laboratory strain. Clinical isolates forming MC carry amino acid substitutions in the variable C-terminal region of Vaa, which can contribute to adhesion to eukaryotic cells and immune evasion. The connection between colony phenotype and amino acid sequence of Vaa is established.


Subject(s)
Amino Acid Sequence , Mycoplasma Infections , Mycoplasma hominis , Phenotype , Mycoplasma hominis/genetics , Mycoplasma hominis/immunology , Humans , Mycoplasma Infections/microbiology , Mycoplasma Infections/immunology , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/chemistry , Amino Acid Substitution
4.
Arch Microbiol ; 206(8): 352, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012499

ABSTRACT

Tuberculosis (TB) is one of the infectious diseases caused by the pathogen Mycobacterium tuberculosis that continuously threatens the global human health. Bacillus Calmette-Guérin (BCG) vaccine is the only vaccine that has been used clinically to prevent tuberculosis in recent centuries, but its limitations in preventing latent infection and reactivation of tuberculosis do not provide full protection. In this study, we selected the membrane-associated antigen Rv1513 of Mycobacterium. In order to achieve stable expression and function of the target gene, the prokaryotic expression recombinant vector pET30b-Rv1513 was constructed and expressed and purified its protein. Detection of IFN- γ levels in the peripheral blood of TB patients stimulated by whole blood interferon release assay (WBIA) and multi-microsphere flow immunofluorescence luminescence (MFCIA) revealed that the induced production of cytokines, such as IFN-γ and IL-6, was significantly higher than that in the healthy group. Rv1513 combined with adjuvant DMT (adjuvant system liposomes containing dimethyldioctadecylammonium bromide (DDA), monophospholipid A (MPL), and trehalose-660-dibenzoic acid (TDB)) was used to detect serum specific antibodies, cytokine secretion from splenic suprasplenic cell supernatants, and multifunctional T-cell levels in splenocytes in immunised mice. The levels of IFN-γ, TNF-α, and IL-2 secreted by mouse splenocytes were found in the Rv1513+DMT group and the BCG+Rv1513+DMT group. The serum levels of IgG and its subclasses and the number of IFN-γ+T cells, TNF-α+T and IFN-γ+TNF-α+T cells in the induced CD4+/CD8+T cells in mice were significantly higher than those in the BCG group, and the highest levels were found in the BCG+Rv1513+DMT group. These findings suggest that Rv1513/DMT may serve as a potential subunit vaccine candidate that may be effective as a booster vaccine after the first BCG vaccination.


Subject(s)
Mycobacterium tuberculosis , Th1 Cells , Tuberculosis Vaccines , Tuberculosis , Animals , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , Mice , Humans , Th1 Cells/immunology , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/genetics , Tuberculosis Vaccines/administration & dosage , Tuberculosis/immunology , Tuberculosis/prevention & control , Tuberculosis/microbiology , Female , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Cytokines/metabolism , Cytokines/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice, Inbred BALB C , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Adjuvants, Immunologic/administration & dosage , Adult
5.
Helicobacter ; 29(3): e13100, 2024.
Article in English | MEDLINE | ID: mdl-38873839

ABSTRACT

BACKGROUND: The formation of gallstones is often accompanied by chronic inflammation, and the mechanisms underlying inflammation and stone formation are not fully understood. Our aim is to utilize single-cell transcriptomics, bulk transcriptomics, and microbiome data to explore key pathogenic bacteria that may contribute to chronic inflammation and gallstone formation, as well as their associated mechanisms. METHODS: scRNA-seq data from a gallstone mouse model were extracted from the Gene Expression Omnibus (GEO) database and analyzed using the FindCluster() package for cell clustering analysis. Bulk transcriptomics data from patients with gallstone were also extracted from the GEO database, and intergroup functional differences were assessed using GO and KEGG enrichment analysis. Additionally, 16S rRNA sequencing was performed on gallbladder mucosal samples from asymptomatic patients with gallstone (n = 6) and liver transplant donor gallbladder mucosal samples (n = 6) to identify key bacteria associated with stone formation and chronic inflammation. Animal models were constructed to investigate the mechanisms by which these key pathogenic bacterial genera promote gallstone formation. RESULTS: Analysis of scRNA-seq data from the gallstone mouse model (GSE179524) revealed seven distinct cell clusters, with a significant increase in neutrophil numbers in the gallstone group. Analysis of bulk transcriptomics data from patients with gallstone (GSE202479) identified chronic inflammation in the gallbladder, potentially associated with dysbiosis of the gallbladder microbiota. 16S rRNA sequencing identified Helicobacter pylori as a key bacterium associated with gallbladder chronic inflammation and stone formation. CONCLUSIONS: Dysbiosis of the gallbladder mucosal microbiota is implicated in gallstone disease and leads to chronic inflammation. This study identified H. pylori as a potential key mucosal resident bacterium contributing to gallstone formation and discovered its key pathogenic factor CagA, which causes damage to the gallbladder mucosal barrier. These findings provide important clues for the prevention and treatment of gallstones.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Epithelial Cells , Gallbladder , Gallstones , Helicobacter pylori , Animals , Gallstones/microbiology , Gallstones/pathology , Epithelial Cells/microbiology , Mice , Humans , Gallbladder/microbiology , Gallbladder/pathology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Helicobacter pylori/genetics , Helicobacter pylori/pathogenicity , Helicobacter pylori/physiology , RNA, Ribosomal, 16S/genetics , Disease Models, Animal , Permeability , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Female , Male , Mice, Inbred C57BL
6.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38834194

ABSTRACT

Vinculin is a cytoskeletal linker strengthening cell adhesion. The Shigella IpaA invasion effector binds to vinculin to promote vinculin supra-activation associated with head-domain-mediated oligomerization. Our study investigates the impact of mutations of vinculin D1D2 subdomains' residues predicted to interact with IpaA VBS3. These mutations affected the rate of D1D2 trimer formation with distinct effects on monomer disappearance, consistent with structural modeling of a closed and open D1D2 conformer induced by IpaA. Notably, mutations targeting the closed D1D2 conformer significantly reduced Shigella invasion of host cells as opposed to mutations targeting the open D1D2 conformer and later stages of vinculin head-domain oligomerization. In contrast, all mutations affected the formation of focal adhesions (FAs), supporting the involvement of vinculin supra-activation in this process. Our findings suggest that IpaA-induced vinculin supra-activation primarily reinforces matrix adhesion in infected cells, rather than promoting bacterial invasion. Consistently, shear stress studies pointed to a key role for IpaA-induced vinculin supra-activation in accelerating and strengthening cell-matrix adhesion.


Subject(s)
Cell Adhesion , Focal Adhesions , Vinculin , Vinculin/metabolism , Vinculin/genetics , Humans , Focal Adhesions/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mutation , Host-Pathogen Interactions , HeLa Cells , Protein Binding , Shigella/metabolism , Shigella/genetics , Antigens, Bacterial/metabolism , Antigens, Bacterial/genetics , Dysentery, Bacillary/microbiology , Dysentery, Bacillary/metabolism
7.
Infect Immun ; 92(7): e0015224, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38888310

ABSTRACT

The major gram-positive pathogen group A Streptococcus (GAS) is a model organism for studying microbial epidemics as it causes waves of infections. Since 1980, several GAS epidemics have been ascribed to the emergence of clones producing increased amounts of key virulence factors such as streptolysin O (SLO). Herein, we sought to identify mechanisms underlying our recently identified temporal clonal emergence among emm4 GAS, given that emergent strains did not produce augmented levels of virulence factors relative to historic isolates. By creating and analyzing isoallelic strains, we determined that a conserved mutation in a previously undescribed gene encoding a putative carbonic anhydrase was responsible for the defective in vitro growth observed in the emergent strains. We also identified that the emergent strains survived better inside macrophages and killed macrophages at lower rates than the historic strains. Via the creation of isogenic mutant strains, we linked the emergent strain "survival" phenotype to the downregulation of the SLO encoding gene and upregulation of the msrAB operon which encodes proteins involved in defense against extracellular oxidative stress. Our findings are in accord with recent surveillance studies which found a high ratio of mucosal (i.e., pharyngeal) relative to invasive infections among emm4 GAS. Since ever-increasing virulence is unlikely to be evolutionarily advantageous for a microbial pathogen, our data further understanding of the well-described oscillating patterns of virulent GAS infections by demonstrating mechanisms by which emergent strains adapt a "survival" strategy to outcompete previously circulating isolates.


Subject(s)
Bacterial Proteins , Macrophages , Streptococcal Infections , Streptococcus pyogenes , Streptolysins , Virulence Factors , Streptococcus pyogenes/genetics , Streptococcus pyogenes/pathogenicity , Streptococcus pyogenes/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/immunology , Streptococcal Infections/mortality , Humans , Macrophages/microbiology , Macrophages/immunology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Streptolysins/genetics , Streptolysins/metabolism , Virulence Factors/genetics , Mutation , Host-Pathogen Interactions/immunology , Virulence/genetics , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Antigens, Bacterial/immunology , Microbial Viability , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Mice , Gene Expression Regulation, Bacterial , Carrier Proteins
8.
Helicobacter ; 29(3): e13104, 2024.
Article in English | MEDLINE | ID: mdl-38923222

ABSTRACT

Helicobacter pylori (H. pylori) strain is the most genetically diverse pathogenic bacterium and now alarming serious human health concern ranging from chronic gastritis to gastric cancer and human death all over the world. Currently, the majority of commercially available diagnostic assays for H. pylori is a challenging task due to the heterogeneity of virulence factors in various geographical regions. In this concern, designing of universal multi-epitope immunogenic biomarker targeted for all H. pylori strains would be crucial to successfully immunodiagnosis assay and vaccine development for H. pylori infection. Hence, the present study aimed to explore the potential immunogenic epitopes of PSA D15 and Cag11 proteins of H. pylori, using immunoinformatics web tools in order to design novel immune-reactive multi-epitope antigens for enhanced immunodiagnosis in humans. Through an in silico immunoinformatics approach, high-ranked B-cell, MHC-I, and MHC-II epitopes of PSA D15 and Cag11 proteins were predicted, screened, and selected. Subsequently, a novel multi-epitope PSA D15 and Cag11 antigens were designed by fused the high-ranked B-cell, MHC-I, and MHC-II epitopes and 50S ribosomal protein L7/L12 adjuvant using linkers. The antigenicity, solubility, physicochemical properties, secondary and tertiary structures, 3D model refinement, and validations were carried. Furthermore, the designed multi-epitope antigens were subjected to codon adaptation and in silico cloning, immune response simulation, and molecular docking with receptor molecules. A novel, stable multi-epitope PSA D15 and Cag11 H. pylori antigens were developed and immune simulation of the designed antigens showed desirable levels of immunological response. Molecular docking of designed antigens with immune receptors (B-cell, MHC-I, MHC-II, and TLR-2/4) revealed robust interactions and stable binding affinity to the receptors. The codon optimized and in silico cloned showed that the designed antigens were successfully expressed (CAI value of 0.95 for PSA D15 and 1.0 for Cag11) after inserted into pET-32ba (+) plasmid of the E. coli K12 strain. In conclusion, this study revealed that the designed multi-epitope antigens have a huge immunological potential candidate biomarker and useful in developing immunodiagnostic assays and vaccines for H. pylori infection.


Subject(s)
Antigens, Bacterial , Computational Biology , Helicobacter pylori , Helicobacter pylori/immunology , Helicobacter pylori/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Antigens, Bacterial/chemistry , Humans , Helicobacter Infections/diagnosis , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Epitopes/immunology , Immunologic Tests/methods , Molecular Docking Simulation , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Immunoinformatics
9.
Pathog Dis ; 822024 Feb 07.
Article in English | MEDLINE | ID: mdl-38889932

ABSTRACT

Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial infection worldwide, potentially leading to severe pathologies including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility if left untreated. Current strategies, including screening and antibiotics, have limited effectiveness due to high rates of asymptomatic cases and logistical challenges. A multiepitope prophylactic vaccine could afford long-term protection against infection. Immunoinformatic analyses were employed to design a multiepitope Chlamydia vaccine antigen. B- and T-cell epitopes from five highly conserved and immunogenic Ct antigens were predicted and selected for the vaccine design. The final construct, adjuvanted with cholera toxin A1 subunit (CTA1), was further screened for immunogenicity. CTA1-MECA (multiepitope Chlamydia trachomatis antigen) was identified as antigenic and nonallergenic. A tertiary structure was predicted, refined, and validated as a good quality model. Molecular docking exhibited strong interactions between the vaccine and toll-like receptor 4 (TLR4). Additionally, immune responses consistent with protection including IFN-γ, IgG + IgM antibodies, and T- and B-cell responses were predicted following vaccination in an immune simulation. Expression of the construct in an Escherichia coli expression vector proved efficient. To further validate the vaccine efficacy, we assessed its immunogenicity in mice. Immunization with CTA1-MECA elicited high levels of Chlamydia-specific antibodies in mucosal and systemic compartments.


Subject(s)
Antibodies, Bacterial , Bacterial Vaccines , Chlamydia Infections , Chlamydia trachomatis , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Molecular Docking Simulation , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Chlamydia Infections/prevention & control , Chlamydia Infections/immunology , Animals , Chlamydia trachomatis/immunology , Epitopes, T-Lymphocyte/immunology , Mice , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Female , Antigens, Bacterial/immunology , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Computer Simulation , Epitopes/immunology , Humans , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism , Cholera Toxin/immunology , Cholera Toxin/genetics , Disease Models, Animal
10.
EBioMedicine ; 105: 105196, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880068

ABSTRACT

BACKGROUND: The ability to detect evidence of Mycobacterium tuberculosis (Mtb) infection within human tissues is critical to the study of Mtb physiology, tropism, and spatial distribution within TB lesions. The capacity of the widely-used Ziehl-Neelsen (ZN) staining method for identifying Mtb acid-fast bacilli (AFB) in tissue is highly variable, which can limit detection of Mtb bacilli for research and diagnostic purposes. Here, we sought to circumvent these limitations via detection of Mtb mRNA and secreted antigens in human tuberculous tissue. METHODS: We adapted RNAscope, an RNA in situ hybridisation (RISH) technique, to detect Mtb mRNA in ante- and postmortem human TB tissues and developed a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). FINDINGS: We identified Mtb mRNA within intact and disintegrating bacilli as well as extrabacillary mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchiolar epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. INTERPRETATION: RNAscope and dual ZN/immunohistochemistry staining are well-suited for identifying subsets of intact Mtb and/or bacillary remnants in human tissue. RNAscope can identify Mtb mRNA in ZN-negative tissues from patients with TB and may have diagnostic potential in complex TB cases. FUNDING: Wellcome Leap Delta Tissue Program, Wellcome Strategic Core Award, the National Institutes of Health (NIH, USA), the Mary Heersink Institute for Global Health at UAB, the UAB Heersink School of Medicine.


Subject(s)
Antigens, Bacterial , Mycobacterium tuberculosis , RNA, Messenger , Humans , Mycobacterium tuberculosis/genetics , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , In Situ Hybridization , Tuberculosis/microbiology , RNA, Bacterial/genetics , Immunohistochemistry , Granuloma/microbiology , Granuloma/metabolism , Lung/microbiology , Lung/pathology , Lung/metabolism
11.
Sci Rep ; 14(1): 14185, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902391

ABSTRACT

Helicobacter pylori (H. pylori), together with its CagA, has been implicated in causing DNA damage, cell cycle arrest, apoptosis, and the development of gastric cancer. Although lncRNA H19 is abundantly expressed in gastric cancer and functions as a pro-oncogene, it remains unclear whether lncRNA H19 contributes to the oncogenic process of H. pylori CagA. This study investigates the role of H19 in the DNA damage response and malignancy induced by H. pylori. It was observed that cells infected with CagA+ H. pylori strain (GZ7/cagA) showed significantly higher H19 expression, resulting in increased γH2A.X and p-ATM expression and decreased p53 and Rad51 expression. Faster cell migration and invasion was also observed, which was reversed by H19 knockdown in H. pylori. YWHAZ was identified as an H19 target protein, and its expression was increased in H19 knockdown cells. GZ7/cagA infection responded to the increased YWHAZ expression induced by H19 knockdown. In addition, H19 knockdown stimulated cells to enter the G2-phase and attenuated the effect of GZ7/cagA infection on the cellular S-phase barrier. The results suggest that H. pylori CagA can upregulate H19 expression, participate in the DNA damage response and promote cell migration and invasion, and possibly affect cell cycle arrest via regulation of YWHAZ.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Cell Movement , DNA Damage , Helicobacter pylori , RNA, Long Noncoding , Stomach Neoplasms , Humans , Antigens, Bacterial/metabolism , Antigens, Bacterial/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Helicobacter pylori/genetics , Stomach Neoplasms/microbiology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Cell Movement/genetics , Cell Line, Tumor , Helicobacter Infections/microbiology , Helicobacter Infections/genetics , Helicobacter Infections/metabolism , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Histones/metabolism
12.
Gut Microbes ; 16(1): 2350150, 2024.
Article in English | MEDLINE | ID: mdl-38841888

ABSTRACT

Comensal Bacteroidota (Bacteroidota) and Enterobacteriacea are often linked to gut inflammation. However, the causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism in Bacteroidota remain unclear. By using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-rfb-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification, we characterized the integrity and conservancy of the entire rfb operon in Bacteroidota. Through exploratory analysis of complete genomes and metagenomes, we discovered that most Bacteroidota have the rfb operon fragmented into nonrandom patterns of gene-singlets and doublets/triplets, termed 'rfb-gene-clusters', or rfb-'minioperons' if predicted as transcriptional. To reflect global operon integrity, contiguity, duplication, and fragmentation principles, we propose a six-category (infra/supra-numerary) cataloging system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in gut-wall specific micro-niches or micropathologies. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes. DNA insertions, overrepresenting DNA-exchange-avid (Bacteroides) species, impact our interpretation of functional metagenomics data by inflating by inflating gene-based pathway inference and by overestimating 'extra-species' abundance. Of disease relevance, Bacteroidota species isolated from cavitating/cavernous fistulous tract (CavFT) microlesions in Crohn's Disease have supra-numerary fragmented operons, stimulate TNF-alpha from macrophages with low potency, and do not induce hyperacute peritonitis in mice compared to CavFT Enterobacteriaceae. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism/opportunism requires further studies to elucidate their potential for novel diagnostics and therapeutics, and to elucidate the role of co-existing pathobionts in Crohn's disease microlesions.


Subject(s)
Crohn Disease , Gastrointestinal Microbiome , Metagenomics , Operon , Mice , Animals , Humans , Crohn Disease/microbiology , Crohn Disease/genetics , Bacteroidetes/genetics , Bacteroidetes/classification , Antigens, Bacterial/genetics , Genome, Bacterial , Enterobacteriaceae/genetics , Enterobacteriaceae/classification
13.
Virulence ; 15(1): 2367783, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38937901

ABSTRACT

Helicobacter pylori causes globally prevalent infections that are highly related to chronic gastritis and even development of gastric carcinomas. With the increase of antibiotic resistance, scientists have begun to search for better vaccine design strategies to eradicate H. pylori colonization. However, while current strategies prefer to formulate vaccines with a single H. pylori antigen, their potential has not yet been fully realized. Outer membrane vesicles (OMVs) are a potential platform since they could deliver multiple antigens. In this study, we engineered three crucial H. pylori antigen proteins (UreB, CagA, and VacA) onto the surface of OMVs derived from Salmonella enterica serovar Typhimurium (S. Typhimurium) mutant strains using the hemoglobin protease (Hbp) autotransporter system. In various knockout strategies, we found that OMVs isolated from the ΔrfbP ΔfliC ΔfljB ΔompA mutants could cause distinct increases in immunoglobulin G (IgG) and A (IgA) levels and effectively trigger T helper 1- and 17-biased cellular immune responses, which perform a vital role in protecting against H. pylori. Next, OMVs derived from ΔrfbP ΔfliC ΔfljB ΔompA mutants were used as a vector to deliver different combinations of H. pylori antigens. The antibody and cytokine levels and challenge experiments in mice model indicated that co-delivering UreB and CagA could protect against H. pylori and antigen-specific T cell responses. In summary, OMVs derived from the S. Typhimurium ΔrfbP ΔfliC ΔfljB ΔompA mutant strain as the vector while importing H. pylori UreB and CagA as antigenic proteins using the Hbp autotransporter system would greatly benefit controlling H. pylori infection.


Outer membrane vesicles (OMVs), as a novel antigen delivery platform, has been used in vaccine design for various pathogens and even tumors. Salmonella enterica serovar Typhimurium (S. Typhimurium), as a bacterium that is easy to engineer and has both adjuvant efficacy and immune stimulation capacity, has become the preferred bacterial vector for purifying OMVs after Escherichia coli. This study focuses on the design of Helicobacter pylori ;(H. pylori) vaccines, utilizing genetically modified Salmonella OMVs to present several major antigens of H. pylori, including UreB, VacA and CagA. The optimal Salmonella OMV delivery vector and antigen combinations are screened and identified, providing new ideas for the development of H. pylori vaccines and an integrated antigen delivery platform for other difficult to develop vaccines for bacteria, viruses, and even tumors.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Helicobacter Infections , Helicobacter pylori , Salmonella typhimurium , Animals , Helicobacter Infections/prevention & control , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Helicobacter pylori/immunology , Helicobacter pylori/genetics , Mice , Salmonella typhimurium/immunology , Salmonella typhimurium/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Female , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Immunoglobulin G , Genetic Engineering , Urease/immunology , Urease/genetics , Disease Models, Animal
14.
Clin Microbiol Infect ; 30(8): 1074.e1-1074.e4, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759867

ABSTRACT

OBJECTIVES: To test the prevailing dogma that Streptococcus pyogenes emm-types that cause pharyngitis are the same as those associated with the carriage, using a global dataset. METHODS: Drawing on our systematic review of the global distribution of S. pyogenes emm-types and emm-clusters from 1990 to 2023, we compared the distribution and diversity of strains associated with pharyngitis and pharyngeal carriage, in the context of local United Nations Development Programme Human Development Index (HDI) values. RESULTS: We included 20 222 isolates from 71 studies done in 34 countries, with the vast majority of carriage strain data from studies in 'Low HDI' settings (550/1293; 43%). There was higher emm-type diversity for carriage than pharyngitis strains (Simpson Reciprocal Index of diversity 28.9 vs. 11.4). Compared with pharyngitis strains, carriage emm-types were disproportionately from emm-clusters E and D, usually described as 'generalist' or 'skin' strains. DISCUSSION: A limited number of studies have compared S. pyogenes strains from cases of pharyngitis compared with carriage. Our understanding of strains associated with carriage is the poorest for high-income settings. In low and medium HDI countries, we found greater strain associated with pharyngeal carriage than pharyngitis. Improving our understanding of S. pyogenes carriage epidemiology in the pre-vaccine era will help to decipher the direct and potential indirect effects of vaccines.


Subject(s)
Antigens, Bacterial , Bacterial Outer Membrane Proteins , Carrier Proteins , Carrier State , Pharyngitis , Streptococcal Infections , Streptococcus pyogenes , Streptococcus pyogenes/genetics , Streptococcus pyogenes/classification , Streptococcus pyogenes/isolation & purification , Humans , Pharyngitis/microbiology , Pharyngitis/epidemiology , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Carrier State/microbiology , Carrier State/epidemiology , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Carrier Proteins/genetics , Pharynx/microbiology , Global Health
15.
Int Immunopharmacol ; 134: 112160, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38710117

ABSTRACT

INTRODUCTION: Cholera is a severe gastrointestinal disease that manifests with rapid onset of diarrhea, vomiting, and high mortality rates. Due to its widespread occurrence in impoverished communities with poor water sanitation, there is an urgent demand for a cost-effective and highly efficient vaccine. Multi-epitope vaccines containing dominant immunological epitopes and adjuvant compounds have demonstrated potential in boosting the immune response. MATERIAL AND METHODS: B and T epitopes of OMPU, OMPW, TCPA, CTXA, and CTXB proteins were predicted using bioinformatics methods. Subsequently, highly antigenic multi-epitopes that are non-allergenic and non-toxic were synthesized. These multi-epitopes were then cloned into the pCOMB phagemid. A plasmid M13KO7ΔpIII containing all helper phage proteins except pIII was created to produce the recombinant phage. Female Balb/c mice were divided into three groups and immunized accordingly. The mice received the helper phage, recombinant phage or PBS via gavage feeding thrice within two weeks. Serum samples were collected before and after immunization for the ELISA test as well as evaluating immune system induction through ELISpot testing of spleen lymphocytes. RESULTS: The titer of the recombinant phage was determined to be 1011 PFU/ml. The presence of the recombinant phage was confirmed through differences in optical density between sample and control groups in the ELISA phage technique, as well as by observing transduction activity, which demonstrated successful production of a recombinant phage displaying the Vibrio multi-epitope on M13 phage pIII. ELISA results revealed significant differences in phage antibodies before and after inoculation, particularly notable in the negative control mice. Mice treated with multi-epitope phages exhibited antibodies against Vibrio cholerae lysate. Additionally, ELISpot results indicated activation of cellular immunity in mice receiving both Vibrio and helper phage. CONCLUSION: This study emphasizes the potential of multi-epitope on phage to enhance both cellular and humoral immunity in mice, demonstrating how phages can be used as adjuvants to stimulate mucosal immunity and act as promising candidates for oral vaccination.


Subject(s)
Antibodies, Bacterial , Cholera Vaccines , Cholera , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Vibrio cholerae , Animals , Vibrio cholerae/immunology , Female , Cholera/prevention & control , Cholera/immunology , Cholera Vaccines/immunology , Cholera Vaccines/administration & dosage , Administration, Oral , Mice , Antibodies, Bacterial/blood , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Immunization , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Humans , Bacteriophages/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics
16.
mSphere ; 9(6): e0022024, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38752729

ABSTRACT

Neisseria meningitidis serogroup B (NmB) strains have diverse antigens, necessitating methods for predicting meningococcal serogroup B (MenB) vaccine strain coverage. The genetic Meningococcal Antigen Typing System (gMATS), a correlate of MATS estimates, predicts strain coverage by the 4-component MenB (4CMenB) vaccine in cultivable and non-cultivable NmB isolates. In Taiwan, 134 invasive, disease-causing NmB isolates were collected in 2003-2020 (23.1%, 4.5%, 5.2%, 29.8%, and 37.3% from individuals aged ≤11 months, 12-23 months, 2-4 years, 5-29 years, and ≥30 years, respectively). NmB isolates were characterized by whole-genome sequencing and vaccine antigen genotyping, and 4CMenB strain coverage was predicted using gMATS. Analysis of phylogenetic relationships with 502 global NmB genomes showed that most isolates belonged to three global hyperinvasive clonal complexes: ST-4821 (27.6%), ST-32 (23.9%), and ST-41/44 (14.9%). Predicted strain coverage by gMATS was 62.7%, with 27.6% isolates covered, 2.2% not covered, and 66.4% unpredictable by gMATS. Age group coverage point estimates ranged from 42.9% (2-4 years) to 66.1% (≤11 months). Antigen coverage estimates and percentages predicted as covered/not covered were highly variable, with higher estimates for isolates with one or more gMATS-positive antigens than for isolates positive for one 4CMenB antigen. In conclusion, this first study on NmB strain coverage by 4CMenB in Taiwan shows 62.7% coverage by gMATS, with predictable coverage for 29.8% of isolates. These could be underestimated since the gMATS calculation does not consider synergistic mechanisms associated with simultaneous antibody binding to multiple targets elicited by multicomponent vaccines or the contributions of minor outer membrane vesicle vaccine components.IMPORTANCEMeningococcal diseases, caused by the bacterium Neisseria meningitidis (meningococcus), include meningitis and septicemia. Although rare, invasive meningococcal disease is often severe and can be fatal. Nearly all cases are caused by six meningococcal serogroups (types), including meningococcal serogroup B. Vaccines are available against meningococcal serogroup B, but the antigens targeted by these vaccines have highly variable genetic features and expression levels, so the effectiveness of vaccination may vary depending on the strains circulating in particular countries. It is therefore important to test meningococcal serogroup B strains isolated from specific populations to estimate the percentage of bacterial strains that a vaccine can protect against (vaccine strain coverage). Meningococcal isolates were collected in Taiwan between 2003 and 2020, of which 134 were identified as serogroup B. We did further investigations on these isolates, including using a method (called gMATS) to predict vaccine strain coverage by the 4-component meningococcal serogroup B vaccine (4CMenB).


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Whole Genome Sequencing , Humans , Taiwan/epidemiology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Neisseria meningitidis, Serogroup B/genetics , Neisseria meningitidis, Serogroup B/classification , Neisseria meningitidis, Serogroup B/isolation & purification , Neisseria meningitidis, Serogroup B/immunology , Infant , Child, Preschool , Child , Adult , Adolescent , Young Adult , Meningococcal Infections/microbiology , Meningococcal Infections/prevention & control , Meningococcal Infections/epidemiology , Phylogeny , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Male , Female , Genotype , Vaccination Coverage/statistics & numerical data
17.
Front Immunol ; 15: 1392456, 2024.
Article in English | MEDLINE | ID: mdl-38779673

ABSTRACT

In response to the global threat posed by bacterial pathogens, which are the second leading cause of death worldwide, vaccine development is challenged by the diversity of bacterial serotypes and the lack of immunoprotection across serotypes. To address this, we introduce BacScan, a novel genome-wide technology for the rapid discovery of conserved highly immunogenic proteins (HIPs) across serotypes. Using bacterial-specific serum, BacScan combines phage display, immunoprecipitation, and next-generation sequencing to comprehensively identify all the HIPs in a single assay, thereby paving the way for the development of universally protective vaccines. Our validation of this technique with Streptococcus suis, a major pathogenic threat, led to the identification of 19 HIPs, eight of which conferred 20-100% protection against S. suis challenge in animal models. Remarkably, HIP 8455 induced complete immunity, making it an exemplary vaccine target. BacScan's adaptability to any bacterial pathogen positions it as a revolutionary tool that can expedite the development of vaccines with broad efficacy, thus playing a critical role in curbing bacterial transmission and slowing the march of antimicrobial resistance.


Subject(s)
Bacterial Proteins , Animals , Mice , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Streptococcal Infections/immunology , Streptococcal Infections/prevention & control , Streptococcus suis/immunology , Streptococcus suis/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Female , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Humans , Bacterial Vaccines/immunology
18.
Int Immunopharmacol ; 135: 112287, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38776850

ABSTRACT

Achromobacter xylosoxidans is an aerobic, catalase-positive, non-pigment-forming, Gram-negative, and motile bacterium. It potentially causes a wide range of human infections in cystic fibrosis and non-cystic fibrosis patients. However, developing a safe preventive or therapeutic solution against A. xylosoxidans remains challenging. This study aimed to construct an epitope-based vaccine candidate using immunoinformatic techniques. A. xylosoxidans was isolated from an auto workshop in Lahore, and its identification was confirmed through 16S rRNA amplification and bioinformatic analysis. Two protein targets with GenBank accession numbers AKP90890.1 and AKP90355.1 were selected for the vaccine construct. Both proteins exhibited antigenicity, with scores of 0.757 and 0.580, respectively and the epitopes were selected based on the IC50 value using the ANN 4.0 and NN-align 2.3 epitope prediction method for MHC I and MHC II epitopes respectively and predicted epitopes were analyzed for antigenicity, allergenicity and pathogenicity. The vaccine construct demonstrated structural stability, thermostability, solubility, and hydrophilicity. The vaccine produced 250 B-memory cells per mm3 and approximately 16,000 IgM + IgG counts, indicating an effective immune response against A. xylosoxidans. Moreover, the vaccine candidate interacted stably with toll-like receptor 5, a pattern recognition receptor, with a confidence score of 0.98. These results highlight the potency of the designed vaccine candidate, suggesting its potential to withstand rigorous in vitro and in vivo clinical trials. This epitope-based vaccine could serve as the first preventive immunotherapy against A. xylosoxidans infections, addressing this bacterium's health and financial burdens. The findings demonstrate the value of employing immunoinformatic tools in vaccine development, paving the way for more precise and tailored approaches to combating microbial threats.


Subject(s)
Achromobacter denitrificans , Bacterial Vaccines , Gram-Negative Bacterial Infections , RNA, Ribosomal, 16S , Achromobacter denitrificans/immunology , Achromobacter denitrificans/genetics , Bacterial Vaccines/immunology , Humans , RNA, Ribosomal, 16S/genetics , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/microbiology , Animals , Epitopes/immunology , Computer Simulation , Female , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Mice , Computational Biology , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics
19.
Curr Microbiol ; 81(7): 197, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816607

ABSTRACT

Identifying and evaluating potential vaccine candidates has become one of the main objectives to combat tuberculosis. Among them, mannosylated Apa antigen from Mycobacterium tuberculosis and the non-mannosylated protein expressed in Escherichia coli, have been studied. Although both proteins can induce a protective response in mice, it has been considered that native protein can be dispensed. In this work, we study the protective response induced by Apa expressed in E. coli and in Streptomyces lividans. The latter, like native is secreted as a double band of 45/47 kDa, however, only its 47 kDa band is mannosylated. Both antigens and BCG were intranasal administrated in mice, and animals were then challenged by aerosol with M. tuberculosis H37Rv. The results showed that both, Apa from S. lividans and E. coli conferred statistically significantly protection to animals compared to controls. The cytokine immune response was studied by an immunoassay after animals' immunization, revealing that Apa from S. lividans induced a statistically significant proliferation of T cell, as well as the expression of IFN-γ, IL-1ß, IL-17 and IL-10. In contrast, non-proliferation was obtained with non-mannosylated protein, but induction of IL-12 and IL-17 was observed. Together, these results demonstrate that both proteins were able to modulate a specific immune response against M. tuberculosis, that could be driven by different mechanisms possibly associated with the presence or not of mannosylation. Furthermore, stimulation of cells from BCG-vaccinated animals with the proteins could be an important tool, to help define the use of a given subunit-vaccine after BCG vaccination.


Subject(s)
Administration, Intranasal , Cytokines , Mycobacterium tuberculosis , Streptomyces lividans , Tuberculosis , Animals , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , Mice , Cytokines/metabolism , Tuberculosis/prevention & control , Tuberculosis/immunology , Streptomyces lividans/genetics , Streptomyces lividans/immunology , Aerosols , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/administration & dosage , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/administration & dosage , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/administration & dosage , Tuberculosis Vaccines/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Mice, Inbred BALB C , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Antigens, Bacterial/administration & dosage
20.
Microb Pathog ; 192: 106685, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750774

ABSTRACT

QseC is a membrane sensor kinase that enables bacteria to perceive autoinducers -3, adrenaline, and norepinephrine to initiate downstream gene transcription. In this study, we found that the QseC protein of Glaesserella parasuis can serve as an effective antigen to activate the host's immune response. Therefore, we investigated the immunogenicity and host protective effect of this protein. ELISA and indirect immunofluorescence results showed that QseC protein can induce high titer levels of humoral immunity in mice and regularly generate specific serum antibodies. We used MTS reagents to detect lymphocyte proliferation levels and found that QseC protein can cause splenic lymphocyte proliferation with memory and specificity. Further immunological analysis of the spleen cell supernatant revealed significant upregulation of levels of IL-1ß, IL-4 and IFN-γ in the QseC + adjuvant group. In the mouse challenge experiment, it was found that QseC + adjuvant can provide effective protection. The results of this study demonstrate that QseC protein provides effective protection in a mouse model and has the potential to serve as a candidate antigen for a novel subunit vaccine for further research.


Subject(s)
Antibodies, Bacterial , Haemophilus Infections , Interferon-gamma , Interleukin-4 , Animals , Mice , Interleukin-4/metabolism , Interleukin-4/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus Infections/microbiology , Interferon-gamma/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Histidine Kinase/immunology , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Immunity, Humoral , Mice, Inbred BALB C , Spleen/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Cell Proliferation , Female , Adjuvants, Immunologic , Haemophilus parasuis/immunology , Haemophilus parasuis/genetics , Cytokines/metabolism , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Disease Models, Animal , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Lymphocytes/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...