Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 712
1.
J Ethnopharmacol ; 314: 116618, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37164257

ETHNOPHARMACOLOGICAL RELEVANCE: Helicobacter pylori (H. pylori) is a major pathogen colonized in the human stomach and is implicated in gastritis, peptic ulcer, and gastric carcinoma. Antibiotics are useful for eradicating H. pylori but failed for drug resistance, making it urgent to develop effective and safe drugs. Rhizoma Coptidis was reported as one of the most effective Chinese medicines to treat H. pylori-related gastrointestinal diseases, while the precise antimicrobial mechanism remains unclear. Thus, it is of great significance to study the antimicrobial ingredients and corresponding mechanisms of Rhizoma Coptidis. AIM OF THE STUDY: To search for the most effective alkaloid against H. pylori in Rhizoma Coptidis and illustrate the probable mechanisms. MATERIALS AND METHODS: Five main alkaloids in Rhizoma Coptidis were isolated. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were tested to determine the most effective one. Bacterial growth experiments, Annexin V-FITC/PI staining, TUNEL staining, and transmission electron microscopy (TEM) were performed to further study the anti-H. pylori activity of coptisine (Cop). The in vivo effect of Cop on H. pylori eradication rate and H. pylori-induced inflammation was investigated in mice. Transcriptomics was used to understand the underlying mechanism of eradicating H. pylori and reducing host inflammation. Western blot, RT-PCR, and ELISA experiments were utilized and confirmed that cagA was one of the targets of Cop. RESULTS: According to the MIC and MBC, Cop was the most effective alkaloid against H. pylori, especially with no drug resistance developed. In vitro experiments showed that Cop inhibited H. pylori by inducing DNA fragmentation, phosphatidylserine exposure, and membrane damage. Cop (150 mg/kg/day) effectively eradicated H. pylori in mice and reduced the levels of IL-2 and IL-6 to relieve gastric inflammation. Transcriptomic analysis revealed that virulence factor cagA was one of the hub genes associated with the inflammation-improving effect of Cop. That is, Cop could decrease the expression of CagA and subsequently reduce the translocation of CagA to gastric epithelial cells, thereby improving the morphology of hummingbird-like phenotype induced by CagA and alleviating inflammation. CONCLUSIONS: Cop is the most effective alkaloid in Rhizoma Coptidis and might act through multiple mechanisms for H. pylori eradication along with reducing the expression of CagA to alleviate inflammation.


Anti-Infective Agents , Gastritis , Helicobacter Infections , Helicobacter pylori , Humans , Animals , Mice , Bacterial Proteins/metabolism , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Antigens, Bacterial/pharmacology , Helicobacter Infections/microbiology , Gastritis/microbiology , Inflammation/drug therapy , Anti-Infective Agents/pharmacology
2.
Proc Natl Acad Sci U S A ; 119(28): e2201423119, 2022 07 12.
Article En | MEDLINE | ID: mdl-35867758

Treatments for advanced and recurrent ovarian cancer remain a challenge due to a lack of potent, selective, and effective therapeutics. Here, we developed the basis for a transformative anticancer strategy based on anthrax toxin that has been engineered to be selectively activated by the catalytic power of zymogen-activating proteases on the surface of malignant tumor cells to induce cell death. Exposure to the engineered toxin is cytotoxic to ovarian tumor cell lines and ovarian tumor spheroids derived from patient ascites. Preclinical studies demonstrate that toxin treatment induces tumor regression in several in vivo ovarian cancer models, including patient-derived xenografts, without adverse side effects, supportive of progression toward clinical evaluation. These data lay the groundwork for developing therapeutics for treating women with late-stage and recurrent ovarian cancers, utilizing a mechanism distinct from current anticancer therapies.


Antigens, Bacterial , Antineoplastic Agents , Bacterial Toxins , Ovarian Neoplasms , Prodrugs , Serine Proteases , Antigens, Bacterial/pharmacology , Antigens, Bacterial/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bacterial Toxins/pharmacology , Bacterial Toxins/therapeutic use , Cell Line, Tumor , Enzyme Precursors/metabolism , Female , Humans , Neoplasm Recurrence, Local , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Prodrugs/pharmacology , Prodrugs/therapeutic use , Serine Proteases/metabolism , Spheroids, Cellular , Xenograft Model Antitumor Assays
3.
BMC Infect Dis ; 22(1): 573, 2022 Jun 25.
Article En | MEDLINE | ID: mdl-35752757

BACKGROUND: The role of Helicobacter pylori (H. pylori) virulence factors of such as vacA s1m1 and cagA in designating clinical outcomes and eradication rate has been deeply challenged in the last decade. The goal of this analysis was to identify the potential relevance between cagA and vacA genotypes with reported antibiotic resistance observed in clinical H. pylori isolates. METHODS: This literature search was conducted in databases such as Clarivate analytics, PubMed, Scopus, EMBASE, DOAJ, and Google Scholar by April 2022, regardless of language restrictions and publication date. Quality of the included studies was assessed by the Newcastle-Ottawa scale. Statistical analysis of retrieved studies was fulfilled using Comprehensive Meta-Analysis software version 2.2. Following quality appraisal of eligible studies, potential association between the status of cagA and vacA genes with resistance to clarithromycin, metronidazole, amoxicillin, tetracycline, and levofloxacin was measured using odds ratio with 95% confidence interval. We also used sensitivity analyses and meta-regression to eliminate the source of heterogeneity from the overall estimates. Publication bias was assessed using funnel plot, Egger's test, Begg's test with the trim and fill procedure to assess the presence and magnitude of publication bias in the included studies. RESULTS: Our findings suggested that a significant relationship between cagA status and increase resistance to metronidazole (OR: 2.69; 95% CI: 1.24-5.83 ). In subgroup analysis, we found that in the Western population, infection with cagA-positive strains could be led to increase in the resistance to metronidazole (OR: 1.59; 95% CI: 0.78-3.21 ), amoxicillin (OR: 19.68 ; 95% CI: 2.74- 141.18), and levofloxacin (OR: 11.33; 95% CI: 1.39- 91.85). After implementation of trim and fill method, the adjusted OR was not significantly differed from original estimates which in turn represented our subgroup analysis was statistically robust. On the other hand, vacA genotypes usually reduce the antibiotic resistance of this bacterium, so that vacA s1m1 significantly reduces the resistance to metronidazole (OR: 0.41; 95% CI: 0.20-0.86 ). Surprisingly, resistance of vacA s2m2 strains to antibiotics was low, the reason may be due to the non-inflammatory properties of strains containing vacA s2m2. The meta-regression and sensitivity analyses successfully reduced the effect of heterogeneity from the overall estimates. In addition, although the pooled OR is reduced after trim and fill adjustment but results do not change the conclusion regarding vacA genotypes and antibiotic resistance. CONCLUSIONS: According to our findings, it was clearly demonstrated that cagA-positive strains are resistance to metronidazole, especially in Western countries. In Western countries, vacA s1m1 increases resistance to amoxicillin and levofloxacin. Based on the present findings, the vacA s1m1 genotype significantly increases resistance to metronidazole, while the vacA s1m2 decreases resistance to clarithromycin and metronidazole. Resistance to antibiotics in less virulent (vacA s2m2) strains is statistically significant lower than others.


Helicobacter Infections , Helicobacter pylori , Amoxicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Antigens, Bacterial/genetics , Antigens, Bacterial/pharmacology , Bacterial Proteins/genetics , Clarithromycin/pharmacology , Drug Resistance, Microbial , Genotype , Helicobacter Infections/microbiology , Humans , Levofloxacin/pharmacology , Metronidazole
4.
Med Princ Pract ; 31(4): 359-367, 2022.
Article En | MEDLINE | ID: mdl-35584661

OBJECTIVE: This study determined the effects of chemical adjuvants, incomplete Freund's adjuvant (IFA) and aluminum hydroxide (Alum), mycobacteria, and a DNA plasmid as delivery systems on the induction of protective Th1 (interferon-gamma (IFN-γ)) and nonprotective Th2 (IL-5) and Treg (IL-10) cytokine responses to Rv3619c and its peptides. Rv3619c is an immunodominant Mycobacterium tuberculosis-specific antigen and belongs to the early-secreted antigenic target of 6 kDa-family of proteins. Delivery systems are needed to deliver such antigens in animal models and induce protective immune responses. METHODS: The rv3619c gene was amplified from the genomic DNA of M. tuberculosis and cloned into appropriate vectors for expression in Escherichia coli, Mycobacterium smegmatis, and eukaryotic cells. Spleen cells from mice immunized with rv3619c using different delivery systems were stimulated in vitro with synthetic peptides (P1 to P6) of Rv3619c, and secreted cytokines were estimated by ELISA. RESULTS: The recombinant M. smegmatis and DNA plasmid induced the secretion of the protective cytokine IFN-γ in response to peptide-pool of Rv3619c and all the individual peptides, whereas rv3619c/IFA induced the secretion of IFN-γ in response to the peptide pool, and the peptides P5 and P6. However, the secretions of the nonprotective cytokines IL-5 and IL-10 were induced to none of the peptides with the delivery systems used. CONCLUSION: Rv3619c is a major antigen of M. tuberculosis with multiple immunogenic epitopes; however, immune responses to individual epitopes can vary based on delivery systems used.


Antigens, Bacterial/pharmacology , Bacterial Proteins/pharmacology , Mycobacterium tuberculosis , Tuberculosis , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacterial Proteins/genetics , Cytokines/metabolism , Epitopes/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-5/metabolism , Mice , Peptides/metabolism , Recombinant Proteins , Th1 Cells/metabolism , Tuberculosis/metabolism , Tuberculosis/prevention & control
5.
J Am Chem Soc ; 144(6): 2474-2478, 2022 02 16.
Article En | MEDLINE | ID: mdl-35129341

The human immune system detects potentially pathogenic microbes with receptors that respond to microbial metabolites. While the overall immune signaling pathway is known in considerable detail, the initial molecular signals, the microbially produced immunogens, for important diseases like Lyme disease (LD) are often not well-defined. The immunogens for LD are produced by the spirochete Borrelia burgdorferi, and a galactoglycerolipid (1) has been identified as a key trigger for the inflammatory immune response that characterizes LD. This report corrects the original structural assignment of 1 to 3, a change of an α-galactopyranose to an α-galactofuranose headgroup. The seemingly small change has important implications for the diagnosis, prevention, and treatment of LD.


Antigens, Bacterial/chemistry , Borrelia burgdorferi/chemistry , Galactolipids/chemistry , Animals , Antigens, Bacterial/pharmacology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Galactolipids/chemical synthesis , Galactolipids/pharmacology , Inflammation/chemically induced , Lyme Disease/immunology , Mice , Toll-Like Receptor 2/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
Bull Exp Biol Med ; 171(5): 656-660, 2021 Sep.
Article En | MEDLINE | ID: mdl-34617184

We studied the effects of M. tuberculosis secretory proteins ESAT-6 and CFP-10 on the properties of vaccinal mycobacteria BCG not producing these proteins. Phagocytosis of M. bovis by macrophages, proliferation of mycobacteria in macrophages, apoptosis and necrosis of macrophages, and the production of reactive oxygen and nitrogen species were studied. It was shown that both ESAT-6 and CFP-10 significantly increased the number of phagocytized mycobacteria by increasing the number of phagocytic-active macrophages and augment the intracellular proliferation of the pathogen. At the same time, macrophages preincubated with ESAT-6 and CFP-10 reduce the production of reactive oxygen and nitrogen species and are more susceptible to apoptosis and necrosis in the presence of mycobacteria. In summary, these proteins suppress macrophage-mediated mechanisms of anti-tuberculosis resistance and impart pronounced pathogenic properties to non-pathogenic mycobacteria that do not secrete ESAT-6 and CFP-10.


Antigens, Bacterial/pharmacology , Bacterial Proteins/pharmacology , Cell Culture Techniques, Three Dimensional/methods , Granuloma/pathology , Macrophages, Peritoneal/drug effects , Animals , Cells, Cultured , Granuloma/microbiology , Macrophages, Peritoneal/pathology , Mice , Mice, Inbred BALB C , Models, Biological , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/pathology
7.
Front Immunol ; 12: 736360, 2021.
Article En | MEDLINE | ID: mdl-34671354

Bacterial infections cause huge losses in aquaculture and a wide range of health issues in humans. A vaccine is the most economical, efficient, and environment-friendly agent for protecting hosts against bacterial infections. This study aimed to identify broad, cross-protective antigens from the extracellular secretory proteome of the marine bacterium Vibrio alginolyticus. Of the 69 predicted extracellular secretory proteins in its genome, 16 were randomly selected for gene cloning to construct DNA vaccines, which were used to immunize zebrafish (Danio rerio). The innate immune response genes were also investigated. Among the 16 DNA vaccines, 3 (AT730_21605, AT730_22220, and AT730_22910) were protective against V. alginolyticus infection with 47-66.7% increased survival compared to the control, while other vaccines had lower or no protective effects. Furthermore, AT730_22220, AT730_22910, and AT730_21605 also exhibited cross-immune protective effects against Pseudomonas fluorescens and/or Aeromonas hydrophila infection. Mechanisms for cross-protective ability was explored based on conserved epitopes, innate immune responses, and antibody neutralizing ability. These results indicate that AT730_21605, AT730_22220, and AT730_22910 are potential polyvalent vaccine candidates against bacterial infections. Additionally, our results suggest that the extracellular secretory proteome is an antigen pool that can be used for the identification of cross-protective immunogens.


Antigens, Bacterial/pharmacology , Bacterial Infections/prevention & control , Bacterial Vaccines/pharmacology , Vaccine Development , Vaccines, Combined/pharmacology , Vibrio alginolyticus/immunology , Animals , Antibodies, Bacterial/metabolism , Antibodies, Neutralizing/metabolism , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Infections/immunology , Bacterial Infections/microbiology , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Cross Reactions , Disease Models, Animal , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/prevention & control , Immunity, Innate/drug effects , Immunization , Immunogenicity, Vaccine , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas Infections/prevention & control , Vaccines, Combined/genetics , Vaccines, Combined/immunology , Vibrio Infections/immunology , Vibrio Infections/microbiology , Vibrio Infections/prevention & control , Vibrio alginolyticus/genetics , Zebrafish
8.
Life Sci ; 282: 119806, 2021 Oct 01.
Article En | MEDLINE | ID: mdl-34252419

PURPOSE: Tuberculosis, a cost and life threatening disease, was being subjected for improving vaccine strategies beyond BCG. Thus, a novel particulate delivery system using alginate-coated chitosan nanoparticles including PPE17 protein and CpG were administered through intranasal (IN) and subcutaneous (SC) routes. METHODS: The encapsulated nanoparticles were first characterized for size, surface charge, encapsulation efficiency and in vitro release of PPE17 antigen. The nanoparticles were then administered intranasal and subcutaneously to evaluate the induction of systemic and/or mucosal immune responses in mice. RESULTS: According to our result, the mean size of nanoparticles was measured about 427 nm, and exhibited a negative zeta potential of -37 mV. Following subcutaneous and intranasal administration, the results from cytokines assay showed that an increasing in the level of IFN-γ, and adversely a decrease in the level of IL-4 (presumptive Th1 biased immune response) was happened and also a notable elicitation in IL-17 cytokine was observed. CONCLUSION: In conclusion, our study demonstrated that alginate-coated chitosan nanoparticles showed to be an effective way to improve BCG efficiency as booster strategy for subcutaneous vaccine, and also can induce strong immune responses as prime strategy through intranasal vaccination.


Antigens, Bacterial , Drug Carriers , Nanoparticles , Th1 Cells/immunology , Tuberculosis Vaccines , Tuberculosis/immunology , Administration, Intranasal , Alginates/chemistry , Alginates/pharmacology , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacology , Injections, Subcutaneous , Male , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Th1 Cells/pathology , Tuberculosis/prevention & control , Tuberculosis Vaccines/chemistry , Tuberculosis Vaccines/pharmacology
9.
Med Sci Monit ; 27: e929781, 2021 Jun 05.
Article En | MEDLINE | ID: mdl-34088889

BACKGROUND Previously, we demonstrated that the chlamydial protein pGP3 forms a stable complex with LL-37 to neutralize its proinflammatory activity during the pathogenesis of psoriasis. The middle domain of pGP3 (pGP3M) is critical for the binding and neutralization of LL-37. Here, we further examined the mechanism underlying pGP3-mediated inhibition of psoriasis progression and evaluated the inhibitory effect of pGP3M on the development of psoriasis-like skin lesions in mice. MATERIAL AND METHODS Stock solutions of pGP3M and pGP3 (100 µg/mL) were prepared using sterile ultrapure water and intramuscularly injected into the left leg of the imiquimod (IMQ)-induced psoriasis mouse model. The severity of skin lesions was evaluated based on the psoriasis area and severity index score and ear skin thickness. The skin biopsy and blood samples were collected on the 8th day for histological analysis and inflammatory cytokines detection. RESULTS Erythema, scaling, and thickening were observed on the dorsal skin and the right ear skin of IMQ-treated mice. Treatment with pGP3 and pGP3M alleviated the IMQ-induced erythema, inflammatory cell infiltration, and scaly plaques. Compared with IMQ-treated and PBS-treated mice, pGP3- and PGP3M-treated mice had less inflammatory cell infiltration in skin tissues and had significantly reduced IL-17A, IFN-γ, and IL-22 levels in serum. CONCLUSIONS The anti-psoriatic efficacy of exogenous pGP3M was similar to that of pGP3. This indicated that pGP3M attenuated the IMQ-induced inflammatory and psoriatic symptoms in mice by binding and inhibiting LL-37. Further research is needed to examine the toxicity of pGP3 and pGP3M before clinical trial evaluation.


Antigens, Bacterial/pharmacology , Bacterial Proteins/pharmacology , Inflammation/drug therapy , Psoriasis , Animals , Anti-Inflammatory Agents/pharmacology , Antimicrobial Cationic Peptides/metabolism , Carrier Proteins/metabolism , Disease Models, Animal , Mice , Plasmids , Psoriasis/immunology , Psoriasis/metabolism , Psoriasis/therapy , Skin/drug effects , Skin/immunology , Skin/pathology , Treatment Outcome , Cathelicidins
10.
Front Immunol ; 12: 662128, 2021.
Article En | MEDLINE | ID: mdl-34012446

NK cells play an important role in the control of tuberculosis infection: they are not only able to kill the infected cells, but also control the activity of macrophages and development of the adaptive immune response. Still, there is little information on the role of specific NK cell subsets in this network. In this study, we focused on the mycobacteria-driven responses of the NK cells expressing HLA-DR - a type of MHC class II. We have revealed that this subset is increased in the peripheral blood of patients with primary diagnosed tuberculosis, and expands in response to in vitro stimulation with ultrasonically destroyed Mycobacterium tuberculosis cells (sonicate). The expanded HLA-DR+ NK cells had less differentiated phenotype, higher proliferative activity and increased expression of NKp30 and NKp46 receptors. HLA-DR+CD56dim NK cells showed higher IFNγ production and degranulation level than the respective HLA-DR- NK cells in response to both 24 h and 7 day stimulation with sonicate, while HLA-DR+CD56bright NK cells mostly demonstarted similar high responsiveness to the same stimulating conditions as their HLA-DR-CD56bright counterparts. After preliminary incubation with destroyed mycobacteria, cytokine-activated HLA-DR-expressing NK cells were able to mediate mycobacteria-induced and HLA-DR-dependent cytokine production in autologous CD4+ T cells. Thus, functionally active HLA-DR+ cells seem to be one of the NK cell subsets providing an important link to the adaptive immunity.


Antigens, Bacterial/immunology , HLA-DR Antigens/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Mycobacterium/immunology , T-Lymphocytes/immunology , Adaptive Immunity , Antigens, Bacterial/pharmacology , HLA-DR Antigens/genetics , Humans , Interferon-gamma/immunology , Killer Cells, Natural/drug effects , Lymphocyte Activation/drug effects , Mycobacterium/chemistry , Phenotype , T-Lymphocytes/drug effects
11.
Eur J Pharmacol ; 904: 174167, 2021 Aug 05.
Article En | MEDLINE | ID: mdl-33974882

Microvascular changes and retinal degeneration precede diabetic retinopathy. Oxidative stress alters several intracellular signaling pathways, which form the basis of diabetic retinopathy. Many antioxidants have been investigated as possible preventive and therapeutic remedies for diabetic retinopathy. The current study investigated the modulatory effects of trans-resveratrol on streptozotocin-induced type 1 diabetes mediated changes in the transcription and levels of apoptosis-related proteins and mitogen-activated protein kinases (MAPKs) in the retinal pigment epithelium (RPE) of adult male dark Agouti rats. In control rats, 5 mg/kg/d trans-resveratrol administration for 30 days increased gene expressions of tumor suppressor protein 53, Bcl2-associated X protein, B-cell lymphoma-2 (Bcl2), Caspase-3 (CASP3), CASP8 and CASP9, p38αMAPK, c-Jun N-terminal kinase-1 (JNK1), and extracellular signal-regulated kinase-1 (ERK1). On the other hand, diabetes decreased gene expressions of CASP3, CASP8, p38αMAPK, JNK, and ERK1. Trans-resveratrol reversed the inhibited gene expressions of CASP8, p38αMAPK, JNK, and ERK1 to normal control levels in diabetic rats. Trans-resveratrol normalized diabetes-induced upregulation of CASP3 and -9, cytochrome-c, Bcl-2, and ERK1 proteins. In conclusion, Trans-resveratrol-induced alterations in gene expressions do not seem to affect RPE functions as they do not reflect as altered protein functions. Trans-resveratrol imparts its protective effects by normalizing apoptosis-related proteins and ERK1 but does not affect JNK proteins. Trans-resveratrol causes cytostasis in RPE of normal rats by upregulating Bcl2 protein and apoptotic proteins.


Antigens, Bacterial , Bacterial Toxins , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetic Retinopathy , MAP Kinase Signaling System , Resveratrol , Retinal Pigment Epithelium , Animals , Male , Rats , Aldehydes/metabolism , Antigens, Bacterial/pharmacology , Antigens, Bacterial/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Bacterial Toxins/pharmacology , Bacterial Toxins/therapeutic use , Blood Glucose/drug effects , Body Weight/drug effects , Caspase 3/genetics , Caspase 3/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetic Retinopathy/complications , Diabetic Retinopathy/prevention & control , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/injuries , Retinal Pigment Epithelium/metabolism , Streptozocin , Up-Regulation/drug effects , Up-Regulation/genetics
12.
Sci Rep ; 11(1): 10389, 2021 05 17.
Article En | MEDLINE | ID: mdl-34001988

Vaccines based on live attenuated Chlamydia elementary bodies (EBs) can cause disease in vaccinated animals and the comparably safer inactivated whole EBs are only marginally protective. Recent studies show that a vaccine formulation comprising UV-inactivated EBs (EB) and appropriate mucosal delivery systems and/or adjuvants induced significant protective immunity. We tested the hypothesis that intranasal delivery of UV-inactivated C. psittaci EB formulated in Vibrio cholerae ghosts (VCG)-chitosan nanoparticles will induce protective immunity against intranasal challenge in SPF chickens. We first compared the impact of VCG and CpG adjuvants on protective immunity following IN mucosal and IM systemic delivery of EB formulated in chitosan hydrogel/microspheres. Immunologic analysis revealed that IN immunization in the presence of VCG induced higher levels of IFN-γ response than IM delivery or the CpG adjuvanted groups. Also, vaccine efficacy evaluation showed enhanced pharyngeal bacterial clearance and protection against lung lesions with the VCG adjuvanted vaccine formulation, thereby establishing the superior adjuvanticity of VCG over CpG. We next evaluated the impact of different concentrations of VCG on protective immunity following IN mucosal immunization. Interestingly, the adjuvanticity of VCG was concentration-dependent, since protective immunity induced following IN mucosal immunization showed dose-dependent immune responses and protection. These studies reveal that formulation of inactivated chlamydial antigens with adjuvants, such as VCG and chitosan increases their ability to induce protective immune responses against challenge.


Chitosan/pharmacology , Chlamydophila psittaci/immunology , Nanoparticles/chemistry , Psittacosis/drug therapy , Administration, Intranasal , Animals , Antigens, Bacterial/pharmacology , Bacterial Vaccines/immunology , Bacterial Vaccines/pharmacology , Chickens/microbiology , Chitosan/chemistry , Chlamydophila psittaci/pathogenicity , Humans , Immunity, Mucosal/immunology , Injections, Intramuscular , Interferon-gamma/genetics , Mice , Vibrio cholerae/immunology , Vibrio cholerae/pathogenicity
13.
Front Immunol ; 12: 653092, 2021.
Article En | MEDLINE | ID: mdl-33815413

Q fever is caused by the obligate intracellular bacterium, Coxiella burnetii, a designated potential agent of bioterrorism because of its route of transmission, resistance to disinfectants, and low infectious dose. The only vaccine licensed for human use is Q-VAX® (Seqirus, licensed in Australia), a formalin-inactivated whole-cell vaccine, which produces severe local and systemic reactogenic responses in previously sensitized individuals. Accordingly, the U.S. Food and Drug Administration and other regulatory bodies around the world, have been reluctant to approve Q-VAX for widespread use. To obviate these adverse reactions, we prepared recombinant protein subunit vaccine candidates containing purified CBU1910, CBU0307, CBU0545, CBU0612, CBU0891, and CBU1398 proteins and TLR triagonist adjuvants. TLR triagonist adjuvants combine different TLR agonists to enhance immune responses to vaccine antigens. We tested both the protective efficacy and reactogenicity of our vaccine candidates in Hartley guinea pigs using intratracheal infection with live C. burnetii. While all of our candidates showed varying degrees of protection during challenge, local reactogenic responses were significantly reduced for one of our vaccine candidates when compared with a formalin-inactivated whole-cell vaccine. Our findings show that subunit vaccines combined with novel TLR triagonist adjuvants can generate protective immunity to C. burnetii infection while reducing reactogenic responses.


Adjuvants, Immunologic/pharmacology , Bacterial Vaccines/pharmacology , Coxiella burnetii/immunology , Q Fever/prevention & control , Toll-Like Receptors/antagonists & inhibitors , Adjuvants, Immunologic/therapeutic use , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/pharmacology , Antigens, Bacterial/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Vaccines/genetics , Bacterial Vaccines/therapeutic use , Disease Models, Animal , Guinea Pigs , Humans , Immunogenicity, Vaccine , Q Fever/immunology , Q Fever/microbiology , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Vaccines, Subunit/genetics , Vaccines, Subunit/pharmacology , Vaccines, Subunit/therapeutic use , Vaccines, Synthetic/genetics , Vaccines, Synthetic/pharmacology , Vaccines, Synthetic/therapeutic use
14.
Prep Biochem Biotechnol ; 51(1): 9-15, 2021.
Article En | MEDLINE | ID: mdl-32393098

Cancer is considered as a disease with high rates of mortality and morbidity. The limitations and side effects of common treatments have prompted the need for innovative cancer therapies. Furthermore, selectivity and targeting of cancer cells are crucial factors to successful treatment of cancer. One of these methods is the use of bacterial toxins including Bacillus anthracis toxin to aid cancer therapy. This toxin is composed of three polypeptides: protective factor (PA), lethal factor (LF), and edema factor (EF). PA can bind to various surface receptors of all types of human cells and it internalizes the lethal factor and edema factor subunits of the toxin in the cytosol. In the present study, we cloned and expressed the lef gene of B. anthracis as the lethal part of the toxin in Bacillus subtilis WB600 by a shuttle expression vector PHT4. The rLF made in B. subtilis is efficiently secreted by the host into the culture medium which facilitates downstream processing. The rLF can be used to study cancer treatment. Abbreviations: EF: edema factor; LF: lethal factor; PA: protective factor; rLF: recombinant lethal factor; rPAm: recombinant protective factor mutants; uPA: urokinase-type plasminogen activator; uPAR: urokinase-type plasminogen activator receptor.


Antigens, Bacterial/biosynthesis , Antigens, Bacterial/genetics , Bacillus anthracis/genetics , Bacillus anthracis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Toxins/biosynthesis , Bacterial Toxins/genetics , Neoplasms/metabolism , Antigens, Bacterial/pharmacology , Bacterial Toxins/pharmacology , Cell Survival/drug effects , Gene Expression , Genes, Bacterial , Genetic Vectors , HeLa Cells , Humans , Neoplasms/pathology , Plasmids/genetics , Receptors, Urokinase Plasminogen Activator/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Urokinase-Type Plasminogen Activator/metabolism
15.
J Med Virol ; 93(6): 4028-4032, 2021 06.
Article En | MEDLINE | ID: mdl-32648938

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human cancers, including Kaposi's sarcoma (KS) and primary effusion lymphoma, which are mostly seen in immunocompromised patients, such as human immunodefeciency virus (HIV)+ individuals. Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb), remains one of the deadliest infectious diseases in the world. The risk of developing TB is dramatically higher in people living with HIV than among those without HIV infection. Case reports link cutaneous or pulmonary KS in HIV+ patients with mycobacterial co-infections, however, impacts of Mtb infection or its products on KSHV-infected cells are not known. We report here that ESAT-6, a secreted Mtb virulence factor, induces viral reactivation from KSHV-infected cells. KSHV-infected pulmonary endothelial cells were resistant to ESAT-6 induced inhibition of cell growth. Our data demonstrate that Mtb virulence factors influence the biology of KSHV-infected cells, highlighting the need to study the interactions between these two pathogens commonly found in people living with HIV.


Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Herpesvirus 8, Human/physiology , Mycobacterium tuberculosis/genetics , Sarcoma, Kaposi/virology , Virus Activation , Antigens, Bacterial/pharmacology , Bacterial Proteins/pharmacology , Cell Line, Tumor , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/microbiology , Endothelial Cells/virology , Gene Expression Regulation, Viral , Humans , Lung/cytology , Mycobacterium tuberculosis/pathogenicity , Virulence Factors , Virus Replication
16.
Mol Immunol ; 130: 77-84, 2021 02.
Article En | MEDLINE | ID: mdl-33246580

Regarding the role of micro RNAs (miRNA) in the proliferation and differentiation of T cells as well as the controversy around the role of bacteria in the pathogenesis of abdominal aortic aneurysm (AAA), the effects of Helicobacter pylori (Hp) and Lactobacillus acidophilus (La) were investigated in the induction of miRNAs and apoptosis in CD4+ memory T (Tem) cells of AAA patients and controls. Signature atherosclerosis miRNAs 21, 92a, 146a, 155, 326 and 663 were measured in the sera and tissues of AAA patients and control. PBMCs separately and in co-culture with HUVEC were treated with Hp-water-extract (HpWE) and La-conditioned-medium (LaCM). Apoptosis and miRNA levels were assessed in the isolated Tem by flowcytometry and real-time-PCR. In single-culture, HpWE increased apoptosis and miR-155 and LaCM decreased apoptosis and increased miR-21. In co-culture, apoptosis decreased in both groups in response to CagA+HpWE. Also, all miRNAs increased in patients Tem but in controls, only miR- 146a and 21 showed changes. Although, apoptosis was similar in Tem of patients and controls, the effects of Hp and La were different on the induction of apoptosis and miRNAs and also these bacteria showed different impacts in single and co-culture conditions. Beyond the direct effects of these bacteria on the pathogenesis of diseases, their effects on miRNAs expression may shed light on their roles in the development and the prevention of AAA.


Aortic Aneurysm, Abdominal/immunology , Helicobacter pylori/physiology , Lactobacillus acidophilus/physiology , MicroRNAs/genetics , T-Lymphocytes/metabolism , Aged , Antigens, Bacterial/pharmacology , Antigens, Bacterial/physiology , Aortic Aneurysm, Abdominal/pathology , Case-Control Studies , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Immunologic Memory/genetics , Male , MicroRNAs/metabolism , Middle Aged , T-Lymphocytes/drug effects , T-Lymphocytes/pathology
17.
Vaccine ; 38(48): 7629-7637, 2020 11 10.
Article En | MEDLINE | ID: mdl-33071000

This work demonstrates the presence of immune regulatory cells in the cervical lymph nodes draining Bacillus Calmette-Guérin (BCG) vaccinated site on the dorsum of the ear in guinea pigs. It is shown that whole cervical lymph node cells did not proliferate in vitro in the presence of soluble mycobacterial antigens (PPD or leprosin) despite being responsive to whole mycobacteria. Besides, T cells from these lymph nodes separated as a non-adherent fraction on a nylon wool column, proliferated to PPD in the presence of autologous antigen presenting cells. Interestingly, addition of as low as 20% nylon wool adherent cells to these, sharply decreased the proliferation by 83%. Looking into what cells in the adherent fraction suppressed the proliferation, it was found that neither the T cell nor the macrophage enriched cell fractions of this population individually showed suppressive effect, indicating that their co-presence was necessary for the suppression. Since BCG induced granulomas resolve much faster than granulomas induced by other mycobacteria such as Mycobacterium leprae the present experimental findings add to the existing evidence that intradermal BCG vaccination influences subsequent immune responses in the host and may further stress upon its beneficial role seen in Covid-19 patients.


Antigens, Bacterial/pharmacology , BCG Vaccine/pharmacology , Granuloma/immunology , Lymph Nodes/immunology , T-Lymphocytes/immunology , Animals , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/microbiology , COVID-19 , Cell Adhesion , Cell Proliferation , Coronavirus Infections/prevention & control , Ear , Female , Granuloma/microbiology , Guinea Pigs , Humans , Injections, Intradermal , Lymph Nodes/microbiology , Macrophages/drug effects , Macrophages/immunology , Macrophages/microbiology , Male , Mycobacterium bovis/immunology , Mycobacterium leprae/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Remission, Spontaneous , T-Lymphocytes/classification , T-Lymphocytes/drug effects , T-Lymphocytes/microbiology
18.
Toxins (Basel) ; 12(10)2020 09 24.
Article En | MEDLINE | ID: mdl-32987941

Canine and human osteosarcomas (OSA) share similarities. Novel therapies are necessary for these tumours. The Bacillus anthracis toxin was reengineered to target and kill cells with high expressions of matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA). Since canine OSA express MMPs and uPA, we assessed whether the reengineered toxin could show efficacy against these tumours. Two OSA cell lines (canine D17 and human MG63) and a non-neoplastic canine osteoblastic cell line (COBS) were used. Cells were treated with different concentrations of the reengineered anthrax toxin and cell viability was quantified using MTT assay. The cell cycle, apoptosis, and necrosis were analysed by flow cytometry. The wound-healing assay was performed to quantify the migration capacity of treated cells. D17 and MG63 cells had significantly decreased viability after 24 h of treatment. Cell cycle analysis revealed that OSA cells underwent apoptosis when treated with the toxin, whereas COBS cells arrested in the G1 phase. The wound-healing assay showed that D17 and MG63 cells had a significantly reduced migration capacity after treatment. These results point for the first time towards the in vitro inhibitory effects of the reengineered anthrax toxin on OSA cells; this reengineered toxin could be further tested as a new therapy for OSA.


Antigens, Bacterial/pharmacology , Antineoplastic Agents/pharmacology , Bacterial Toxins/pharmacology , Bone Neoplasms/drug therapy , Osteosarcoma/drug therapy , Adolescent , Animals , Antigens, Bacterial/genetics , Apoptosis/drug effects , Bacterial Toxins/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Dogs , Dose-Response Relationship, Drug , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Inhibitory Concentration 50 , Male , Matrix Metalloproteinases/metabolism , Membrane Proteins/metabolism , Neoplasm Invasiveness , Osteosarcoma/metabolism , Osteosarcoma/pathology , Protein Engineering
19.
Biochem Biophys Res Commun ; 532(2): 200-204, 2020 11 05.
Article En | MEDLINE | ID: mdl-32859377

S. aureus is associated with atopic dermatitis (AD). Several staphylococcal products including cell wall components, protease, and exotoxins, are thought to be involved in allergic inflammation of AD via activating immune cells such as T cells and mast cells. None of the staphylococcal exotoxins has been reported to activate a primary IL-4 inducer, basophils, that are known to produce large amounts of IL-4 in response to allergens as well as IgE-independent stimuli such as mites and helminth proteases. In this study, we investigated the ability of staphylococcal superantigen-like (SSL) family to activate basophils. SSL12, reported its activity to activate mast cells, induced the production of IL-4 in bone marrow derived basophils. SSL12 also evoked the release of IL-4 in freshly isolated murine basophils in bone marrow cells, as the depletion of basophils by basophils-specific antibodies against high-affinity IgE receptor and CD49b diminished the responsiveness of bone marrow cells for SSL12. These results propose the novel immune regulatory activity of SSL12 by inducing IL-4 in basophils, that contributes to the development of allergic inflammation disorders and the immune evasion of the cocci.


Basophils/metabolism , Interleukin-4/metabolism , Staphylococcus aureus/immunology , Superantigens/pharmacology , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/pharmacology , Basophils/drug effects , Bone Marrow Cells/metabolism , Host-Pathogen Interactions , Mice, Inbred C57BL , Staphylococcus aureus/pathogenicity , Superantigens/genetics , Superantigens/immunology
20.
Proc Natl Acad Sci U S A ; 117(34): 20848-20859, 2020 08 25.
Article En | MEDLINE | ID: mdl-32778586

Tuberculosis (TB) claims 1.5 million lives per year. This situation is largely due to the low efficacy of the only licensed TB vaccine, Bacillus Calmette-Guérin (BCG) against pulmonary TB. The metabolic disease type 2 diabetes (T2D) is a risk factor for TB and the mechanisms underlying increased TB susceptibility in T2D are not well understood. Furthermore, it is unknown if new TB vaccines will provide protection in the context of T2D. Here we used a diet-induced murine model of T2D to investigate the underlying mechanisms of TB/T2D comorbidity and to evaluate the protective capacity of two experimental TB vaccines in comparison to conventional BCG. Our data reveal a distinct immune dysfunction that is associated with diminished recognition of mycobacterial antigens in T2D. More importantly, we provide compelling evidence that mucosal delivery of recombinant BCG strains expressing the Mycobacterium tuberculosis (Mtb) ESX-1 secretion system (BCG::RD1 and BCG::RD1 ESAT-6 ∆92-95) are safe and confer superior immunity against aerosol Mtb infection in the context of T2D. Our findings suggest that the remarkable anti-TB immunity by these recombinant BCG strains is achieved via augmenting the numbers and functional capacity of antigen presenting cells in the lungs of diabetic mice.


Antigens, Bacterial/pharmacology , Bacterial Proteins/pharmacology , Diabetes Mellitus, Type 2/metabolism , Animals , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , BCG Vaccine , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Diabetes Mellitus, Experimental , Disease Models, Animal , Lung/immunology , Male , Mice , Mice, Inbred C57BL , Mucous Membrane/immunology , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Tuberculosis Vaccines/immunology , Vaccination
...