Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48.768
Filter
1.
Oncoimmunology ; 13(1): 2371556, 2024.
Article in English | MEDLINE | ID: mdl-38952674

ABSTRACT

Isolation of tumor-specific T cells and their antigen receptors (TCRs) from malignant pleural effusions (MPE) may facilitate the development of TCR-transduced adoptive cellular immunotherapy products for advanced lung cancer patients. However, the characteristics and markers of tumor-specific T-cells in MPE are largely undefined. To this end, to establish the phenotypes and antigen specificities of CD8+ T cells, we performed single-cell RNA and TCR sequencing of samples from three advanced lung cancer patients. Dimensionality reduction on a total of 4,983 CD8+ T cells revealed 10 clusters including naïve, memory, and exhausted phenotypes. We focused particularly on exhausted T cell clusters and tested their TCR reactivity against neoantigens predicted from autologous cancer cell lines. Four different TCRs specific for the same neoantigen and one orphan TCR specific for the autologous cell line were identified from one of the patients. Differential gene expression analysis in tumor-specific T cells relative to the other T cells identified CXCL13, as a candidate gene expressed by tumor-specific T cells. In addition to expressing CXCL13, tumor-specific T cells were present in a higher proportion of T cells co-expressing PDCD1(PD-1)/TNFRSF9(4-1BB). Furthermore, flow cytometric analyses in advanced lung cancer patients with MPE documented that those with high PD-1/4-1BB expression have a better prognosis in the subset of 57 adenocarcinoma patients (p = .039). These data suggest that PD-1/4-1BB co-expression might identify tumor-specific CD8+ T cells in MPE, which are associated with patients' prognosis. (233 words).


Subject(s)
CD8-Positive T-Lymphocytes , Lung Neoplasms , Pleural Effusion, Malignant , Receptors, Antigen, T-Cell , Single-Cell Analysis , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Pleural Effusion, Malignant/immunology , Pleural Effusion, Malignant/pathology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Male , Female , Middle Aged , Aged , Antigens, Neoplasm/immunology
2.
Proc Natl Acad Sci U S A ; 121(28): e2322203121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968122

ABSTRACT

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)-a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.


Subject(s)
Single-Cell Analysis , Male , Humans , Single-Cell Analysis/methods , Animals , Mice , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Antigens, Surface/metabolism , Antigens, Surface/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/drug therapy , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Neuroendocrine/drug therapy , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy
3.
Cancer Immunol Immunother ; 73(9): 164, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954022

ABSTRACT

T cell receptor-engineered T cells (TCR-Ts) therapy is promising for cancer immunotherapy. Most studies have focused on identifying tumor-specific T cell receptors (TCRs) through predicted tumor neoantigens. However, current algorithms for predicting tumor neoantigens are unreliable and many neoantigens are derived from non-coding regions. Thus, the technological platform for identifying tumor-specific TCRs using natural antigens expressed on tumor cells is urgently needed. In this study, tumor organoids-enriched tumor infiltrating lymphocytes (oeT) were obtained by repeatedly stimulation of autologous patient-derived organoids (PDO) in vitro. The oeT cells specifically responded to autologous tumor PDO by detecting CD137 expression and the secretion of IFN-γ using enzyme-linked immunospot assay. The measurement of oeT cell-mediated killing of three-dimensional organoids was conducted using a caspase3/7 flow cytometry assay kit. Subsequently, tumor-specific T cells were isolated based on CD137 expression and their TCRs were identified through single-cell RT-PCR analysis. The specificity cytotoxicity of TCRs were confirmed by transferring to primary peripheral blood T cells. The co-culture system proved highly effective in generating CD8+ tumor-specific oeT cells. These oeT cells effectively induced IFN-γ secretion and exhibited specificity in killing autologous tumor organoids, while not eliciting a cytotoxic response against normal organoids. The analysis conducted by TCRs revealed a significant expansion of T cells within a specific subset of TCRs. Subsequently, the TCRs were cloned and transferred to peripheral blood T cells generation engineered TCR-Ts, which adequately recognized and killed tumor cell in a patient-specific manner. The co-culture system provided an approach to generate tumor-specific TCRs from tumor-infiltrating lymphocytes of patients with colorectal cancer, and tumor-specific TCRs can potentially be used for personalized TCR-T therapy.


Subject(s)
Coculture Techniques , Lymphocytes, Tumor-Infiltrating , Organoids , Receptors, Antigen, T-Cell , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Organoids/immunology , Antigens, Neoplasm/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology
4.
BMC Cancer ; 24(1): 811, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972967

ABSTRACT

PURPOSE: There is mounting evidence that patients with liver cancer can benefit from Immune checkpoint inhibitors. However, due to the high cost and low efficacy, we aimed to explore new biomarkers for predicting the efficacy of immunotherapy. METHODS: Specimens and medical records of liver cancer patients treated at Drum Tower Hospital of Nanjing University were collected, and the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1) in tissues as well as the corresponding antibodies in serum were examined to find biomarkers related to the prognosis of immunotherapy and to explore its mechanism in the development of liver cancer. RESULTS: KK-LC-1 expression was found to be 34.4% in histopathological specimens from 131 patients and was significantly correlated with Foxp3 expression (P = 0.0356). The expression of Foxp3 in the tissues of 24 patients who received immunotherapy was significantly correlated with overall survival (OS) (P = 0.0247), and there was also a tendency for prolonged OS in patients with high expression of KK-LC-1. In addition, the expression of KK-LC-1 antibody in the serum of patients who received immunotherapy with a first efficacy evaluation of stable disease (SD) was significantly higher than those with partial response (PR) (P = 0.0413). CONCLUSIONS: Expression of KK-LC-1 in both tissues and serum has been shown to correlate with the prognosis of patients treated with immunotherapy, and KK-LC-1 is a potential therapeutic target for oncological immunotherapy.


Subject(s)
Biomarkers, Tumor , Immunotherapy , Liver Neoplasms , Humans , Liver Neoplasms/therapy , Liver Neoplasms/immunology , Male , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood , Female , Prognosis , Middle Aged , Immunotherapy/methods , Aged , Antigens, Neoplasm/immunology , Forkhead Transcription Factors/metabolism , Adult , Immune Checkpoint Inhibitors/therapeutic use
5.
Article in Chinese | MEDLINE | ID: mdl-38973041

ABSTRACT

Objective:To compare the expression levels of SCCAg in inverted papilloma of the nasal sinuses and other sinuses and sinus masses. To investigate the correlation between the expression of SCCAg in sinonasal inverted papilloma and outcome. Methods:Sixty-eight patients with unilateral nasal and sinus masses admitted to the Otorhinolaryngology Center of the Affiliated Hospital of Guangdong Medical University from September 2020 to February 2023 were randomly selected, including 31 patients with inverted papilloma (experimental group) and 37 patients with unilateral nasal and sinus masses excluding inverted papilloma (control group). The application of automatic chemiluminescence immunoassay to test the serum SCCAg of the experimental group before surgery and 1 week after surgery, and the control group to measure the serum SCCAg before surgery. Clinical data were also collected. Results:There was no significant difference between the experimental group and the control group in gender and preoperative peripheral blood inflammatory indicators. However, there was significant difference in age and preoperative serum SCCAg level(P<0.001). The serum SCCAg levels of the experimental group before and 1 week after surgery were significantly different(P<0.001). The positive predictive value, negative predictive value, sensitivity and specificity of serum SCCAg in the diagnosis of varus papilloma were 92.6%, 85.4%, 77.4%, 94.6% and 0.72, respectively. The effect of serum SCCAg in the diagnosis of varus papilloma was analyzed by drawing the subject's working characteristic curve, and the area under the curve was 0.968(P<0.001). When serum SCCAg greater than 2.7 ng/mL, the sensitivity and specificity were 67.7% and 94.6%, respectively. There was statistical significance in serum SCCAg levels between patients with and without recurrence(P<0.05). Conclusion:The level of SCCAg in unilateral nasal and sinuses tumors, excluding squamous cell carcinoma, was significantly increased in inverted papilloma. The detection of serum SCCAg can be used as a simple and cost-effective auxiliary diagnostic tool for patients with nasal inverted papilloma before operation. Significant differences in preoperative and postoperative levels can be used for preliminary evaluation of surgical efficacy. Monitoring the serum SCCAg level in patients with inverted papilloma after surgery can predict recurrence and provide a simple and feasible method for postoperative follow-up.


Subject(s)
Antigens, Neoplasm , Papilloma, Inverted , Serpins , Humans , Papilloma, Inverted/blood , Male , Female , Serpins/blood , Middle Aged , Antigens, Neoplasm/blood , Paranasal Sinus Neoplasms/blood , Adult , Nose Neoplasms/blood , Clinical Relevance
6.
Front Immunol ; 15: 1398002, 2024.
Article in English | MEDLINE | ID: mdl-38947322

ABSTRACT

Background: In the present study we investigated whether peptides derived from the entire SARS-CoV-2 proteome share homology to TAAs (tumor-associated antigens) and cross-reactive CD8+ T cell can be elicited by the BNT162b2 preventive vaccine or the SARS-CoV-2 natural infection. Methods and results: Viral epitopes with high affinity (<100nM) to the HLA-A*02:01 allele were predicted. Shared and variant-specific epitopes were identified. Significant homologies in amino acidic sequence have been found between SARS-CoV-2 peptides and multiple TAAs, mainly associated with breast, liver, melanoma and colon cancers. The molecular mimicry of the viral epitopes and the TAAs was found in all viral proteins, mostly the Orf 1ab and the Spike, which is included in the BNT162b2 vaccine. Predicted structural similarities confirmed the sequence homology and comparable patterns of contact with both HLA and TCR α and ß chains were observed. CD8+ T cell clones cross-reactive with the paired peptides have been found by MHC class l-dextramer staining. Conclusions: Our results show for the first time that several SARS-COV-2 antigens are highly homologous to TAAs and cross-reactive T cells are identified in infected and BNT162b2 preventive vaccinated individuals. The implication would be that the SARS-Cov-2 pandemic could represent a natural preventive immunization for breast, liver, melanoma and colon cancers. In the coming years, real-world evidences will provide the final proof for such immunological experimental evidence. Moreover, such SARS-CoV-2 epitopes can be used to develop "multi-cancer" off-the-shelf preventive/therapeutic vaccine formulations, with higher antigenicity and immunogenicity than over-expressed tumor self-antigens, for the potential valuable benefit of thousands of cancer patients around the World.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Cross Reactions , Epitopes, T-Lymphocyte , Molecular Mimicry , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Molecular Mimicry/immunology , CD8-Positive T-Lymphocytes/immunology , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , BNT162 Vaccine/immunology , Antigens, Viral/immunology , HLA-A2 Antigen/immunology , Neoplasms/immunology , Neoplasms/prevention & control , Antigens, Neoplasm/immunology , COVID-19 Vaccines/immunology
7.
Theranostics ; 14(9): 3674-3692, 2024.
Article in English | MEDLINE | ID: mdl-38948057

ABSTRACT

Trophoblast cell surface antigen 2 (Trop2) is overexpressed in a range of solid tumors and participants in multiple oncogenic signaling pathways, making it an attractive therapeutic target. In the past decade, the rapid development of various Trop2-targeted therapies, notably marked by the advent of the antibody-drug conjugate (ADC), revolutionized the outcome for patients facing Trop2-positive tumors with limited treatment opinions, such as triple-negative breast cancer (TNBC). This review provides a comprehensive summary of advances in Trop2-targeted therapies, including ADCs, antibodies, multispecific agents, immunotherapy, cancer vaccines, and small molecular inhibitors, along with in-depth discussions on their designs, mechanisms of action (MOAs), and limitations. Additionally, we emphasize the clinical research progress of these emerging Trop2-targeted agents, focusing on their clinical application and therapeutic efficacy against tumors. Furthermore, we propose directions for future research, such as enhancing our understanding of Trop2's structure and biology, exploring the best combination strategies, and tailoring precision treatment based on Trop2 testing methodologies.


Subject(s)
Antigens, Neoplasm , Cell Adhesion Molecules , Immunoconjugates , Molecular Targeted Therapy , Neoplasms , Humans , Antigens, Neoplasm/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/metabolism , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/therapy , Immunotherapy/methods , Animals , Cancer Vaccines/therapeutic use
8.
Theranostics ; 14(9): 3693-3707, 2024.
Article in English | MEDLINE | ID: mdl-38948062

ABSTRACT

Background: Immune checkpoint inhibitors (ICI) are routinely used in advanced clear cell renal cell carcinoma (ccRCC). However, a substantial group of patients does not respond to ICI therapy. Radiation is a promising approach to increase ICI response rates since it can generate anti-tumor immunity. Targeted radionuclide therapy (TRT) is a systemic radiation treatment, ideally suited for precision irradiation of metastasized cancer. Therefore, the aim of this study is to explore the potential of combined TRT, targeting carbonic anhydrase IX (CAIX) which is overexpressed in ccRCC, using [177Lu]Lu-DOTA-hG250, and ICI for the treatment of ccRCC. Methods: In this study, we evaluated the therapeutic and immunological action of [177Lu]Lu-DOTA-hG250 combined with aPD-1/a-CTLA-4 ICI. First, the biodistribution of [177Lu]Lu-DOTA-hG250 was investigated in BALB/cAnNRj mice bearing Renca-CAIX or CT26-CAIX tumors. Renca-CAIX and CT26-CAIX tumors are characterized by poor versus extensive T-cell infiltration and homogeneous versus heterogeneous PD-L1 expression, respectively. Tumor-absorbed radiation doses were estimated through dosimetry. Subsequently, [177Lu]Lu-DOTA-hG250 TRT efficacy with and without ICI was evaluated by monitoring tumor growth and survival. Therapy-induced changes in the tumor microenvironment were studied by collection of tumor tissue before and 5 or 8 days after treatment and analyzed by immunohistochemistry, flow cytometry, and RNA profiling. Results: Biodistribution studies showed high tumor uptake of [177Lu]Lu-DOTA-hG250 in both tumor models. Dose escalation therapy studies in Renca-CAIX tumor-bearing mice demonstrated dose-dependent anti-tumor efficacy of [177Lu]Lu-DOTA-hG250 and remarkable therapeutic synergy including complete remissions when a presumed subtherapeutic TRT dose (4 MBq, which had no significant efficacy as monotherapy) was combined with aPD-1+aCTLA-4. Similar results were obtained in the CT26-CAIX model for 4 MBq [177Lu]Lu-DOTA-hG250 + a-PD1. Ex vivo analyses of treated tumors revealed DNA damage, T-cell infiltration, and modulated immune signaling pathways in the TME after combination treatment. Conclusions: Subtherapeutic [177Lu]Lu-DOTA-hG250 combined with ICI showed superior therapeutic outcome and significantly altered the TME. Our results underline the importance of investigating this combination treatment for patients with advanced ccRCC in a clinical setting. Further investigations should focus on how the combination therapy should be optimally applied in the future.


Subject(s)
Carbonic Anhydrase IX , Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Animals , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/therapy , Carcinoma, Renal Cell/pathology , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Kidney Neoplasms/radiotherapy , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Humans , Cell Line, Tumor , Radioisotopes/therapeutic use , Radioisotopes/pharmacology , Radioisotopes/administration & dosage , Lutetium/therapeutic use , Female , Antigens, Neoplasm/metabolism , Tissue Distribution , Tumor Microenvironment/drug effects , Tumor Protein, Translationally-Controlled 1 , Xenograft Model Antitumor Assays , Combined Modality Therapy/methods , Mice, Inbred BALB C , Antibodies, Monoclonal
9.
PeerJ ; 12: e17611, 2024.
Article in English | MEDLINE | ID: mdl-38948207

ABSTRACT

Objective: This study aimed to assess the accuracy of Mac-2 binding protein glycosylation isomer (M2BPGi) in predicting the stage of liver fibrosis. Methods: Articles published until October 10, 2023, were searched in the PubMed, Embase, Web of Science, and Cochrane Library databases. Pooled sensitivity, specificity, diagnostic odds ratio (DOR), summary receiver-operator curves (SROC), and Spearman's rank correlation coefficient were used to examine the accuracy of M2BPGi in predicting the stage of liver fibrosis. A 95% confidence interval (CI) was provided for each estimate. Results: Twenty-four studies were included in this meta-analysis, including 3,839 patients with liver fibrosis, 409 of whom progressed to stage 4 or above. The pooled sensitivity, specificity, and area under the ROC (AUC) for M2BPGi predicting liver fibrosis ≥F3 were 0.74 (95% CI [0.65-0.82]), 0.84 (95% CI [0.76-0.89]), and 14.99 (95% CI [9.28-24.21]), respectively. The pooled sensitivity, specificity, and AUC for ≥F4 were 0.80 (95% CI [0.70-0.88]), 0.80 (95% CI [0.73-0.86]), and 16.43 (95% CI [0.84-0.90]), respectively. Conclusion: Among different sample partitions, M2BPGi has the best diagnostic performance for liver fibrosis stage ≥4. Furthermore, the cutoff of 1-2 is more accurate than that of 0-1 or 2-3 for fibrosis ≥ F3 and ≥ F4. Registration: CRD42023483260.


Subject(s)
Biomarkers , Liver Cirrhosis , Humans , Liver Cirrhosis/diagnosis , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Biomarkers/metabolism , Glycosylation , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/analysis , ROC Curve , Sensitivity and Specificity , Membrane Glycoproteins
10.
Oncoimmunology ; 13(1): 2373526, 2024.
Article in English | MEDLINE | ID: mdl-38948931

ABSTRACT

Prostate cancer (PCa) is characterized as a "cold tumor" with limited immune responses, rendering the tumor resistant to immune checkpoint inhibitors (ICI). Therapeutic messenger RNA (mRNA) vaccines have emerged as a promising strategy to overcome this challenge by enhancing immune reactivity and significantly boosting anti-tumor efficacy. In our study, we synthesized Tetra, an mRNA vaccine mixed with multiple tumor-associated antigens, and ImmunER, an immune-enhancing adjuvant, aiming to induce potent anti-tumor immunity. ImmunER exhibited the capacity to promote dendritic cells (DCs) maturation, enhance DCs migration, and improve antigen presentation at both cellular and animal levels. Moreover, Tetra, in combination with ImmunER, induced a transformation of bone marrow-derived dendritic cells (BMDCs) to cDC1-CCL22 and up-regulated the JAK-STAT1 pathway, promoting the release of IL-12, TNF-α, and other cytokines. This cascade led to enhanced proliferation and activation of T cells, resulting in effective killing of tumor cells. In vivo experiments further revealed that Tetra + ImmunER increased CD8+T cell infiltration and activation in RM-1-PSMA tumor tissues. In summary, our findings underscore the promising potential of the integrated Tetra and ImmunER mRNA-LNP therapy for robust anti-tumor immunity in PCa.


Subject(s)
Adjuvants, Immunologic , Antigens, Neoplasm , Cancer Vaccines , Dendritic Cells , Prostatic Neoplasms , RNA, Messenger , Animals , Male , Prostatic Neoplasms/immunology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Antigens, Neoplasm/immunology , Mice , Dendritic Cells/immunology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Messenger/administration & dosage , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Humans , Mice, Inbred C57BL , Cell Line, Tumor , mRNA Vaccines , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Immunotherapy/methods , Lymphocyte Activation/drug effects
11.
J Enzyme Inhib Med Chem ; 39(1): 2366236, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38905127

ABSTRACT

A novel class of compounds designed to hit two anti-tumour targets, G-quadruplex structures and human carbonic anhydrases (hCAs) IX and XII is proposed. The induction/stabilisation of G-quadruplex structures by small molecules has emerged as an anticancer strategy, disrupting telomere maintenance and reducing oncogene expression. hCAs IX and XII are well-established anti-tumour targets, upregulated in many hypoxic tumours and contributing to metastasis. The ligands reported feature a berberine G-quadruplex stabiliser scaffold connected to a moiety inhibiting hCAs IX and XII. In vitro experiments showed that our compounds selectively stabilise G-quadruplex structures and inhibit hCAs IX and XII. The crystal structure of a telomeric G-quadruplex in complex with one of these ligands was obtained, shedding light on the ligand/target interaction mode. The most promising ligands showed significant cytotoxicity against CA IX-positive HeLa cancer cells in hypoxia, and the ability to stabilise G-quadruplexes within tumour cells.


Subject(s)
Antineoplastic Agents , Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , G-Quadruplexes , Humans , G-Quadruplexes/drug effects , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrases/metabolism , Cell Proliferation/drug effects , Ligands , HeLa Cells , Antigens, Neoplasm/metabolism , Models, Molecular
12.
Mol Pharm ; 21(7): 3383-3394, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38831541

ABSTRACT

Carbonic anhydrase IX (CAIX), a zinc metal transmembrane protein, is highly expressed in 95% of clear cell renal cell carcinomas (ccRCCs). A positron emission tomography (PET) probe designed to target CAIX in nuclear medicine imaging technology can achieve precise positioning, is noninvasive, and can be used to monitor CAIX expression in lesions in real time. In this study, we constructed a novel acetazolamide dual-targeted small-molecule probe [68Ga]Ga-LF-4, which targets CAIX by binding to a specific amino acid sequence. After attenuation correction, the radiolabeling yield reached 66.95 ± 0.57% (n = 5) after 15 min of reaction and the radiochemical purity reached 99% (n = 5). [68Ga]Ga-LF-4 has good in vitro and in vivo stability, and in vivo safety and high affinity for CAIX, with a Kd value of 6.62 nM. Moreover, [68Ga]Ga-LF-4 could be quickly cleared from the blood in vivo. The biodistribution study revealed that the [68Ga]Ga-LF-4 signal was concentrated in the heart, lung, and kidney after administration, which was the same as that observed in the micro-PET/CT study. In a ccRCC patient-derived xenograft (PDX) model, the signal significantly accumulated in the tumor after administration, where it was retained for up to 4 h. After competitive blockade with LF-4, uptake at the tumor site was significantly reduced. The SUVmax of the probe [68Ga]Ga-LF-4 at the ccRCC tumor site was three times greater than that in the PC3 group with low CAIX expression at 30 min (ccRCC vs PC3:1.86 ± 0.03 vs 0.62 ± 0.01, t = 48.2, P < 0.0001). These results indicate that [68Ga]Ga-LF-4 is a novel small-molecule probe that targets CAIX and can be used to image localized and metastatic ccRCC lesions.


Subject(s)
Carbonic Anhydrase IX , Carcinoma, Renal Cell , Gallium Radioisotopes , Kidney Neoplasms , Animals , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Humans , Mice , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/metabolism , Tissue Distribution , Cell Line, Tumor , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Mice, Nude , Antigens, Neoplasm/metabolism , Molecular Probes/pharmacokinetics , Molecular Probes/chemistry , Positron Emission Tomography Computed Tomography/methods , Acetazolamide/pharmacokinetics , Female , Mice, Inbred BALB C , Positron-Emission Tomography/methods , Male , Xenograft Model Antitumor Assays
13.
Commun Biol ; 7(1): 770, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918569

ABSTRACT

Cancer is an evolutionary process shaped by selective pressure from the microenvironments. However, recent studies reveal that certain tumors undergo neutral evolution where there is no detectable fitness difference amongst the cells following malignant transformation. Here, through computational modeling, we demonstrate that negative frequency-dependent selection (or NFDS), where the immune response against cancer cells depends on the clonality of neoantigens, can lead to an immunogenic landscape that is highly similar to neutral evolution. Crucially, NFDS promotes high antigenic heterogeneity and early immune evasion in hypermutable tumors, leading to poor responses to immune checkpoint blockade (ICB) therapy. Our model also reveals that NFDS is characterized by a negative association between average clonality and total burden of neoantigens. Indeed, this unique feature of NFDS is common in the whole-exome sequencing (WES) datasets (357 tumor samples from 275 patients) from four melanoma cohorts with ICB therapy and a non-small cell lung cancer (NSCLC) WES dataset (327 tumor samples from 100 patients). Altogether, our study provides quantitative evidence supporting the theory of NFDS in cancer, explaining the high prevalence of neutral-looking tumors. These findings also highlight the critical role of frequency-dependent selection in devising more efficient and predictive immunotherapies.


Subject(s)
Antigens, Neoplasm , Immunotherapy , Tumor Escape , Humans , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , Melanoma/immunology , Melanoma/therapy , Melanoma/genetics , Melanoma/drug therapy , Tumor Microenvironment/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/therapy
14.
Curr Oncol ; 31(6): 3099-3121, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38920720

ABSTRACT

Epithelial ovarian cancer (EOC) has not significantly benefited from advances in immunotherapy, mainly because of the lack of well-defined actionable antigen targets. Using proteogenomic analyses of primary EOC tumors, we previously identified 91 aberrantly expressed tumor-specific antigens (TSAs) originating from unmutated genomic sequences. Most of these TSAs derive from non-exonic regions, and their expression results from cancer-specific epigenetic changes. The present study aimed to evaluate the immunogenicity of 48 TSAs selected according to two criteria: presentation by highly prevalent HLA allotypes and expression in a significant fraction of EOC tumors. Using targeted mass spectrometry analyses, we found that pulsing with synthetic TSA peptides leads to a high-level presentation on dendritic cells. TSA abundance correlated with the predicted binding affinity to the HLA allotype. We stimulated naïve CD8 T cells from healthy blood donors with TSA-pulsed dendritic cells and assessed their expansion with two assays: MHC-peptide tetramer staining and TCR Vß CDR3 sequencing. We report that these TSAs can expand sizeable populations of CD8 T cells and, therefore, represent attractive targets for EOC immunotherapy.


Subject(s)
Antigens, Neoplasm , Ovarian Neoplasms , Humans , Female , Antigens, Neoplasm/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/genetics , Dendritic Cells/immunology , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/genetics , CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods
15.
Int J Mol Med ; 54(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38904202

ABSTRACT

Among women globally, breast cancer is the most prevalent cancer and the leading cause of cancer­related death. Interestingly, though genetic mutations contribute to the disease, <15% of women diagnosed with breast cancer have a family history of the disease, suggesting a prevalence of sporadic genetic mutations in breast cancer development. In the rapidly rising field of cancer genomics, neoantigen­based immunotherapy has come to the fore. The investigation of novel proteins arising from unique somatic mutations or neoantigens have opened a new pathway for both individualized and public cancer treatments. Because they are shared among individuals with similar genetic changes, public neoantigens provide an opportunity for 'off­the­shelf' anticancer therapies, potentially extending the benefits to a wider patient group. The present review aimed to highlight the role of shared or public neoantigens as therapeutic targets for patients with breast cancer, emphasizing common hotspot mutations of certain genes identified in breast cancer. The clinical utilization of public neoantigen­based therapies for breast cancer treatment were also discussed.


Subject(s)
Antigens, Neoplasm , Breast Neoplasms , Immunotherapy , Humans , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Female , Immunotherapy/methods , Mutation
16.
PLoS One ; 19(6): e0298469, 2024.
Article in English | MEDLINE | ID: mdl-38917176

ABSTRACT

Prostate stem cell antigen (PSCA) is associated with disease progression, promotion of angiogenesis, invasion, metastasis and immune evasion in cancer. However, its expression pattern and diagnostic and prognostic potential have not been thoroughly analysed from a pan-cancer perspective. This study aimed to examine the effects of PSCA on the prognosis and inflammatory cell infiltration patterns of various cancer types. We analysed the relationship between PSCA expression and immunological subtypes in tumor microenvironment (TME) and the role of molecular subtypes, potentially promising immune biomarkers and tumour-infiltrating lymphocytes (TILs) in various cancer types, especially lung adenocarcinoma (LUAD). In addition, we investigated the prognostic significance of PSCA expression in LUAD. The co-expression network of PSCA was found to be mainly involved in the regulation of immune responses and antigen processing and expression and was significantly enriched in pathological and substance metabolism-related pathways in cancer. Altogether, this study reveals that PSCA is a promising target for immunotherapy in patients with cancer.


Subject(s)
Antigens, Neoplasm , GPI-Linked Proteins , Lymphocytes, Tumor-Infiltrating , Neoplasm Proteins , Tumor Microenvironment , Humans , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Prognosis , Tumor Microenvironment/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , GPI-Linked Proteins/metabolism , Biomarkers, Tumor/metabolism , Neoplasms/immunology , Neoplasms/pathology , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Male
17.
Mol Med ; 30(1): 85, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867190

ABSTRACT

BACKGROUND: Immunotherapies effectively treat human malignancies, but the low response and resistance are major obstacles. Neoantigen is an emerging target for tumor immunotherapy that can enhance anti-tumor immunity and improve immunotherapy. Aberrant alternative splicing is an important source of neoantigens. HNRNPA1, an RNA splicing factor, was found to be upregulated in the majority of tumors and play an important role in the tumor immunosuppressive microenvironment. METHODS: Whole transcriptome sequencing was performed on shHNRNPA1 SKOV3 cells and transcriptomic data of shHNRNPA1 HepG2, MCF-7M, K562, and B-LL cells were downloaded from the GEO database. Enrichment analysis was performed to elucidate the mechanisms underlying the activation of anti-tumor immunity induced by HNRNPA1 knockdown. mRNA alternative splicing was analyzed and neoantigens were predicted by JCAST v.0.3.5 and Immune epitope database. The immunogenicity of candidate neoantigens was calculated by Class I pMHC Immunogenicity and validated by the IFN-γ ELISpot assay. The effect of shHNRNPA1 on tumor growth and immune cells in vivo was evaluated by xenograft model combined with immunohistochemistry. RESULTS: HNRNPA1 was upregulated in a majority of malignancies and correlated with immunosuppressive status of the tumor immune microenvironment. Downregulation of HNRNPA1 could induce the activation of immune-related pathways and biological processes. Disruption of HNRNPA1 resulted in aberrant alternative splicing events and generation of immunogenic neoantigens. Downregulation of HNRNPA1 inhibited tumor growth and increased CD8+ T cell infiltration in vivo. CONCLUSION: Our study demonstrated that targeting HNRNPA1 could produce immunogenic neoantigens that elicit anti-tumor immunity by inducing abnormal mRNA splicing. It suggests that HNRNPA1 may be a potential target for immunotherapy.


Subject(s)
Alternative Splicing , Antigens, Neoplasm , Heterogeneous Nuclear Ribonucleoprotein A1 , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/immunology , Humans , Animals , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Female , Xenograft Model Antitumor Assays , Down-Regulation , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism
18.
BMB Rep ; 57(6): 299-304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835116

ABSTRACT

Upregulation of PRAME (preferentially expressed antigen of melanoma) has been implicated in the progression of a variety of cancers, including melanoma. The tumor suppressor p53 is a transcriptional regulator that mediates cell cycle arrest and apoptosis in response to stress signals. Here, we report that PRAME is a novel repressive target of p53. This was supported by analysis of melanoma cell lines carrying wild-type p53 and human melanoma databases. mRNA expression of PRAME was downregulated by p53 overexpression and activation using DNA-damaging agents, but upregulated by p53 depletion. We identified a p53-responsive element (p53RE) in the promoter region of PRAME. Luciferase and ChIP assays showed that p53 represses the transcriptional activity of the PRAME promoter and is recruited to the p53RE together with HDAC1 upon etoposide treatment. The functional significance of p53 activationmediated PRAME downregulation was demonstrated by measuring colony formation and p27 expression in melanoma cells. These data suggest that p53 activation, which leads to PRAME downregulation, could be a therapeutic strategy in melanoma cells. [BMB Reports 2024; 57(6): 299-304].


Subject(s)
Antigens, Neoplasm , Melanoma , Promoter Regions, Genetic , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Melanoma/metabolism , Melanoma/genetics , Melanoma/pathology , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Cell Line, Tumor , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Neoplastic , Etoposide/pharmacology , Histone Deacetylase 1/metabolism , Down-Regulation/drug effects
19.
Cancer Genomics Proteomics ; 21(4): 414-420, 2024.
Article in English | MEDLINE | ID: mdl-38944423

ABSTRACT

BACKGROUND/AIM: Clear cell carcinoma is a prevalent histological type of ovarian cancer in East Asia, particularly in Japan, known for its resistance to chemotherapeutic agents and poor prognosis. ARID1A gene mutations, commonly found in ovarian clear cell carcinoma (OCCC), contribute to its pathogenesis. Recent data revealed that the ARID1A mutation is related to better outcomes of cancer immunotherapy. Thus, this study aimed to investigate the immunotherapy treatment susceptibility of OCCC bearing ARID1A mutations. MATERIALS AND METHODS: Expression of ARID1A was analyzed using western blotting in ovarian cancer cell lines. OCCC cell lines JHOC-9 and RMG-V were engineered to overexpress NY-ESO-1, HLA-A*02:01, and ARID1A. Sensitivity to chemotherapy and T cell receptor-transduced T (TCR-T) cells specific for NY-ESO-1 was assessed in ARID1A-restored cells compared to ARID1A-deficient wild-type cells. RESULTS: JHOC-9 cells and RMG-V cells showed no expression of ARID1A protein. Overexpression of ARID1A in JHOC-9 and RMG-V cells did not impact sensitivity to gemcitabine. While ARID1A overexpression decreased sensitivity to cisplatin in RMG-V cells, it had no such effect in JHOC-9 cells. ARID1A overexpression reduced the reactivity of NY-ESO-1-specific TCR-T cells, as observed by the IFNγ ESLIPOT assay. CONCLUSION: Cancer immunotherapy is an effective approach to target ARID1A-deficient clear cell carcinoma of the ovary.


Subject(s)
Adenocarcinoma, Clear Cell , DNA-Binding Proteins , Ovarian Neoplasms , T-Lymphocytes, Cytotoxic , Transcription Factors , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Adenocarcinoma, Clear Cell/pathology , Adenocarcinoma, Clear Cell/genetics , Adenocarcinoma, Clear Cell/immunology , Adenocarcinoma, Clear Cell/metabolism , T-Lymphocytes, Cytotoxic/immunology , Cell Line, Tumor , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/immunology , HLA-A2 Antigen/genetics , HLA-A2 Antigen/immunology , HLA-A2 Antigen/metabolism , Membrane Proteins
20.
Nat Commun ; 15(1): 5442, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937436

ABSTRACT

Although patients benefit from immune checkpoint inhibition (ICI) therapy in a broad variety of tumors, resistance may arise from immune suppressive tumor microenvironments (TME), which is particularly true of hepatocellular carcinoma (HCC). Since oncolytic viruses (OV) can generate a highly immune-infiltrated, inflammatory TME, OVs could potentially restore ICI responsiveness via recruitment, priming, and activation of anti-tumor T cells. Here we find that on the contrary, an oncolytic vesicular stomatitis virus, expressing interferon-ß (VSV-IFNß), antagonizes the effect of anti-PD-L1 therapy in a partially anti-PD-L1-responsive model of HCC. Cytometry by Time of Flight shows that VSV-IFNß expands dominant anti-viral effector CD8 T cells with concomitant relative disappearance of anti-tumor T cell populations, which are the target of anti-PD-L1. However, by expressing a range of HCC tumor antigens within VSV, combination OV and anti-PD-L1 therapeutic benefit could be restored. Our data provide a cautionary message for the use of highly immunogenic viruses as tumor-specific immune-therapeutics by showing that dominant anti-viral T cell responses can inhibit sub-dominant anti-tumor T cell responses. However, through encoding tumor antigens within the virus, oncolytic virotherapy can generate anti-tumor T cell populations upon which immune checkpoint blockade can effectively work.


Subject(s)
Antigens, Neoplasm , B7-H1 Antigen , CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Tumor Microenvironment , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Animals , Oncolytic Virotherapy/methods , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/immunology , Tumor Microenvironment/immunology , Mice , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Humans , Liver Neoplasms/therapy , Liver Neoplasms/immunology , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Interferon-beta/metabolism , Interferon-beta/immunology , Mice, Inbred C57BL , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , T-Lymphocytes/immunology , Female , Vesiculovirus/immunology , Vesiculovirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...