Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.279
Filter
1.
Oncoimmunology ; 13(1): 2371556, 2024.
Article in English | MEDLINE | ID: mdl-38952674

ABSTRACT

Isolation of tumor-specific T cells and their antigen receptors (TCRs) from malignant pleural effusions (MPE) may facilitate the development of TCR-transduced adoptive cellular immunotherapy products for advanced lung cancer patients. However, the characteristics and markers of tumor-specific T-cells in MPE are largely undefined. To this end, to establish the phenotypes and antigen specificities of CD8+ T cells, we performed single-cell RNA and TCR sequencing of samples from three advanced lung cancer patients. Dimensionality reduction on a total of 4,983 CD8+ T cells revealed 10 clusters including naïve, memory, and exhausted phenotypes. We focused particularly on exhausted T cell clusters and tested their TCR reactivity against neoantigens predicted from autologous cancer cell lines. Four different TCRs specific for the same neoantigen and one orphan TCR specific for the autologous cell line were identified from one of the patients. Differential gene expression analysis in tumor-specific T cells relative to the other T cells identified CXCL13, as a candidate gene expressed by tumor-specific T cells. In addition to expressing CXCL13, tumor-specific T cells were present in a higher proportion of T cells co-expressing PDCD1(PD-1)/TNFRSF9(4-1BB). Furthermore, flow cytometric analyses in advanced lung cancer patients with MPE documented that those with high PD-1/4-1BB expression have a better prognosis in the subset of 57 adenocarcinoma patients (p = .039). These data suggest that PD-1/4-1BB co-expression might identify tumor-specific CD8+ T cells in MPE, which are associated with patients' prognosis. (233 words).


Subject(s)
CD8-Positive T-Lymphocytes , Lung Neoplasms , Pleural Effusion, Malignant , Receptors, Antigen, T-Cell , Single-Cell Analysis , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Pleural Effusion, Malignant/immunology , Pleural Effusion, Malignant/pathology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Male , Female , Middle Aged , Aged , Antigens, Neoplasm/immunology
2.
Proc Natl Acad Sci U S A ; 121(28): e2322203121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968122

ABSTRACT

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)-a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.


Subject(s)
Single-Cell Analysis , Male , Humans , Single-Cell Analysis/methods , Animals , Mice , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Antigens, Surface/metabolism , Antigens, Surface/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/drug therapy , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Neuroendocrine/drug therapy , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy
3.
Cancer Immunol Immunother ; 73(9): 164, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954022

ABSTRACT

T cell receptor-engineered T cells (TCR-Ts) therapy is promising for cancer immunotherapy. Most studies have focused on identifying tumor-specific T cell receptors (TCRs) through predicted tumor neoantigens. However, current algorithms for predicting tumor neoantigens are unreliable and many neoantigens are derived from non-coding regions. Thus, the technological platform for identifying tumor-specific TCRs using natural antigens expressed on tumor cells is urgently needed. In this study, tumor organoids-enriched tumor infiltrating lymphocytes (oeT) were obtained by repeatedly stimulation of autologous patient-derived organoids (PDO) in vitro. The oeT cells specifically responded to autologous tumor PDO by detecting CD137 expression and the secretion of IFN-γ using enzyme-linked immunospot assay. The measurement of oeT cell-mediated killing of three-dimensional organoids was conducted using a caspase3/7 flow cytometry assay kit. Subsequently, tumor-specific T cells were isolated based on CD137 expression and their TCRs were identified through single-cell RT-PCR analysis. The specificity cytotoxicity of TCRs were confirmed by transferring to primary peripheral blood T cells. The co-culture system proved highly effective in generating CD8+ tumor-specific oeT cells. These oeT cells effectively induced IFN-γ secretion and exhibited specificity in killing autologous tumor organoids, while not eliciting a cytotoxic response against normal organoids. The analysis conducted by TCRs revealed a significant expansion of T cells within a specific subset of TCRs. Subsequently, the TCRs were cloned and transferred to peripheral blood T cells generation engineered TCR-Ts, which adequately recognized and killed tumor cell in a patient-specific manner. The co-culture system provided an approach to generate tumor-specific TCRs from tumor-infiltrating lymphocytes of patients with colorectal cancer, and tumor-specific TCRs can potentially be used for personalized TCR-T therapy.


Subject(s)
Coculture Techniques , Lymphocytes, Tumor-Infiltrating , Organoids , Receptors, Antigen, T-Cell , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Organoids/immunology , Antigens, Neoplasm/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology
4.
BMC Cancer ; 24(1): 811, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972967

ABSTRACT

PURPOSE: There is mounting evidence that patients with liver cancer can benefit from Immune checkpoint inhibitors. However, due to the high cost and low efficacy, we aimed to explore new biomarkers for predicting the efficacy of immunotherapy. METHODS: Specimens and medical records of liver cancer patients treated at Drum Tower Hospital of Nanjing University were collected, and the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1) in tissues as well as the corresponding antibodies in serum were examined to find biomarkers related to the prognosis of immunotherapy and to explore its mechanism in the development of liver cancer. RESULTS: KK-LC-1 expression was found to be 34.4% in histopathological specimens from 131 patients and was significantly correlated with Foxp3 expression (P = 0.0356). The expression of Foxp3 in the tissues of 24 patients who received immunotherapy was significantly correlated with overall survival (OS) (P = 0.0247), and there was also a tendency for prolonged OS in patients with high expression of KK-LC-1. In addition, the expression of KK-LC-1 antibody in the serum of patients who received immunotherapy with a first efficacy evaluation of stable disease (SD) was significantly higher than those with partial response (PR) (P = 0.0413). CONCLUSIONS: Expression of KK-LC-1 in both tissues and serum has been shown to correlate with the prognosis of patients treated with immunotherapy, and KK-LC-1 is a potential therapeutic target for oncological immunotherapy.


Subject(s)
Biomarkers, Tumor , Immunotherapy , Liver Neoplasms , Humans , Liver Neoplasms/therapy , Liver Neoplasms/immunology , Male , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood , Female , Prognosis , Middle Aged , Immunotherapy/methods , Aged , Antigens, Neoplasm/immunology , Forkhead Transcription Factors/metabolism , Adult , Immune Checkpoint Inhibitors/therapeutic use
5.
Front Immunol ; 15: 1398002, 2024.
Article in English | MEDLINE | ID: mdl-38947322

ABSTRACT

Background: In the present study we investigated whether peptides derived from the entire SARS-CoV-2 proteome share homology to TAAs (tumor-associated antigens) and cross-reactive CD8+ T cell can be elicited by the BNT162b2 preventive vaccine or the SARS-CoV-2 natural infection. Methods and results: Viral epitopes with high affinity (<100nM) to the HLA-A*02:01 allele were predicted. Shared and variant-specific epitopes were identified. Significant homologies in amino acidic sequence have been found between SARS-CoV-2 peptides and multiple TAAs, mainly associated with breast, liver, melanoma and colon cancers. The molecular mimicry of the viral epitopes and the TAAs was found in all viral proteins, mostly the Orf 1ab and the Spike, which is included in the BNT162b2 vaccine. Predicted structural similarities confirmed the sequence homology and comparable patterns of contact with both HLA and TCR α and ß chains were observed. CD8+ T cell clones cross-reactive with the paired peptides have been found by MHC class l-dextramer staining. Conclusions: Our results show for the first time that several SARS-COV-2 antigens are highly homologous to TAAs and cross-reactive T cells are identified in infected and BNT162b2 preventive vaccinated individuals. The implication would be that the SARS-Cov-2 pandemic could represent a natural preventive immunization for breast, liver, melanoma and colon cancers. In the coming years, real-world evidences will provide the final proof for such immunological experimental evidence. Moreover, such SARS-CoV-2 epitopes can be used to develop "multi-cancer" off-the-shelf preventive/therapeutic vaccine formulations, with higher antigenicity and immunogenicity than over-expressed tumor self-antigens, for the potential valuable benefit of thousands of cancer patients around the World.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Cross Reactions , Epitopes, T-Lymphocyte , Molecular Mimicry , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Molecular Mimicry/immunology , CD8-Positive T-Lymphocytes/immunology , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , BNT162 Vaccine/immunology , Antigens, Viral/immunology , HLA-A2 Antigen/immunology , Neoplasms/immunology , Neoplasms/prevention & control , Antigens, Neoplasm/immunology , COVID-19 Vaccines/immunology
6.
Theranostics ; 14(9): 3674-3692, 2024.
Article in English | MEDLINE | ID: mdl-38948057

ABSTRACT

Trophoblast cell surface antigen 2 (Trop2) is overexpressed in a range of solid tumors and participants in multiple oncogenic signaling pathways, making it an attractive therapeutic target. In the past decade, the rapid development of various Trop2-targeted therapies, notably marked by the advent of the antibody-drug conjugate (ADC), revolutionized the outcome for patients facing Trop2-positive tumors with limited treatment opinions, such as triple-negative breast cancer (TNBC). This review provides a comprehensive summary of advances in Trop2-targeted therapies, including ADCs, antibodies, multispecific agents, immunotherapy, cancer vaccines, and small molecular inhibitors, along with in-depth discussions on their designs, mechanisms of action (MOAs), and limitations. Additionally, we emphasize the clinical research progress of these emerging Trop2-targeted agents, focusing on their clinical application and therapeutic efficacy against tumors. Furthermore, we propose directions for future research, such as enhancing our understanding of Trop2's structure and biology, exploring the best combination strategies, and tailoring precision treatment based on Trop2 testing methodologies.


Subject(s)
Antigens, Neoplasm , Cell Adhesion Molecules , Immunoconjugates , Molecular Targeted Therapy , Neoplasms , Humans , Antigens, Neoplasm/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/metabolism , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/therapy , Immunotherapy/methods , Animals , Cancer Vaccines/therapeutic use
7.
Oncoimmunology ; 13(1): 2373526, 2024.
Article in English | MEDLINE | ID: mdl-38948931

ABSTRACT

Prostate cancer (PCa) is characterized as a "cold tumor" with limited immune responses, rendering the tumor resistant to immune checkpoint inhibitors (ICI). Therapeutic messenger RNA (mRNA) vaccines have emerged as a promising strategy to overcome this challenge by enhancing immune reactivity and significantly boosting anti-tumor efficacy. In our study, we synthesized Tetra, an mRNA vaccine mixed with multiple tumor-associated antigens, and ImmunER, an immune-enhancing adjuvant, aiming to induce potent anti-tumor immunity. ImmunER exhibited the capacity to promote dendritic cells (DCs) maturation, enhance DCs migration, and improve antigen presentation at both cellular and animal levels. Moreover, Tetra, in combination with ImmunER, induced a transformation of bone marrow-derived dendritic cells (BMDCs) to cDC1-CCL22 and up-regulated the JAK-STAT1 pathway, promoting the release of IL-12, TNF-α, and other cytokines. This cascade led to enhanced proliferation and activation of T cells, resulting in effective killing of tumor cells. In vivo experiments further revealed that Tetra + ImmunER increased CD8+T cell infiltration and activation in RM-1-PSMA tumor tissues. In summary, our findings underscore the promising potential of the integrated Tetra and ImmunER mRNA-LNP therapy for robust anti-tumor immunity in PCa.


Subject(s)
Adjuvants, Immunologic , Antigens, Neoplasm , Cancer Vaccines , Dendritic Cells , Prostatic Neoplasms , RNA, Messenger , Animals , Male , Prostatic Neoplasms/immunology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Antigens, Neoplasm/immunology , Mice , Dendritic Cells/immunology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Messenger/administration & dosage , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Humans , Mice, Inbred C57BL , Cell Line, Tumor , mRNA Vaccines , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Immunotherapy/methods , Lymphocyte Activation/drug effects
8.
Commun Biol ; 7(1): 770, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918569

ABSTRACT

Cancer is an evolutionary process shaped by selective pressure from the microenvironments. However, recent studies reveal that certain tumors undergo neutral evolution where there is no detectable fitness difference amongst the cells following malignant transformation. Here, through computational modeling, we demonstrate that negative frequency-dependent selection (or NFDS), where the immune response against cancer cells depends on the clonality of neoantigens, can lead to an immunogenic landscape that is highly similar to neutral evolution. Crucially, NFDS promotes high antigenic heterogeneity and early immune evasion in hypermutable tumors, leading to poor responses to immune checkpoint blockade (ICB) therapy. Our model also reveals that NFDS is characterized by a negative association between average clonality and total burden of neoantigens. Indeed, this unique feature of NFDS is common in the whole-exome sequencing (WES) datasets (357 tumor samples from 275 patients) from four melanoma cohorts with ICB therapy and a non-small cell lung cancer (NSCLC) WES dataset (327 tumor samples from 100 patients). Altogether, our study provides quantitative evidence supporting the theory of NFDS in cancer, explaining the high prevalence of neutral-looking tumors. These findings also highlight the critical role of frequency-dependent selection in devising more efficient and predictive immunotherapies.


Subject(s)
Antigens, Neoplasm , Immunotherapy , Tumor Escape , Humans , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , Melanoma/immunology , Melanoma/therapy , Melanoma/genetics , Melanoma/drug therapy , Tumor Microenvironment/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/therapy
9.
Curr Oncol ; 31(6): 3099-3121, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38920720

ABSTRACT

Epithelial ovarian cancer (EOC) has not significantly benefited from advances in immunotherapy, mainly because of the lack of well-defined actionable antigen targets. Using proteogenomic analyses of primary EOC tumors, we previously identified 91 aberrantly expressed tumor-specific antigens (TSAs) originating from unmutated genomic sequences. Most of these TSAs derive from non-exonic regions, and their expression results from cancer-specific epigenetic changes. The present study aimed to evaluate the immunogenicity of 48 TSAs selected according to two criteria: presentation by highly prevalent HLA allotypes and expression in a significant fraction of EOC tumors. Using targeted mass spectrometry analyses, we found that pulsing with synthetic TSA peptides leads to a high-level presentation on dendritic cells. TSA abundance correlated with the predicted binding affinity to the HLA allotype. We stimulated naïve CD8 T cells from healthy blood donors with TSA-pulsed dendritic cells and assessed their expansion with two assays: MHC-peptide tetramer staining and TCR Vß CDR3 sequencing. We report that these TSAs can expand sizeable populations of CD8 T cells and, therefore, represent attractive targets for EOC immunotherapy.


Subject(s)
Antigens, Neoplasm , Ovarian Neoplasms , Humans , Female , Antigens, Neoplasm/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/genetics , Dendritic Cells/immunology , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/genetics , CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods
10.
Int J Mol Med ; 54(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38904202

ABSTRACT

Among women globally, breast cancer is the most prevalent cancer and the leading cause of cancer­related death. Interestingly, though genetic mutations contribute to the disease, <15% of women diagnosed with breast cancer have a family history of the disease, suggesting a prevalence of sporadic genetic mutations in breast cancer development. In the rapidly rising field of cancer genomics, neoantigen­based immunotherapy has come to the fore. The investigation of novel proteins arising from unique somatic mutations or neoantigens have opened a new pathway for both individualized and public cancer treatments. Because they are shared among individuals with similar genetic changes, public neoantigens provide an opportunity for 'off­the­shelf' anticancer therapies, potentially extending the benefits to a wider patient group. The present review aimed to highlight the role of shared or public neoantigens as therapeutic targets for patients with breast cancer, emphasizing common hotspot mutations of certain genes identified in breast cancer. The clinical utilization of public neoantigen­based therapies for breast cancer treatment were also discussed.


Subject(s)
Antigens, Neoplasm , Breast Neoplasms , Immunotherapy , Humans , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Female , Immunotherapy/methods , Mutation
11.
PLoS One ; 19(6): e0298469, 2024.
Article in English | MEDLINE | ID: mdl-38917176

ABSTRACT

Prostate stem cell antigen (PSCA) is associated with disease progression, promotion of angiogenesis, invasion, metastasis and immune evasion in cancer. However, its expression pattern and diagnostic and prognostic potential have not been thoroughly analysed from a pan-cancer perspective. This study aimed to examine the effects of PSCA on the prognosis and inflammatory cell infiltration patterns of various cancer types. We analysed the relationship between PSCA expression and immunological subtypes in tumor microenvironment (TME) and the role of molecular subtypes, potentially promising immune biomarkers and tumour-infiltrating lymphocytes (TILs) in various cancer types, especially lung adenocarcinoma (LUAD). In addition, we investigated the prognostic significance of PSCA expression in LUAD. The co-expression network of PSCA was found to be mainly involved in the regulation of immune responses and antigen processing and expression and was significantly enriched in pathological and substance metabolism-related pathways in cancer. Altogether, this study reveals that PSCA is a promising target for immunotherapy in patients with cancer.


Subject(s)
Antigens, Neoplasm , GPI-Linked Proteins , Lymphocytes, Tumor-Infiltrating , Neoplasm Proteins , Tumor Microenvironment , Humans , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Prognosis , Tumor Microenvironment/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , GPI-Linked Proteins/metabolism , Biomarkers, Tumor/metabolism , Neoplasms/immunology , Neoplasms/pathology , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Male
12.
Mol Med ; 30(1): 85, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867190

ABSTRACT

BACKGROUND: Immunotherapies effectively treat human malignancies, but the low response and resistance are major obstacles. Neoantigen is an emerging target for tumor immunotherapy that can enhance anti-tumor immunity and improve immunotherapy. Aberrant alternative splicing is an important source of neoantigens. HNRNPA1, an RNA splicing factor, was found to be upregulated in the majority of tumors and play an important role in the tumor immunosuppressive microenvironment. METHODS: Whole transcriptome sequencing was performed on shHNRNPA1 SKOV3 cells and transcriptomic data of shHNRNPA1 HepG2, MCF-7M, K562, and B-LL cells were downloaded from the GEO database. Enrichment analysis was performed to elucidate the mechanisms underlying the activation of anti-tumor immunity induced by HNRNPA1 knockdown. mRNA alternative splicing was analyzed and neoantigens were predicted by JCAST v.0.3.5 and Immune epitope database. The immunogenicity of candidate neoantigens was calculated by Class I pMHC Immunogenicity and validated by the IFN-γ ELISpot assay. The effect of shHNRNPA1 on tumor growth and immune cells in vivo was evaluated by xenograft model combined with immunohistochemistry. RESULTS: HNRNPA1 was upregulated in a majority of malignancies and correlated with immunosuppressive status of the tumor immune microenvironment. Downregulation of HNRNPA1 could induce the activation of immune-related pathways and biological processes. Disruption of HNRNPA1 resulted in aberrant alternative splicing events and generation of immunogenic neoantigens. Downregulation of HNRNPA1 inhibited tumor growth and increased CD8+ T cell infiltration in vivo. CONCLUSION: Our study demonstrated that targeting HNRNPA1 could produce immunogenic neoantigens that elicit anti-tumor immunity by inducing abnormal mRNA splicing. It suggests that HNRNPA1 may be a potential target for immunotherapy.


Subject(s)
Alternative Splicing , Antigens, Neoplasm , Heterogeneous Nuclear Ribonucleoprotein A1 , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterogeneous Nuclear Ribonucleoprotein A1/immunology , Humans , Animals , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Female , Xenograft Model Antitumor Assays , Down-Regulation , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism
13.
Cancer Genomics Proteomics ; 21(4): 414-420, 2024.
Article in English | MEDLINE | ID: mdl-38944423

ABSTRACT

BACKGROUND/AIM: Clear cell carcinoma is a prevalent histological type of ovarian cancer in East Asia, particularly in Japan, known for its resistance to chemotherapeutic agents and poor prognosis. ARID1A gene mutations, commonly found in ovarian clear cell carcinoma (OCCC), contribute to its pathogenesis. Recent data revealed that the ARID1A mutation is related to better outcomes of cancer immunotherapy. Thus, this study aimed to investigate the immunotherapy treatment susceptibility of OCCC bearing ARID1A mutations. MATERIALS AND METHODS: Expression of ARID1A was analyzed using western blotting in ovarian cancer cell lines. OCCC cell lines JHOC-9 and RMG-V were engineered to overexpress NY-ESO-1, HLA-A*02:01, and ARID1A. Sensitivity to chemotherapy and T cell receptor-transduced T (TCR-T) cells specific for NY-ESO-1 was assessed in ARID1A-restored cells compared to ARID1A-deficient wild-type cells. RESULTS: JHOC-9 cells and RMG-V cells showed no expression of ARID1A protein. Overexpression of ARID1A in JHOC-9 and RMG-V cells did not impact sensitivity to gemcitabine. While ARID1A overexpression decreased sensitivity to cisplatin in RMG-V cells, it had no such effect in JHOC-9 cells. ARID1A overexpression reduced the reactivity of NY-ESO-1-specific TCR-T cells, as observed by the IFNγ ESLIPOT assay. CONCLUSION: Cancer immunotherapy is an effective approach to target ARID1A-deficient clear cell carcinoma of the ovary.


Subject(s)
Adenocarcinoma, Clear Cell , DNA-Binding Proteins , Ovarian Neoplasms , T-Lymphocytes, Cytotoxic , Transcription Factors , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Adenocarcinoma, Clear Cell/pathology , Adenocarcinoma, Clear Cell/genetics , Adenocarcinoma, Clear Cell/immunology , Adenocarcinoma, Clear Cell/metabolism , T-Lymphocytes, Cytotoxic/immunology , Cell Line, Tumor , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/immunology , HLA-A2 Antigen/genetics , HLA-A2 Antigen/immunology , HLA-A2 Antigen/metabolism , Membrane Proteins
14.
Nat Commun ; 15(1): 5442, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937436

ABSTRACT

Although patients benefit from immune checkpoint inhibition (ICI) therapy in a broad variety of tumors, resistance may arise from immune suppressive tumor microenvironments (TME), which is particularly true of hepatocellular carcinoma (HCC). Since oncolytic viruses (OV) can generate a highly immune-infiltrated, inflammatory TME, OVs could potentially restore ICI responsiveness via recruitment, priming, and activation of anti-tumor T cells. Here we find that on the contrary, an oncolytic vesicular stomatitis virus, expressing interferon-ß (VSV-IFNß), antagonizes the effect of anti-PD-L1 therapy in a partially anti-PD-L1-responsive model of HCC. Cytometry by Time of Flight shows that VSV-IFNß expands dominant anti-viral effector CD8 T cells with concomitant relative disappearance of anti-tumor T cell populations, which are the target of anti-PD-L1. However, by expressing a range of HCC tumor antigens within VSV, combination OV and anti-PD-L1 therapeutic benefit could be restored. Our data provide a cautionary message for the use of highly immunogenic viruses as tumor-specific immune-therapeutics by showing that dominant anti-viral T cell responses can inhibit sub-dominant anti-tumor T cell responses. However, through encoding tumor antigens within the virus, oncolytic virotherapy can generate anti-tumor T cell populations upon which immune checkpoint blockade can effectively work.


Subject(s)
Antigens, Neoplasm , B7-H1 Antigen , CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Tumor Microenvironment , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Animals , Oncolytic Virotherapy/methods , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/immunology , Tumor Microenvironment/immunology , Mice , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Humans , Liver Neoplasms/therapy , Liver Neoplasms/immunology , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Interferon-beta/metabolism , Interferon-beta/immunology , Mice, Inbred C57BL , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , T-Lymphocytes/immunology , Female , Vesiculovirus/immunology , Vesiculovirus/genetics
16.
Front Immunol ; 15: 1394003, 2024.
Article in English | MEDLINE | ID: mdl-38868767

ABSTRACT

Cancer immunotherapy has witnessed rapid advancement in recent years, with a particular focus on neoantigens as promising targets for personalized treatments. The convergence of immunogenomics, bioinformatics, and artificial intelligence (AI) has propelled the development of innovative neoantigen discovery tools and pipelines. These tools have revolutionized our ability to identify tumor-specific antigens, providing the foundation for precision cancer immunotherapy. AI-driven algorithms can process extensive amounts of data, identify patterns, and make predictions that were once challenging to achieve. However, the integration of AI comes with its own set of challenges, leaving space for further research. With particular focus on the computational approaches, in this article we have explored the current landscape of neoantigen prediction, the fundamental concepts behind, the challenges and their potential solutions providing a comprehensive overview of this rapidly evolving field.


Subject(s)
Antigens, Neoplasm , Artificial Intelligence , Immunotherapy , Neoplasms , Precision Medicine , Humans , Neoplasms/therapy , Neoplasms/immunology , Precision Medicine/methods , Antigens, Neoplasm/immunology , Immunotherapy/methods , Computational Biology/methods , Animals
17.
Biochemistry (Mosc) ; 89(5): 765-783, 2024 May.
Article in English | MEDLINE | ID: mdl-38880641

ABSTRACT

Chimeric antigen receptors (CARs) are genetically engineered receptors that recognize antigens and activate signaling cascades in a cell. Signal recognition and transmission are mediated by the CAR domains derived from different proteins. T cells carrying CARs against tumor-associated antigens have been used in the development of the CAR T cell therapy, a new approach to fighting malignant neoplasms. Despite its high efficacy in the treatment of oncohematological diseases, CAR T cell therapy has a number of disadvantages that could be avoided by using other types of leukocytes as effector cells. CARs can be expressed in a wide range of cells of adaptive and innate immunity with the emergence or improvement of cytotoxic properties. This review discusses the features of CAR function in different types of immune cells, with a particular focus on the results of preclinical and clinical efficacy studies and the safety of potential CAR cell products.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Antigens, Neoplasm/immunology
18.
Int J Nanomedicine ; 19: 5895-5930, 2024.
Article in English | MEDLINE | ID: mdl-38895146

ABSTRACT

Low immunogenicity of tumors poses a challenge in the development of effective tumor immunotherapy. However, emerging evidence suggests that certain therapeutic approaches, such as chemotherapy, radiotherapy, and phototherapy, can induce varying degrees of immunogenic cell death (ICD). This ICD phenomenon leads to the release of tumor antigens and the maturation of dendritic cells (DCs), thereby enhancing tumor immunogenicity and promoting immune responses. However, the use of a single conventional ICD inducer often fails to achieve in situ tumor ablation and establish long-term anti-tumor immune responses. Furthermore, the induction of ICD induction varies among different approaches, and the distribution of the therapeutic agent within the body influences the level of ICD and the occurrence of toxic side effects. To address these challenges and further boost tumor immunity, researchers have explored nanosystems as inducers of ICD in combination with tumor immunotherapy. This review examines the mechanisms of ICD and different induction methods, with a specific focus on the relationship between ICD and tumor immunity. The aim is to explore the research advancements utilizing various nanomaterials to enhance the body's anti-tumor effects by inducing ICD. This paper aims to contribute to the development and clinical application of nanomaterial-based ICD inducers in the field of cancer immunotherapy by providing important theoretical guidance and practical references.


Subject(s)
Dendritic Cells , Immunogenic Cell Death , Immunotherapy , Neoplasms , Immunotherapy/methods , Humans , Immunogenic Cell Death/drug effects , Neoplasms/therapy , Neoplasms/immunology , Dendritic Cells/immunology , Dendritic Cells/drug effects , Animals , Nanostructures/chemistry , Nanoparticles/chemistry , Antigens, Neoplasm/immunology
19.
J Immunother Cancer ; 12(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886115

ABSTRACT

Cancer/testis antigens (CTAs) are widely expressed in melanoma and lung cancer, emerging as promising targets for vaccination strategies and T-cell-based therapies in these malignancies. Despite recognizing the essential impact of intratumoral heterogeneity on clinical responses to immunotherapy, our understanding of intratumoral heterogeneity in CTA expression has remained limited. We employed single-cell mRNA sequencing to delineate the CTA expression profiles of cancer cells in clinically derived melanoma and lung cancer samples. Our findings reveal a high degree of intratumoral transcriptional heterogeneity in CTA expression. In melanoma, every cell expressed at least one CTA. However, most individual CTAs, including the widely used therapeutic targets NY-ESO-1 and MAGE, were confined to subpopulations of cells and were uncoordinated in their expression, resulting in mosaics of cancer cells with diverse CTA profiles. Coordinated expression was observed, however, mainly among highly structurally and evolutionarily related CTA genes. Importantly, a minor subset of CTAs, including PRAME and several members of the GAGE and MAGE-A families, were homogenously expressed in melanomas, highlighting their potential as therapeutic targets. Extensive heterogeneity in CTA expression was also observed in lung cancer. However, the frequency of CTA-positive cancer cells was notably lower and homogenously expressed CTAs were only identified in one of five tumors in this cancer type. Our findings underscore the need for careful CTA target selection in immunotherapy development and clinical testing and offer a rational framework for identifying the most promising candidates.


Subject(s)
Antigens, Neoplasm , Lung Neoplasms , Melanoma , Single-Cell Analysis , Humans , Melanoma/genetics , Melanoma/pathology , Melanoma/immunology , Melanoma/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/immunology , Single-Cell Analysis/methods , Male , Gene Expression Regulation, Neoplastic
20.
Oncoimmunology ; 13(1): 2362454, 2024.
Article in English | MEDLINE | ID: mdl-38846084

ABSTRACT

Rituximab (RTX) plus chemotherapy (R-CHOP) applied as a first-line therapy for lymphoma leads to a relapse in approximately 40% of the patients. Therefore, novel approaches to treat aggressive lymphomas are being intensively investigated. Several RTX-resistant (RR) cell lines have been established as surrogate models to study resistance to R-CHOP. Our study reveals that RR cells are characterized by a major downregulation of CD37, a molecule currently explored as a target for immunotherapy. Using CD20 knockout (KO) cell lines, we demonstrate that CD20 and CD37 form a complex, and hypothesize that the presence of CD20 stabilizes CD37 in the cell membrane. Consequently, we observe a diminished cytotoxicity of anti-CD37 monoclonal antibody (mAb) in complement-dependent cytotoxicity in both RR and CD20 KO cells that can be partially restored upon lysosome inhibition. On the other hand, the internalization rate of anti-CD37 mAb in CD20 KO cells is increased when compared to controls, suggesting unhampered efficacy of antibody drug conjugates (ADCs). Importantly, even a major downregulation in CD37 levels does not hamper the efficacy of CD37-directed chimeric antigen receptor (CAR) T cells. In summary, we present here a novel mechanism of CD37 regulation with further implications for the use of anti-CD37 immunotherapies.


Subject(s)
Antigens, CD20 , Immunotherapy , Lymphoma, B-Cell , Rituximab , Tetraspanins , Humans , Antigens, CD20/immunology , Antigens, CD20/metabolism , Antigens, CD20/genetics , Rituximab/pharmacology , Rituximab/therapeutic use , Tetraspanins/genetics , Tetraspanins/metabolism , Cell Line, Tumor , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/therapy , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/drug therapy , Immunotherapy/methods , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Vincristine/pharmacology , Vincristine/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...