Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.029
Filter
1.
Front Immunol ; 15: 1392043, 2024.
Article in English | MEDLINE | ID: mdl-38962015

ABSTRACT

In the Americas, P. vivax is the predominant causative species of malaria, a debilitating and economically significant disease. Due to the complexity of the malaria parasite life cycle, a vaccine formulation with multiple antigens expressed in various parasite stages may represent an effective approach. Based on this, we previously designed and constructed a chimeric recombinant protein, PvRMC-1, composed by PvCyRPA, PvCelTOS, and Pvs25 epitopes. This chimeric protein was strongly recognized by naturally acquired antibodies from exposed population in the Brazilian Amazon. However, there was no investigation about the induced immune response of PvRMC-1. Therefore, in this work, we evaluated the immunogenicity of this chimeric antigen formulated in three distinct adjuvants: Stimune, AddaVax or Aluminum hydroxide (Al(OH)3) in BALB/c mice. Our results suggested that the chimeric protein PvRMC-1 were capable to generate humoral and cellular responses across all three formulations. Antibodies recognized full-length PvRMC-1 and linear B-cell epitopes from PvCyRPA, PvCelTOS, and Pvs25 individually. Moreover, mice's splenocytes were activated, producing IFN-γ in response to PvCelTOS and PvCyRPA peptide epitopes, affirming T-cell epitopes in the antigen. While aluminum hydroxide showed notable cellular response, Stimune and Addavax induced a more comprehensive immune response, encompassing both cellular and humoral components. Thus, our findings indicate that PvRMC-1 would be a promising multistage vaccine candidate that could advance to further preclinical studies.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Malaria, Vivax , Mice, Inbred BALB C , Plasmodium vivax , Protozoan Proteins , Animals , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Mice , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Malaria, Vivax/immunology , Malaria, Vivax/prevention & control , Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Disease Models, Animal , Adjuvants, Immunologic , Immunogenicity, Vaccine , Antigens, Surface
2.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 239-242, 2024 May 23.
Article in Chinese | MEDLINE | ID: mdl-38952308

ABSTRACT

The global malaria epidemic is still severe. Because of simple procedures, rapid detection and accuracy results, rapid diagnostic test (RDT) has become the most important and the most widely used diagnostic tool for malaria prevention and control. However, deletions in the RDT target Plasmodium falciparum histidine-rich protein 2/3 (Pfhrp2/3) genes may cause false-negative results of RDT, which has been included as one of the four biological threats to global malaria elimination. This article reviews the applications of RDT in the global malaria diagnosis, analyzes the threats and challenges caused by Pfhrp2/3 gene deletion, proposes methods for monitoring Pfhrp2/3 gene deletion, and summarizes the causes and countermeasures of negative RDT detections, so as to provide insights into consolidation of malaria elimination achievements in China and contributions to global malaria elimination.


Subject(s)
Antigens, Protozoan , Gene Deletion , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Protozoan Proteins/genetics , Humans , Antigens, Protozoan/genetics , Plasmodium falciparum/genetics , Malaria, Falciparum/diagnosis , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Diagnostic Tests, Routine/methods , China/epidemiology , Rapid Diagnostic Tests
3.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 279-285, 2024 Jun 13.
Article in Chinese | MEDLINE | ID: mdl-38952314

ABSTRACT

OBJECTIVE: To prepare and characterize the mouse polyclonal antibody against the dense granule protein 24 (GRA24) of Toxoplasma gondii, and explore its preliminary applications. METHODS: The GRA24 coding sequences of different T. gondii strains were aligned using the MEGA-X software, and the dominant peptide of the GRA24 protein was analyzed with the Protean software. The base sequence encoding this peptide was amplified using PCR assay and ligated into the pET-28a vector, and the generated GRA24 truncated protein was transformed into Escherichia coli BL21. After induction by isopropyl-beta-D-thiogalactopyranoside (IPTG), the expression and purification of the recombinant GRA24 protein was analyzed using sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE). BALB/c mice were immunized by subcutaneous injection with the purified recombinant GRA24 truncated protein to generate the polyclonal antibody, and the titer of the polyclonal antibody was measured using enzyme linked immunosorbent assay (ELISA). The specificity of the polyclonal antibody was tested using Western blotting, and the intracellular localization of the polyclonal antibody was investigated using immunofluorescence assay (IFA). RESULTS: SDS-PAGE showed successful construction of the recombinant expression plasmid, and Coomassie brilliant blue staining showed the generation of the high-purity recombinant GRA24 truncated protein. ELISA measured that the titer of the polyclonal antibody against the GRA24 truncated protein was higher than 1:208 400, and Western blotting showed that the polyclonal antibody was effective to recognize the endogenous GRA24 proteins of different T. gondii strains and specifically recognize the recombinant GRA24 truncated protein. Indirect IFA showed that the GRA24 protein secreted 16 hour following T. gondii invasion in host cells. CONCLUSIONS: The polyclonal antibody against the T. gondii GRA24 protein has been successfully prepared, which has a widespread applicability, high titers and a high specificity. This polyclonal antibody is available for Western blotting and IFA, which provides the basis for investigating the function of the GRA24 protein.


Subject(s)
Antibodies, Protozoan , Mice, Inbred BALB C , Protozoan Proteins , Toxoplasma , Animals , Toxoplasma/immunology , Toxoplasma/genetics , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Mice , Antibodies, Protozoan/immunology , Female , Recombinant Proteins/immunology , Antibody Specificity , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics
4.
PLoS Negl Trop Dis ; 18(6): e0012231, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865344

ABSTRACT

BACKGROUND: Malaria transmission-blocking vaccines (TBVs) aim to inhibit malaria parasite development in mosquitoes and prevent further transmission to the human host. The putative-secreted ookinete protein 25 (PSOP25), highly conserved in Plasmodium spp., is a promising TBV target. Here, we investigated PvPSOP25 from P. vivax as a TBV candidate using transgenic murine parasite P. berghei and clinical P. vivax isolates. METHODS AND FINDINGS: A transgenic P. berghei line expressing PvPSOP25 (TrPvPSOP25Pb) was generated. Full-length PvPSOP25 was expressed in the yeast Pichia pastoris and used to immunize mice to obtain anti-rPvPSOP25 sera. The transmission-blocking activity of the anti-rPvPSOP25 sera was evaluated through in vitro assays and mosquito-feeding experiments. The antisera generated by immunization with rPvPSOP25 specifically recognized the native PvPSOP25 antigen expressed in TrPvPSOP25Pb ookinetes. In vitro assays showed that the immune sera significantly inhibited exflagellation and ookinete formation of the TrPvPSOP25Pb parasite. Mosquitoes feeding on mice infected with the transgenic parasite and passively transferred with the anti-rPvPSOP25 sera showed a 70.7% reduction in oocyst density compared to the control group. In a direct membrane feeding assay conducted with five clinical P. vivax isolates, the mouse anti-rPvPSOP25 antibodies significantly reduced the oocyst density while showing a negligible influence on mosquito infection prevalence. CONCLUSIONS: This study supported the feasibility of transgenic murine malaria parasites expressing P. vivax antigens as a useful tool for evaluating P. vivax TBV candidates. Meanwhile, the moderate transmission-reducing activity of the generated anti-rPvPSOP25 sera necessitates further research to optimize its efficacy.


Subject(s)
Malaria Vaccines , Malaria, Vivax , Plasmodium berghei , Plasmodium vivax , Protozoan Proteins , Animals , Mice , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Humans , Malaria, Vivax/transmission , Malaria, Vivax/parasitology , Malaria, Vivax/prevention & control , Malaria, Vivax/immunology , Female , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Malaria/transmission , Malaria/prevention & control , Malaria/parasitology , Malaria/immunology , Mice, Inbred BALB C
5.
Infect Genet Evol ; 122: 105605, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759940

ABSTRACT

Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) is a promising candidate target for the development of multi-component vaccines. Therefore, determining the genetic variation pattern of Pvmsp8 is essential in providing a reference for the rational design of the P. vivax malaria vaccines. This study delves into the genetic characteristics of the Pvmsp8 gene, specifically focusing on samples from the China-Myanmar border (CMB) region, and contrasts these findings with broader global patterns. The study uncovers that Pvmsp8 exhibits a notable level of conservation across different populations, with limited polymorphisms and relatively low nucleotide diversity (0.00023-0.00120). This conservation contrasts starkly with the high polymorphisms found in other P. vivax antigens such as Pvmsp1. A total of 25 haplotypes and 14 amino acid mutation sites were identified in the global populations, and all mutation sites were confined to non-functional regions. The study also notes that most CMB Pvmsp8 haplotypes are shared among Burmese, Cambodian, Thai, and Vietnamese populations, indicating less geographical variance, but differ notably from those found in Pacific island regions or the Panama. The findings underscore the importance of considering regional genetic diversity in P. vivax when developing targeted malaria vaccines. Non departure from neutral evolution were found by Tajima's D test, however, statistically significant differences were observed between the kn/ks rates. The study's findings are crucial in understanding the evolution and population structure of the Pvmsp8 gene, particularly during regional malaria elimination efforts. The highly conserved nature of Pvmsp8, combined with the lack of mutations in its functional domain, presents it as a promising candidate for developing a broad and effective P. vivax vaccine. This research thus lays a foundation for the rational development of multivalent malaria vaccines targeting this genetically stable antigen.


Subject(s)
Genetic Variation , Haplotypes , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Selection, Genetic , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Mutation , Phylogeny , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology
6.
Parasit Vectors ; 17(1): 239, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802961

ABSTRACT

BACKGROUND: The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS: Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS: In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS: Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.


Subject(s)
Antigens, Protozoan , Collagen Type I , Fibroblasts , Plasmodium vivax , Signal Transduction , Spleen , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Fibroblasts/parasitology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Animals , Collagen Type I/metabolism , Collagen Type I/genetics , Spleen/immunology , Spleen/parasitology , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/immunology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/immunology , Tryptophan/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Computational Biology
7.
Mol Biochem Parasitol ; 259: 111630, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38795969

ABSTRACT

Toxoplasma gondii is an intracellular protozoan parasite that infects all nucleated cells except the red blood cells. Currently, nucleic acid vaccines are being widely investigated in Toxoplasma gondii control, and several nucleic acid vaccine candidate antigens have shown good protection in various studies. The aim of this study was to construct a nucleic acid vaccine with Toxoplasma gondii SRS29C as the target gene. We explored the nucleic acid vaccine with Toxoplasma surface protein SRS29C and the combined gene of SRS29C and SAG1 and evaluated its immunoprotective effect against Toxoplasma gondii. To amplify the gene fragment and clone it to the expression vector, the recombinant plasmid pEGFP-SRS29C was constructed by PCR. Eukaryotic cells were transfected with the plasmid, and the expression of the target protein was assessed using the Western blot method. The level of serum IgG was determined via ELISA, and the splenic lymphocyte proliferation ability was detected using the CCK-8 method. The percentages of CD4+ and CD8+ T cells were measured by flow cytometry. Mice were immunised three times with single-gene nucleic acid vaccine and combination vaccine. Splenic lymphocytokine expression was determined using ELISA kits. The mice's survival time was monitored and recorded during an in vivo insect assault experiment, and the vaccine's protective power was assessed. The outcomes showed that PCR-amplification of an SRS29C gene fragment was successful. The 4,733-bp vector fragment and the 1,119-bp target segment were both recognised by double digestion. Additionally, after transfection of the recombinant plasmid pEGFP-SRS29C, Western blot examination of the extracted protein revealed the presence of a target protein strip at 66 kDa. The test results demonstrated that the IgG content in the serum of the pEGFP-SRS29C group and the co-immunization group was significantly higher than that of the PBS group and the empty vector group. The IgG potency induced by the co-immunization group was higher than that of the pEGFP-SRS29C group and the pEGFP-SAG1 group, the number of splenic lymphocyte proliferation number was higher than that of the PBS group and the empty vector group. The CD4+/CD8+ T ratio was higher than that of the PBS group and the empty vector group. The expression of IFN-γ and TNF-α in the splenocytes of the pEGFP-SRS29C group and the combined immunisation group was significantly higher following antigen stimulation. In the worm attack experiments, mice in the PBS and empty vector groups perished within 9 days of the worm attack, whereas mice in the pEGFP-SRS29C group survived for 18 days, mice in the pEGFP-SAG1 group survived for 21 days, and mice in the co-immunization group survived for 24 days. This demonstrates that the constructed Toxoplasma gondii nucleic acid vaccine pEGFP-SRS29C and the combined gene vaccine can induce mice to develop certain humoral and cellular immune responses, and enhance their ability to resist Toxoplasma gondii infection.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Immunoglobulin G , Protozoan Proteins , Protozoan Vaccines , Toxoplasma , Vaccines, DNA , Animals , Toxoplasma/immunology , Toxoplasma/genetics , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Vaccines, DNA/administration & dosage , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Protozoan Vaccines/immunology , Protozoan Vaccines/genetics , Mice , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Toxoplasmosis, Animal/prevention & control , Toxoplasmosis, Animal/immunology , Mice, Inbred BALB C , CD8-Positive T-Lymphocytes/immunology , Spleen/immunology , Spleen/parasitology , Cell Proliferation , Plasmids/genetics , Plasmids/immunology , Cytokines/metabolism
8.
Vaccine ; 42(16): 3621-3629, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38704253

ABSTRACT

Recent data indicate increasing disease burden and importance of Plasmodium vivax (Pv) malaria. A robust assay will be essential for blood-stage Pv vaccine development. Results of the in vitro growth inhibition assay (GIA) with transgenic P. knowlesi (Pk) parasites expressing the Pv Duffy-binding protein region II (PvDBPII) correlate with in vivo protection in the first PvDBPII controlled human malaria infection (CHMI) trials, making the PkGIA an ideal selection tool once the precision of the assay is defined. To determine the precision in percentage of inhibition in GIA (%GIA) and in GIA50 (antibody concentration that gave 50 %GIA), ten GIAs with transgenic Pk parasites were conducted with four different anti-PvDBPII human monoclonal antibodies (mAbs) at concentrations of 0.016 to 2 mg/mL, and three GIAs with eighty anti-PvDBPII human polyclonal antibodies (pAbs) at 10 mg/mL. A significant assay-to-assay variation was observed, and the analysis revealed a standard deviation (SD) of 13.1 in the mAb and 5.94 in the pAb dataset for %GIA, with a LogGIA50 SD of 0.299 (for mAbs). Moreover, the ninety-five percent confidence interval (95 %CI) for %GIA or GIA50 in repeat assays was calculated in this investigation. The error range determined in this study will help researchers to compare PkGIA results from different assays and studies appropriately, thus supporting the development of future blood-stage malaria vaccine candidates, specifically second-generation PvDBPII-based formulations.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Plasmodium knowlesi , Plasmodium vivax , Protozoan Proteins , Receptors, Cell Surface , Malaria Vaccines/immunology , Plasmodium knowlesi/immunology , Plasmodium knowlesi/genetics , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Plasmodium vivax/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Humans , Receptors, Cell Surface/immunology , Receptors, Cell Surface/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Malaria, Vivax/prevention & control , Malaria, Vivax/immunology , Antibodies, Monoclonal/immunology , Vaccine Development/methods , Animals
9.
Front Cell Infect Microbiol ; 14: 1384393, 2024.
Article in English | MEDLINE | ID: mdl-38720960

ABSTRACT

The clinical consequences of toxoplasmosis are greatly dependent on the Toxoplasma gondii strain causing the infection. To better understand its epidemiology and design appropriate control strategies, it is important to determine the strain present in infected animals. Serotyping methods are based on the detection of antibodies that react against segments of antigenic proteins presenting strain-specific polymorphic variations, offering a cost-effective, sensitive, and non-invasive alternative to genotyping techniques. Herein, we evaluated the applicability of a panel of peptides previously characterized in mice and humans to serotype sheep and pigs. To this end, we used 51 serum samples from experimentally infected ewes (32 type II and 19 type III), 20 sheep samples from naturally infected sheep where the causative strain was genotyped (18 type II and 2 type III), and 40 serum samples from experimentally infected pigs (22 type II and 18 type III). Our ELISA test results showed that a combination of GRA peptide homologous pairs can discriminate infections caused by type II and III strains of T. gondii in sheep and pigs. Namely, the GRA3-I/III-43 vs. GRA3-II-43, GRA6-I/III-213 vs. GRA6-II-214 and GRA6-III-44 vs. GRA6-II-44 ratios showed a statistically significant predominance of the respective strain-type peptide in sheep, while in pigs, in addition to these three peptide pairs, GRA7-II-224 vs. GRA7-III-224 also showed promising results. Notably, the GRA6-44 pair, which was previously deemed inefficient in mice and humans, showed a high prediction capacity, especially in sheep. By contrast, GRA5-38 peptides failed to correctly predict the strain type in most sheep and pig samples, underpinning the notion that individual standardization is needed for each animal species. Finally, we recommend analyzing for each animal at least 2 samples taken at different time points to confirm the obtained results.


Subject(s)
Antigens, Protozoan , Serotyping , Sheep Diseases , Swine Diseases , Toxoplasmosis, Animal , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Enzyme-Linked Immunosorbent Assay/methods , Genotype , Peptides/immunology , Serotyping/methods , Sheep , Sheep Diseases/parasitology , Sheep Diseases/diagnosis , Swine , Swine Diseases/parasitology , Swine Diseases/diagnosis , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/parasitology
10.
Front Cell Infect Microbiol ; 14: 1375249, 2024.
Article in English | MEDLINE | ID: mdl-38808064

ABSTRACT

Introduction: Diversity in malarial antigens is an immune evasion mechanism that gives malaria parasites an edge over the host. Immune responses against one variant of a polymorphic antigen are usually not fully effective against other variants due to altered epitopes. This study aimed to evaluate diversity in the Plasmodium falciparum antigens apical membrane antigen 1 (PfAMA1) and circumsporozoite protein (PfCSP) from circulating parasites in a malaria-endemic community in southern Ghana and to determine the effects of polymorphisms on antibody response specificity. Methods: The study involved 300 subjects, whose P. falciparum infection status was determined by microscopy and PCR. Diversity within the two antigens was evaluated by msp2 gene typing and molecular gene sequencing, while the host plasma levels of antibodies against PfAMA1, PfCSP, and two synthetic 24mer peptides from the conserved central repeat region of PfCSP, were measured by ELISA. Results: Of the 300 subjects, 171 (57%) had P. falciparum infection, with 165 of the 171 (96.5%) being positive for either or both of the msp2 allelic families. Gene sequencing of DNA from 55 clonally infected samples identified a total of 56 non-synonymous single nucleotide polymorphisms (SNPs) for the Pfama1 gene and these resulted in 44 polymorphic positions, including two novel positions (363 and 365). Sequencing of the Pfcsp gene from 69 clonal DNA samples identified 50 non-synonymous SNPs that resulted in 42 polymorphic positions, with half (21) of these polymorphic positions being novel. Of the measured antibodies, only anti-PfCSP antibodies varied considerably between PCR parasite-positive and parasite-negative persons. Discussion: These data confirm the presence of a considerable amount of unique, previously unreported amino acid changes, especially within PfCSP. Drivers for this diversity in the Pfcsp gene do not immediately seem apparent, as immune pressure will be expected to drive a similar level of diversity in the Pfama1 gene.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria, Falciparum , Membrane Proteins , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Ghana , Humans , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Female , Adult , Male , Adolescent , Young Adult , Child , Genetic Variation , Child, Preschool , Middle Aged , Sequence Analysis, DNA , Enzyme-Linked Immunosorbent Assay , Polymerase Chain Reaction , Antigenic Variation , DNA, Protozoan/genetics
11.
Malar J ; 23(1): 150, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755607

ABSTRACT

BACKGROUND: Emerging artemisinin partial resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (k13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. k13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015, but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, an assessment was conducted to evaluate recent k13-561H prevalence changes, as well as other key mutations. Prevalence of hrp2/3 deletions was also assessed. METHODS: Samples collected in Rukara in 2021 were genotyped for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. RESULTS: Clinically validated k13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of k13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other anti-malarials were variable, with high levels of multidrug resistance 1 (mdr1) N86 (95.5%) associated with lumefantrine decreased susceptibility and dihydrofolate reductase (dhfr) 164L (24.7%) associated with a high level of antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (crt) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. CONCLUSIONS: Increasing prevalence of artemisinin partial resistance due to k13-561H and the rapid expansion of k13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative RDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin partial resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.


Subject(s)
Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Mutation , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Artemisinins/pharmacology , Antimalarials/pharmacology , Protozoan Proteins/genetics , Drug Resistance/genetics , Rwanda , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Humans , Antigens, Protozoan/genetics , Prevalence , Child , Young Adult , Adolescent , Adult , Child, Preschool
12.
Indian J Med Microbiol ; 49: 100616, 2024.
Article in English | MEDLINE | ID: mdl-38761865

ABSTRACT

PURPOSE: Genetically diverse parasites enhances resistance against antimalarials, vaccines and host immune responses. The present study was designed to evaluate the role played by Plasmodium falciparum genetic diversity in predicting the real world malarial population. METHODS: Initially, the incidence pattern of all four northern Indian malarial species was examined using 18S rRNA gene and performed principal component analysis (PCA) based on frequencies of Plasmodium species. Consequently, genetic variance of Plasmodium falciparum histidine-rich protein-2 (Pfhrp2) gene among different malarial populations were compared using phylogenetic analysis. Multi-dimensional scaling was performed to assess genetic similarities and distances among studied populations. RESULTS: Of total 2168 patients screened, 561 patients with fever of unknown origin were included. 18S rRNA and Pfhrp2 genes were amplified in 78 and 45 samples, respectively. Among them 13.9%(78/561) patients had Plasmodium infection. Infections by P. falciparum, P. vivax and mixed infections were diagnosed among 47(60.2%) and 28(35.9%) and 3(3.8%) patients, respectively. We found eight types of Pfhrp2 amino acid sequence repeats among northern Indian population. The PCA findings were in line with genetic diversity and phylogenetic data. Temporal analysis showed the proportion of total diversity present in total subpopulation (ΔS/ΔT) was maximum for P. falciparum. CONCLUSIONS: Higher incidence of Pfhrp2 sequence variation through genetic recombination among multiple strains during sexual reproduction is potentially correlated with high transmission activity. This sequence variation might alter RDT detection sensitivities for different parasites by modulating the structure and frequency of antigenic epitopes.


Subject(s)
Antigens, Protozoan , Genetic Variation , Malaria, Falciparum , Phylogeny , Plasmodium falciparum , Protozoan Proteins , RNA, Ribosomal, 18S , Humans , Protozoan Proteins/genetics , Plasmodium falciparum/genetics , Antigens, Protozoan/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , India/epidemiology , RNA, Ribosomal, 18S/genetics , Male , Female , Adult , Adolescent , Child , Young Adult , Child, Preschool , Middle Aged
13.
Malar J ; 23(1): 97, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589874

ABSTRACT

BACKGROUND: In sub-Saharan Africa (SSA), Plasmodium falciparum causes most of the malaria cases. Despite its crucial roles in disease severity and drug resistance, comprehensive data on Plasmodium falciparum genetic diversity and multiplicity of infection (MOI) are sparse in SSA. This study summarizes available information on genetic diversity and MOI, focusing on key markers (msp-1, msp-2, glurp, and microsatellites). The systematic review aimed to evaluate their influence on malaria transmission dynamics and offer insights for enhancing malaria control measures in SSA. METHODS: The review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. Two reviewers conducted article screening, assessed the risk of bias (RoB), and performed data abstraction. Meta-analysis was performed using the random-effects model in STATA version 17. RESULTS: The review included 52 articles: 39 cross-sectional studies and 13 Randomized Controlled Trial (RCT)/cohort studies, involving 11,640 genotyped parasite isolates from 23 SSA countries. The overall pooled mean expected heterozygosity was 0.65 (95% CI: 0.51-0.78). Regionally, values varied: East (0.58), Central (0.84), Southern (0.74), and West Africa (0.69). Overall pooled allele frequencies of msp-1 alleles K1, MAD20, and RO33 were 61%, 44%, and 40%, respectively, while msp-2 I/C 3D7 and FC27 alleles were 61% and 55%. Central Africa reported higher frequencies (K1: 74%, MAD20: 51%, RO33: 48%) than East Africa (K1: 46%, MAD20: 42%, RO33: 31%). For msp-2, East Africa had 60% and 55% for I/C 3D7 and FC27 alleles, while West Africa had 62% and 50%, respectively. The pooled allele frequency for glurp was 66%. The overall pooled mean MOI was 2.09 (95% CI: 1.88-2.30), with regional variations: East (2.05), Central (2.37), Southern (2.16), and West Africa (1.96). The overall prevalence of polyclonal Plasmodium falciparum infections was 63% (95% CI: 56-70), with regional prevalences as follows: East (62%), West (61%), Central (65%), and South Africa (71%). CONCLUSION: The study shows substantial regional variation in Plasmodium falciparum parasite genetic diversity and MOI in SSA. These findings suggest a need for malaria control strategies and surveillance efforts considering regional-specific factors underlying Plasmodium falciparum infection.


Subject(s)
Malaria, Falciparum , Merozoite Surface Protein 1 , Humans , Merozoite Surface Protein 1/genetics , Plasmodium falciparum , Antigens, Protozoan/genetics , Protozoan Proteins/genetics , Genetic Markers , Genetic Variation , Malaria, Falciparum/parasitology , Genotype , Alleles , Microsatellite Repeats , South Africa
14.
Parasit Vectors ; 17(1): 178, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576040

ABSTRACT

BACKGROUND: To successfully replicate within the host cell, Toxoplasma gondii employs several mechanisms to overcome the host cell defenses and mitigate the harmful effects of the free radicals resulting from its own metabolic processes using effectors such as thioredoxin proteins. In this study, we characterize the location and functions of a newly identified thioredoxin in T. gondii, which was named Trx4. METHODS: We characterized the functional role of Trx4 in T. gondii Type I RH and Type II Pru strains by gene knockout and studied its subcellular localization by endogenous protein HA tagging using CRISPR-Cas9 gene editing. The enzyme-catalyzed proximity labeling technique, the TurboID system, was employed to identify the proteins in proximity to Trx4. RESULTS: Trx4 was identified as a dense granule protein of T. gondii predominantly expressed in the parasitophorous vacuole (PV) and was partially co-localized with GRA1 and GRA5. Functional analysis showed that deletion of trx4 markedly influenced the parasite lytic cycle, resulting in impaired host cell invasion capacity in both RH and Pru strains. Mutation of Trx domains in Trx4 in RH strain revealed that two Trx domains were important for the parasite invasion. By utilizing the TurboID system to biotinylate proteins in proximity to Trx4, we identified a substantial number of proteins, some of which are novel, and others are previously characterized, predominantly distributed in the dense granules. In addition, we uncovered three novel proteins co-localized with Trx4. Intriguingly, deletion of trx4 did not affect the localization of these three proteins. Finally, a virulence assay demonstrated that knockout of trx4 resulted in a significant attenuation of virulence and a significant reduction in brain cyst loads in mice. CONCLUSIONS: Trx4 plays an important role in T. gondii invasion and virulence in Type I RH strain and Type II Pru strain. Combining the TurboID system with CRISPR-Cas9 technique revealed many PV-localized proximity proteins associated with Trx4. These findings suggest a versatile role of Trx4 in mediating the processes that occur in this distinctive intracellular membrane-bound vacuolar compartment.


Subject(s)
Toxoplasma , Animals , Mice , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Antigens, Protozoan/genetics , Virulence/genetics , Immunologic Factors/metabolism , Thioredoxins/genetics
15.
Acta Trop ; 255: 107231, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685340

ABSTRACT

Malaria remains a public health challenge. Since many control strategies have proven ineffective in eradicating this disease, new strategies are required, among which the design of a multivalent vaccine stands out. However, the effectiveness of this strategy has been hindered, among other reasons, by the genetic diversity observed in parasite antigens. In Plasmodium vivax, the Erythrocyte Binding Protein (PvEBP, also known as DBP2) is an alternate ligand to Duffy Binding Protein (DBP); given its structural resemblance to DBP, EBP/DBP2 is proposed as a promising antigen for inclusion in vaccine design. However, the extent of genetic diversity within the locus encoding this protein has not been comprehensively assessed. Thus, this study aimed to characterize the genetic diversity of the locus encoding the P. vivax EBP/DBP2 protein and to determine the evolutionary mechanisms modulating this diversity. Several intrapopulation genetic variation parameters were estimated using 36 gene sequences of PvEBP/DBP2 from Colombian P. vivax clinical isolates and 186 sequences available in databases. The study then evaluated the worldwide genetic structure and the evolutionary forces that may influence the observed patterns of genetic variation. It was found that the PvEBP/DBP2 gene exhibits one of the lowest levels of genetic diversity compared to other vaccine-candidate antigens. Four major haplotypes were shared worldwide. Analysis of the protein's 3D structure and epitope prediction identified five regions with potential antigenic properties. The results suggest that the PvEBP/DBP2 protein possesses ideal characteristics to be considered when designing a multivalent effective antimalarial vaccine against P. vivax.


Subject(s)
Antigens, Protozoan , Genetic Variation , Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Humans , Malaria Vaccines/immunology , Malaria Vaccines/genetics , Malaria, Vivax/prevention & control , Malaria, Vivax/parasitology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Colombia , Phylogeny , Receptors, Cell Surface
16.
Am J Trop Med Hyg ; 110(6): 1100-1109, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38688260

ABSTRACT

The bulk of malaria rapid diagnostic tests (RDTs) target histidine-rich protein 2 of Plasmodium falciparum, the deadliest malaria species. The WHO considers pfhrp2/3 deletions as one of the main threats to successful malaria control and/or elimination; as such, parasites that lack part or all of the pfhrp2 gene are missed by pfHRP2-targeting RDTs. Such deletions have been reported in several African and Asian countries, but little is known in Cameroon and India. Blood samples were collected from individuals living in four areas of Cameroon (Douala, Maroua, Mayo-Oulo, Pette) and India (Mewat, Raipur, Ranchi, Rourkela). Deletions in pfhrp2/3 genes were confirmed if samples 1) had ≥100 parasites/µL by quantitative polymerase chain reaction (PCR), 2) PCR negative for pfhrp2/3, and 3) PCR positive for at least two single-copy genes. The overall proportion of pfhrp2 and pfhrp3 deletions in Cameroon was 13.5% and 3.1%. In India, the overall proportion was 8% for pfhrp2 and 4% for pfhrp3. The overall proportions of samples with both gene deletions (pfhrp2-/3-) were 3.1% in Cameroon and 1.3% in India. In Cameroon, pfhrp2-/3+ and pfhrp2-/3- deletions were common in Maroua (P = 0.02), in asymptomatic parasitemia (P = 0.006) and submicroscopic parasitemia (P <0.0001). In both countries, pfhrp2/3 deletions, including pfhrp2-/3- deletions, were mainly seen in monoclonal infections. This study outlines that double deletions that result in false negative RDTs are uncommon in our settings, and highlights the importance of active molecular surveillance for pfhrp2/3 deletions in Cameroon and India.


Subject(s)
Antigens, Protozoan , Gene Deletion , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , India/epidemiology , Plasmodium falciparum/genetics , Cameroon/epidemiology , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Protozoan Proteins/genetics , Antigens, Protozoan/genetics , Adult , Female , Male , Child , Adolescent , Child, Preschool , Young Adult , Middle Aged , Asymptomatic Infections/epidemiology
17.
mBio ; 15(5): e0085924, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38639536

ABSTRACT

Visceral leishmaniasis is a deadly infectious disease and is one of the world's major neglected health problems. Because the symptoms of infection are similar to other endemic diseases, accurate diagnosis is crucial for appropriate treatment. Definitive diagnosis using splenic or bone marrow aspirates is highly invasive, and so, serological assays are preferred, including the direct agglutination test (DAT) or rK39 strip test. These tests, however, are either difficult to perform in the field (DAT) or lack specificity in some endemic regions (rK39), making the development of new tests a research priority. The availability of Leishmania spp. genomes presents an opportunity to identify new diagnostic targets. Here, we use genome data and a mammalian protein expression system to create a panel of 93 proteins consisting of the extracellular ectodomains of the Leishmania donovani cell surface and secreted proteins. We use these panel and sera from murine experimental infection models and natural human and canine infections to identify new candidates for serological diagnosis. We observed a concordance between the most immunoreactive antigens in different host species and transmission settings. The antigen encoded by the LdBPK_323600.1 gene can diagnose Leishmania infections with high sensitivity and specificity in patient cohorts from different endemic regions including Bangladesh and Ethiopia. In longitudinal sampling of treated patients, we observed reductions in immunoreactivity to LdBPK_323600.1 suggesting it could be used to diagnose treatment success. In summary, we have identified new antigens that could contribute to improved serological diagnostic tests to help control the impact of this deadly tropical infectious disease. IMPORTANCE: Visceral leishmaniasis is fatal if left untreated with patients often displaying mild and non-specific symptoms during the early stages of infection making accurate diagnosis important. Current methods for diagnosis require highly trained medical staff to perform highly invasive biopsies of the liver or bone marrow which pose risks to the patient. Less invasive molecular tests are available but can suffer from regional variations in their ability to accurately diagnose an infection. To identify new diagnostic markers of visceral leishmaniasis, we produced and tested a panel of 93 proteins identified from the genome of the parasite responsible for this disease. We found that the pattern of host antibody reactivity to these proteins was broadly consistent across naturally acquired infections in both human patients and dogs, as well as experimental rodent infections. We identified a new protein called LdBPK_323600.1 that could accurately diagnose visceral leishmaniasis infections in humans.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Leishmania donovani , Leishmaniasis, Visceral , Protozoan Proteins , Serologic Tests , Leishmania donovani/genetics , Leishmania donovani/immunology , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Animals , Humans , Mice , Dogs , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Serologic Tests/methods , Biomarkers/blood , Female , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Mice, Inbred BALB C , Membrane Proteins/genetics , Membrane Proteins/immunology , Sensitivity and Specificity , Dog Diseases/diagnosis , Dog Diseases/parasitology
18.
Sci Rep ; 14(1): 8158, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589477

ABSTRACT

Plasmodium falciparum with the histidine rich protein 2 gene (pfhrp2) deleted from its genome can escape diagnosis by HRP2-based rapid diagnostic tests (HRP2-RDTs). The World Health Organization (WHO) recommends switching to a non-HRP2 RDT for P. falciparum clinical case diagnosis when pfhrp2 deletion prevalence causes ≥ 5% of RDTs to return false negative results. Tanzania is a country of heterogenous P. falciparum transmission, with some regions approaching elimination and others at varying levels of control. In concordance with the current recommended WHO pfhrp2 deletion surveillance strategy, 100 health facilities encompassing 10 regions of Tanzania enrolled malaria-suspected patients between February and July 2021. Of 7863 persons of all ages enrolled and providing RDT result and blood sample, 3777 (48.0%) were positive by the national RDT testing for Plasmodium lactate dehydrogenase (pLDH) and/or HRP2. A second RDT testing specifically for the P. falciparum LDH (Pf-pLDH) antigen found 95 persons (2.5% of all RDT positives) were positive, though negative by the national RDT for HRP2, and were selected for pfhrp2 and pfhrp3 (pfhrp2/3) genotyping. Multiplex antigen detection by laboratory bead assay found 135/7847 (1.7%) of all blood samples positive for Plasmodium antigens but very low or no HRP2, and these were selected for genotyping as well. Of the samples selected for genotyping based on RDT or laboratory multiplex result, 158 were P. falciparum DNA positive, and 140 had sufficient DNA to be genotyped for pfhrp2/3. Most of these (125/140) were found to be pfhrp2+/pfhrp3+, with smaller numbers deleted for only pfhrp2 (n = 9) or only pfhrp3 (n = 6). No dual pfhrp2/3 deleted parasites were observed. This survey found that parasites with these gene deletions are rare in Tanzania, and estimated that 0.24% (95% confidence interval: 0.08% to 0.39%) of false-negative HRP2-RDTs for symptomatic persons were due to pfhrp2 deletions in this 2021 Tanzania survey. These data provide evidence for HRP2-based diagnostics as currently accurate for P. falciparum diagnosis in Tanzania.


Subject(s)
Blood Group Antigens , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Gene Deletion , Tanzania/epidemiology , Diagnostic Tests, Routine/methods , Antigens, Protozoan/genetics , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Health Facilities , DNA
19.
NPJ Syst Biol Appl ; 10(1): 44, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678051

ABSTRACT

Malaria vaccine development is hampered by extensive antigenic variation and complex life stages of Plasmodium species. Vaccine development has focused on a small number of antigens, many of which were identified without utilizing systematic genome-level approaches. In this study, we implement a machine learning-based reverse vaccinology approach to predict potential new malaria vaccine candidate antigens. We assemble and analyze P. falciparum proteomic, structural, functional, immunological, genomic, and transcriptomic data, and use positive-unlabeled learning to predict potential antigens based on the properties of known antigens and remaining proteins. We prioritize candidate antigens based on model performance on reference antigens with different genetic diversity and quantify the protein properties that contribute most to identifying top candidates. Candidate antigens are characterized by gene essentiality, gene ontology, and gene expression in different life stages to inform future vaccine development. This approach provides a framework for identifying and prioritizing candidate vaccine antigens for a broad range of pathogens.


Subject(s)
Antigens, Protozoan , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Plasmodium falciparum/immunology , Plasmodium falciparum/genetics , Malaria Vaccines/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Machine Learning , Humans , Proteomics/methods , Vaccine Development/methods , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Computational Biology/methods
20.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673969

ABSTRACT

This study presents an evaluation of seventeen newly produced recombinant trivalent chimeric proteins (containing the same immunodominant fragment of SAG1 and SAG2 of Toxoplasma gondii antigens, and an additional immunodominant fragment of one of the parasite antigens, such as AMA1, GRA1, GRA2, GRA5, GRA6, GRA7, GRA9, LDH2, MAG1, MIC1, MIC3, P35, and ROP1) as a potential alternative to the whole-cell tachyzoite lysate (TLA) used in the detection of infection in small ruminants. These recombinant proteins, obtained by genetic engineering and molecular biology methods, were tested for their reactivity with specific anti-Toxoplasma IgG antibodies contained in serum samples of small ruminants (192 samples of sheep serum and 95 samples of goat serum) using an enzyme-linked immunosorbent assay (ELISA). The reactivity of six recombinant trivalent chimeric proteins (SAG1-SAG2-GRA5, SAG1-SAG2-GRA9, SAG1-SAG2-MIC1, SAG1-SAG2-MIC3, SAG1-SAG2-P35, and SAG1-SAG2-ROP1) with IgG antibodies generated during T. gondii invasion was comparable to the sensitivity of TLA-based IgG ELISA (100%). The obtained results show a strong correlation with the results obtained for TLA. This suggests that these protein preparations may be a potential alternative to TLA used in commercial tests and could be used to develop a cheaper test for the detection of parasite infection in small ruminants.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Enzyme-Linked Immunosorbent Assay , Goats , Immunoglobulin G , Toxoplasma , Animals , Toxoplasma/immunology , Toxoplasma/genetics , Immunoglobulin G/immunology , Immunoglobulin G/blood , Enzyme-Linked Immunosorbent Assay/methods , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Sheep , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/parasitology , Sheep Diseases/parasitology , Sheep Diseases/diagnosis , Sheep Diseases/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Goat Diseases/parasitology , Goat Diseases/diagnosis , Goat Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...