Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.383
Filter
1.
Malar J ; 23(1): 176, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840151

ABSTRACT

BACKGROUND: With only one 15 mg primaquine tablet registered by a stringent regulatory authority and marketed, more quality-assured primaquine is needed to meet the demands of malaria elimination. METHODS: A classic, two sequence, crossover study, with a 10-day wash out period, of 15 mg of IPCA-produced test primaquine tablets and 15 mg of Sanofi reference primaquine tablets was conducted. Healthy volunteers, aged 18-45 years, without glucose-6-phosphate dehydrogenase deficiency, a baseline haemoglobin ≥ 11 g/dL, creatinine clearance ≥ 70 mL/min/1.73 ms, and body mass index of 18.5-30 kg/m2 were randomized to either test or reference primaquine, administered on an empty stomach with 240 mL of water. Plasma primaquine and carboxyprimaquine concentrations were measured at baseline, then 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.333, 2.667, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 8.0, 10.0, 12.0, 16.0, 24.0, 36.0, 48.0 and 72.0 h by liquid chromatography coupled to tandem mass spectrometry. Primaquine pharmacokinetic profiles were evaluated by non-compartmental analysis and bioequivalence concluded if the 90% confidence intervals (CI) of geometric mean (GM) ratios of test vs. reference formulation for the peak concentrations (Cmax) and area under the drug concentration-time (AUC0-t) were within 80.00 to 125.00%. RESULTS: 47 of 50 volunteers, median age 33 years, completed both dosing rounds and were included in the bioequivalence analysis. For primaquine, GM Cmax values for test and reference formulations were 62.12 vs. 59.63 ng/mL, resulting in a GM ratio (90% CI) of 104.17% (96.92-111.96%); the corresponding GM AUC0-t values were 596.56 vs. 564.09 ngxh/mL, for a GM ratio of 105.76% (99.76-112.08%). Intra-subject coefficient of variation was 20.99% for Cmax and 16.83% for AUC0-t. Median clearances and volumes of distribution were similar between the test and reference products: 24.6 vs. 25.2 L/h, 189.4 vs. 191.0 L, whilst the median half-lives were the same, 5.2 h. CONCLUSION: IPCA primaquine was bioequivalent to the Sanofi primaquine. This opens the door to prequalification, registration in malaria endemic countries, and programmatic use for malaria elimination. Trial registration The trial registration reference is ISRCTN 54640699.


Subject(s)
Antimalarials , Cross-Over Studies , Primaquine , Therapeutic Equivalency , Primaquine/pharmacokinetics , Primaquine/administration & dosage , Humans , Antimalarials/pharmacokinetics , Antimalarials/administration & dosage , Adult , Young Adult , Male , Female , Adolescent , Middle Aged , Malaria/drug therapy , Malaria/prevention & control , Healthy Volunteers , Tablets
2.
Eur J Pharm Sci ; 198: 106795, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729224

ABSTRACT

The overarching premise of this investigation is that injectable, long-acting antimalarial medication would encourage adherence to a dosage regimen for populations at risk of contracting the disease. To advance support for this goal, we have developed oil-based formulations of ELQ-331 (a prodrug of ELQ-300) that perform as long-acting, injectable chemoprophylactics with drug loading as high as 160 mg/ml of ELQ-331. In a pharmacokinetic study performed with rats, a single intramuscular injection of 12.14 mg/kg maintained higher plasma levels than the previously established minimum fully protective plasma concentration (33.25 ng/ml) of ELQ-300 for more than 4 weeks. The formulations were well tolerated by the rats and the tested dose produced no adverse reactions. We believe that by extending the length of time between subsequent injections, these injectable oil-based solutions of ELQ-331 can offer a more accessible, low-cost option for long-acting disease prevention and reduced transmission in malaria-endemic regions and may also be of use to travelers.


Subject(s)
Antimalarials , Animals , Antimalarials/administration & dosage , Antimalarials/pharmacokinetics , Injections, Intramuscular , Male , Rats , Rats, Sprague-Dawley , Delayed-Action Preparations/administration & dosage , Prodrugs/administration & dosage , Prodrugs/pharmacokinetics , Malaria/drug therapy
3.
Int J Antimicrob Agents ; 64(1): 107196, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734217

ABSTRACT

With the spread of artemisinin resistance throughout Southeast Asia and now in Africa, the antimalarial drug pyronaridine is likely to become an increasingly important component of new antimalarial drug regimens. However, the antimalarial activity of pyronaridine in humans has not been completely characterised. This volunteer infection study aimed to determine the pharmacokinetic/pharmacodynamic (PK/PD) relationship of pyronaridine in malaria naïve adults. Volunteers were inoculated with Plasmodium falciparum-infected erythrocytes on day 0 and administered different single oral doses of pyronaridine on day 8. Parasitaemia and concentrations of pyronaridine were measured and standard safety assessments performed. Curative artemether-lumefantrine therapy was administered if parasite regrowth occurred, or on day 47 ± 2. Outcomes were parasite clearance kinetics, PK and PK/PD parameters from modelling. Ten participants were inoculated and administered 360 mg (n = 4), 540 mg (n = 4) or 720 mg (n = 1) pyronaridine. One participant was withdrawn without receiving pyronaridine. The time to maximum pyronaridine concentration was 1-2 h, the elimination half-life was 8-9 d, and the parasite clearance half-life was approximately 5 h. Parasite regrowth occurred with 360 mg (4/4 participants) and 540 mg (2/4 participants). Key efficacy parameters including the minimum inhibitory concentration (5.5 ng/mL) and minimum parasiticidal concentration leading to 90% of maximum effect (MPC90: 8 ng/mL) were derived from the PK/PD model. Adverse events considered related to pyronaridine were predominantly mild to moderate gastrointestinal symptoms. There were no serious adverse events. Data obtained in this study will support the use of pyronaridine in new antimalarial combination therapies by informing partner drug selection and dosing considerations.


Subject(s)
Antimalarials , Healthy Volunteers , Malaria, Falciparum , Naphthyridines , Parasitemia , Plasmodium falciparum , Humans , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Antimalarials/pharmacology , Antimalarials/administration & dosage , Naphthyridines/pharmacokinetics , Naphthyridines/therapeutic use , Naphthyridines/pharmacology , Naphthyridines/administration & dosage , Plasmodium falciparum/drug effects , Adult , Male , Young Adult , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Female , Parasitemia/drug therapy , Parasitemia/parasitology , Erythrocytes/drug effects , Erythrocytes/parasitology , Administration, Oral , Middle Aged , Treatment Outcome
4.
Int J Antimicrob Agents ; 64(1): 107209, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761871

ABSTRACT

OBJECTIVES: Malaria-induced alteration of physiological parameters and pharmacokinetic properties of antimalarial drugs may be clinically relevant. Whether and how malaria alters the disposition of piperaquine (PQ) was investigated in this study. METHODS: The effect of malaria on drug metabolism-related enzymes and PQ pharmacokinetic profiles was studied in Plasmodium yoelii-infected mice in vitro/in vivo. Whether the malaria effect was clinically relevant for PQ was evaluated using a validated physiologically-based pharmacokinetic model with malaria-specific scalars obtained in mice. RESULTS: The infection led to a higher blood-to-plasma partitioning (Rbp) for PQ, which was concentration-dependent and correlated to parasitemia. No significant change in plasma protein binding was found for PQ. Drug metabolism-related genes (CYPs/UDP-glucuronosyltransferase/nuclear receptor, except for CYP2a5) were downregulated in infected mice, especially at the acute phase. The plasma oral clearances (CL/F) of three probe substrates for CYP enzymes were significantly decreased (by ≥35.9%) in mice even with moderate infection. The validated physiologically-based pharmacokinetic model indicated that the hepatic clearance (CLH) of PQ was the determinant of its simulated CL/F, which was predicted to slightly decrease (by ≤23.6%) in severely infected mice but not in malaria patients. The result fitted well with the plasma pharmacokinetics of PQ in infected mice and literature data on malaria patients. The blood clearance of PQ was much lower than its plasma clearance due to its high Rbp. CONCLUSIONS: The malaria-induced alteration of drug metabolism was substrate-dependent, and its impact on the disposition of PQ and maybe other long-acting aminoquinoline antimalarials was not expected to be clinically relevant.


Subject(s)
Antimalarials , Disease Models, Animal , Malaria , Plasmodium yoelii , Quinolines , Animals , Quinolines/pharmacokinetics , Malaria/drug therapy , Malaria/parasitology , Plasmodium yoelii/drug effects , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Humans , Mice , Female , Parasitemia/drug therapy , Male , Piperazines
5.
Int J Pharm ; 658: 124204, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38710297

ABSTRACT

Pulsatile drug delivery is hardly achieved by conventional gastro-retentive dosage forms. Artesunate as a typical anti-malaria medicine needs oral pulsatile release. Here, artesunate-loaded pulsatile-release multi-unit gastro-retentive tablets (APGTs) were prepared with a semi-solid extrusion three-dimensional (3D) printing method. An APGT was composed of three units: artesunate-loaded immediate and delayed release units and a block unit. The matrix of the immediate/delayed release units consisted of polyvinylpyrrolidone (PVP) K30 and croscarmellose sodium, which improved the rapid release of artesunate when contacting water. The block unit consisted of octadecanol, hydroxypropyl methyl cellulose K15M, PVP K30, and poloxamer F68. APGTs showed multi-phase release in simulated gastric liquids (SGLs). The first immediate release phase continued for 1 h followed by a long block phase for 7 h. The second rapid release phase was initiated when the eroded holes in the block unit extended to the inner delayed release unit, and this phase continued for about 14 h. Low-density APGTs could ensure their long-term floating in the stomach. Oral APGTs remained in the rabbit stomach for about 20 h. 3D printing provides a new strategy for the preparation of oral pulsatile-release tablets.


Subject(s)
Antimalarials , Artesunate , Delayed-Action Preparations , Drug Liberation , Povidone , Printing, Three-Dimensional , Tablets , Artesunate/administration & dosage , Artesunate/chemistry , Artesunate/pharmacokinetics , Animals , Rabbits , Antimalarials/administration & dosage , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Povidone/chemistry , Hypromellose Derivatives/chemistry , Excipients/chemistry , Drug Delivery Systems , Administration, Oral , Carboxymethylcellulose Sodium/chemistry , Poloxamer/chemistry , Gastric Mucosa/metabolism
6.
Nat Commun ; 15(1): 3851, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719803

ABSTRACT

Current guidelines advise against primaquine treatment for breastfeeding mothers to avoid the potential for haemolysis in infants with G6PD deficiency. To predict the haemolytic risk, the amount of drug received from the breast milk and the resulting infant drug exposure need to be characterised. Here, we develop a pharmacokinetic model to describe the drug concentrations in breastfeeding women using venous, capillary, and breast milk data. A mother-to-infant model is developed to mimic the infant feeding pattern and used to predict their drug exposures. Primaquine and carboxyprimaquine exposures in infants are <1% of the exposure in mothers. Therefore, even in infants with the most severe G6PD deficiency variants, it is highly unlikely that standard doses of primaquine (0.25-1 mg base/kg once daily given to the mother for 1-14 days) would cause significant haemolysis. After the neonatal period, primaquine should not be restricted for breastfeeding women (Clinical Trials Registration: NCT01780753).


Subject(s)
Antimalarials , Breast Feeding , Lactation , Milk, Human , Primaquine , Humans , Female , Primaquine/pharmacokinetics , Primaquine/administration & dosage , Antimalarials/pharmacokinetics , Antimalarials/administration & dosage , Infant , Milk, Human/chemistry , Milk, Human/metabolism , Adult , Infant, Newborn , Hemolysis/drug effects , Models, Biological
7.
Malar J ; 23(1): 159, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773528

ABSTRACT

BACKGROUND: Primaquine (PQ) is the prototype 8-aminoquinoline drug, a class which targets gametocytes and hypnozoites. The World Health Organization (WHO) recommends adding a single low dose of primaquine to the standard artemisinin-based combination therapy (ACT) in order to block malaria transmission in regions with low malaria transmission. However, the haemolytic toxicity is a major adverse outcome of primaquine in glucose-6-phosphate dehydrogenase (G6PD)-deficient subjects. This study aimed to characterize the pharmacokinetic properties of primaquine and its major metabolites in G6PD-deficient subjects. METHODS: A single low-dose of primaquine (0.4-0.5 mg/kg) was administered in twenty-eight African males. Venous and capillary plasma were sampled up to 24 h after the drug administration. Haemoglobin levels were observed up to 28 days after drug administration. Only PQ, carboxy-primaquine (CPQ), and primaquine carbamoyl-glucuronide (PQCG) were present in plasma samples and measured using liquid chromatography mass spectrometry. Drug and metabolites' pharmacokinetic properties were investigated using nonlinear mixed-effects modelling. RESULTS: Population pharmacokinetic properties of PQ, CPQ, and PQCG can be described by one-compartment disposition kinetics with a transit-absorption model. Body weight was implemented as an allometric function on the clearance and volume parameters for all compounds. None of the covariates significantly affected the pharmacokinetic parameters. No significant correlations were detected between the exposures of the measured compounds and the change in haemoglobin or methaemoglobin levels. There was no significant haemoglobin drop in the G6PD-deficient patients after administration of a single low dose of PQ. CONCLUSIONS: A single low-dose of PQ was haematologically safe in this population of G6PD-normal and G6PD-deficient African males without malaria. Trial registration NCT02535767.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Primaquine , Adolescent , Adult , Humans , Male , Middle Aged , Young Adult , Antimalarials/pharmacokinetics , Antimalarials/blood , Antimalarials/administration & dosage , Primaquine/pharmacokinetics , Primaquine/blood , Primaquine/administration & dosage
8.
Antimicrob Agents Chemother ; 68(5): e0009324, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38597636

ABSTRACT

Capillary samples offer practical benefits compared with venous samples for the measurement of drug concentrations, but the relationship between the two measures varies between different drugs. We measured the concentrations of lumefantrine, mefloquine, piperaquine in 270 pairs of venous plasma and concurrent capillary plasma samples collected from 270 pregnant women with uncomplicated falciparum or vivax malaria. The median and range of venous plasma concentrations included in this study were 447.5 ng/mL (8.81-3,370) for lumefantrine (day 7, n = 76, median total dose received 96.0 mg/kg), 17.9 ng/mL (1.72-181) for desbutyl-lumefantrine, 1,885 ng/mL (762-4,830) for mefloquine (days 3-21, n = 90, median total dose 24.9 mg/kg), 641 ng/mL (79.9-1,950) for carboxy-mefloquine, and 51.8 ng/mL (3.57-851) for piperaquine (days 3-21, n = 89, median total dose 52.2 mg/kg). Although venous and capillary plasma concentrations showed a high correlation (Pearson's correlation coefficient: 0.90-0.99) for all antimalarials and their primary metabolites, they were not directly interchangeable. Using the concurrent capillary plasma concentrations and other variables, the proportions of venous plasma samples predicted within a ±10% precision range was 34% (26/76) for lumefantrine, 36% (32/89) for desbutyl-lumefantrine, 74% (67/90) for mefloquine, 82% (74/90) for carboxy-mefloquine, and 24% (21/89) for piperaquine. Venous plasma concentrations of mefloquine, but not lumefantrine and piperaquine, could be predicted by capillary plasma samples with an acceptable level of agreement. Capillary plasma samples can be utilized for pharmacokinetic and clinical studies, but caution surrounding cut-off values is required at the individual level.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT01054248.


Subject(s)
Antimalarials , Lumefantrine , Malaria, Falciparum , Malaria, Vivax , Mefloquine , Piperazines , Quinolines , Humans , Female , Mefloquine/blood , Mefloquine/therapeutic use , Mefloquine/pharmacokinetics , Antimalarials/blood , Antimalarials/therapeutic use , Antimalarials/pharmacokinetics , Pregnancy , Quinolines/blood , Quinolines/pharmacokinetics , Quinolines/therapeutic use , Lumefantrine/therapeutic use , Lumefantrine/blood , Malaria, Falciparum/drug therapy , Malaria, Falciparum/blood , Adult , Malaria, Vivax/drug therapy , Malaria, Vivax/blood , Young Adult , Ethanolamines/blood , Ethanolamines/pharmacokinetics , Ethanolamines/therapeutic use , Fluorenes/blood , Fluorenes/therapeutic use , Fluorenes/pharmacokinetics , Adolescent
9.
Malar J ; 23(1): 125, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685044

ABSTRACT

BACKGROUND: Despite efforts made to reduce morbidity and mortality associated with malaria, especially in sub-Saharan Africa, malaria continues to be a public health concern that requires innovative efforts to reach the WHO-set zero malaria agenda. Among the innovations is the use of artemisinin-based combination therapy (ACT) that is effective against Plasmodium falciparum. Generic artemether-lumefantrine (AL) is used to treat uncomplicated malaria after appropriate diagnosis. AL is metabolized by the cytochrome P450 family of enzymes, such as CYP2B6, CYP3A4 and CYP3A5, which can be under pharmacogenetic influence. Pharmacogenetics affecting AL metabolism, significantly influence the overall anti-malarial activity leading to variable therapeutic efficacy. This study focused on generic AL drugs used in malarial treatment as prescribed at health facilities and evaluated pharmacogenomic influences on their efficacy. METHODS: Patients who have been diagnosed with malaria and confirmed through RDT and microscopy were recruited in this study. Blood samples were taken on days 1, 2, 3 and 7 for parasite count and blood levels of lumefantrine, artemisinin, desbutyl-lumefantrine (DBL), and dihydroartemisinin (DHA), the active metabolites of lumefantrine and artemether, respectively, were analysed using established methods. Pharmacogene variation analysis was undertaken using iPLEX microarray and PCR-RFLP. RESULTS: A total of 52 patients completed the study. Median parasite density from day 1 to 7 ranged from 0-2666/µL of blood, with days 3 and 7 recording 0 parasite density. Highest median plasma concentration for lumefantrine and desbutyl lumefantrine, which are the long-acting components of artemisinin-based combinations, was 4123.75 ng/mL and 35.87 ng/mL, respectively. Day 7 plasma lumefantrine concentration across all generic ACT brands was ≥ 200 ng/mL which potentially accounted for the parasitaemia profile observed. Monomorphism was observed for CYP3A4 variants, while there were observed variations in CYP2B6 and CYP3A5 alleles. Among the CYP3A5 genotypes, significant differences in genotypes and plasma concentration for DBL were seen on day 3 between 1/*1 versus *1/*6 (p = 0.002), *1/*3 versus *1/*6 (p = 0.006) and *1/*7 versus *1/*6 (p = 0.008). Day 7 plasma DBL concentrations showed a significant difference between *1/*6 and *1/*3 (p = 0.026) expressors. CONCLUSIONS: The study findings show that CYP2B6 and CYP3A5 pharmacogenetic variations may lead to higher plasma exposure of AL metabolites.


Subject(s)
Antimalarials , Artemether, Lumefantrine Drug Combination , Artemisinins , Drug Combinations , Ethanolamines , Fluorenes , Humans , Antimalarials/therapeutic use , Antimalarials/pharmacokinetics , Artemether, Lumefantrine Drug Combination/therapeutic use , Female , Ethanolamines/therapeutic use , Ethanolamines/pharmacokinetics , Adolescent , Fluorenes/therapeutic use , Fluorenes/pharmacokinetics , Fluorenes/pharmacology , Artemisinins/therapeutic use , Artemisinins/pharmacokinetics , Male , Ghana , Adult , Young Adult , Child , Child, Preschool , Middle Aged , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Drugs, Generic/therapeutic use , Treatment Outcome , Pharmacogenetics , Aged , Infant
10.
J Pharm Biomed Anal ; 245: 116154, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657367

ABSTRACT

Malaria remains a major health concern, aggravated by emerging resistance of the parasite to existing treatments. The World Health Organization recently endorsed the use of artesunate-pyronaridine to treat uncomplicated malaria. However, there is a lack of clinical pharmacokinetic (PK) data of pyronaridine, particularly in special populations such as children and pregnant women. Existing methods for the quantification of pyronaridine in biological matrices to support PK studies exhibit several drawbacks. These include limited sensitivity, a large sample volume required, and extensive analysis time. To overcome these limitations, an ultra-performance reversed-phase liquid chromatography tandem-mass spectrometry method to determine pyronaridine was developed and validated according to international guidelines. The method enabled fast and accurate quantification of pyronaridine in whole blood across a clinically relevant concentration range of 0.500-500 ng/mL (r2 ≥ 0.9963), with a required sample volume of 50 µL. Pyronaridine was extracted from whole blood using liquid-liquid extraction, effectively eliminating the matrix effect and preventing ion enhancement or suppression. The method achieved a satisfactory reproducible sample preparation recovery of 77%, accuracy (as bias) and precision were within ±8.2% and ≤5.3%, respectively. Stability experiments demonstrated that pyronaridine was stable for up to 315 days when stored at -70°C. Adjustments to the chromatographic system substantially reduced carry-over and improved sensitivity compared to prior methods. The method was successfully applied to quantify pyronaridine in whole blood samples from a selection of pregnant malaria patients participating in the PYRAPREG clinical trial (PACTR202011812241529) in the Democratic Republic of the Congo, demonstrating its suitability to support future PK studies. Furthermore, the enhanced sensitivity allows for the determination of pyronaridine up to 42 days post-treatment initiation, enabling assessment of the terminal elimination half-life.


Subject(s)
Antimalarials , Naphthyridines , Tandem Mass Spectrometry , Humans , Antimalarials/blood , Antimalarials/pharmacokinetics , Antimalarials/analysis , Tandem Mass Spectrometry/methods , Naphthyridines/blood , Naphthyridines/pharmacokinetics , Naphthyridines/analysis , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Female , Liquid-Liquid Extraction/methods , Pregnancy , Malaria/drug therapy , Malaria/blood , Chromatography, Reverse-Phase/methods
11.
Antimicrob Agents Chemother ; 68(5): e0091523, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38517190

ABSTRACT

Primaquine is the mainstream antimalarial drug to prevent Plasmodium vivax relapses. However, this drug can induce hemolysis in patients with glucose-6-phosphate dehydrogenase deficiency. Nanostructure formulations of primaquine loaded with D-galactose were used as a strategy to target the drug to the liver and decrease the hemolytic risks. Nanoemulsion (NE-Pq) and nanochitosan (NQ-Pq) formulations of primaquine diphosphate containing D-galactose were prepared and characterized by their physicochemistry properties. Pharmacokinetic and biodistribution studies were conducted using Swiss Webster mice. A single dose of 10 mg/kg of each nanoformulation or free primaquine solution was administered by gavage to the animals, which were killed at 0.5, 1, 2, 4, 8, and 24 hours. Blood samples and tissues were collected, processed, and analyzed by high-performance liquid chromatography. The nanoformulation showed sizes around 200 nm (NE-Pq) and 400 nm (NQ-Pq) and physicochemical stability for over 30 days. Free primaquine solution achieved higher primaquine Cmax in the liver than NE-Pq or NQ-Pq at 0.5 hours. However, the half-life and mean residence time (MRT) of primaquine in the liver were three times higher with the NQ-Pq formulation than with free primaquine, and the volume distribution was four times higher. Conversely, primaquine's half-life, MRT, and volume distribution in the plasma were lower for NQ-Pq than for free primaquine. NE-Pq, on the other hand, accumulated more in the lungs but not in the liver. Galactose-coated primaquine nanochitosan formulation showed increased drug targeting to the liver compared to free primaquine and may represent a promising strategy for a more efficient and safer radical cure for vivax malaria.


Subject(s)
Antimalarials , Chitosan , Galactose , Liver , Primaquine , Primaquine/pharmacokinetics , Primaquine/chemistry , Animals , Mice , Liver/metabolism , Liver/drug effects , Galactose/chemistry , Chitosan/chemistry , Antimalarials/pharmacokinetics , Nanoparticles/chemistry , Tissue Distribution , Nanostructures/chemistry , Male
12.
CPT Pharmacometrics Syst Pharmacol ; 13(5): 795-811, 2024 05.
Article in English | MEDLINE | ID: mdl-38528724

ABSTRACT

We reported here on the development of a pharmacometric framework to assess patient adherence, by using two population-based approaches - the percentile and the Bayesian method. Three different dosing strategies were investigated in patients prescribed a total of three doses; (1) non-observed therapy, (2) directly observed administration of the first dose, and (3) directly observed administration of the first two doses. The percentile approach used population-based simulations to derive optimal concentration percentile cutoff values from the distribution of simulated drug concentrations at a specific time. This was done for each adherence scenario and compared to full adherence. The Bayesian approach calculated the posterior probability of each adherence scenario at a given drug concentration. The predictive performance (i.e., Youden index, receiver operating characteristic [ROC] curve) of both approaches were highly influenced by sample collection time (early was better) and interindividual variability (smaller was better). The complexity of the structural model and the half-life had a minimal impact on the predictive performance of these methods. The impact of the assay limitation (LOQ) on the predictive performance was relatively small if the fraction of LOQ data was less than 20%. Overall, the percentile method performed similar or better for adherence predictions compared to the Bayesian approach, with the latter showing slightly better results when investigating the adherence to the last dose only. The percentile approach showed acceptable adherence predictions (area under ROC curve > 0.74) when sampling the antimalarial drugs piperaquine at day 7 postdose and lumefantrine at day 3 postdose (i.e., 12 h after the last dose). This could be a highly useful approach when evaluating programmatic implementations of preventive and curative antimalarial treatment programs in endemic areas.


Subject(s)
Antimalarials , Bayes Theorem , Medication Adherence , Humans , Antimalarials/pharmacokinetics , Antimalarials/administration & dosage , Medication Adherence/statistics & numerical data , Malaria/drug therapy , Female , Male , Adult , Computer Simulation , Middle Aged , ROC Curve
13.
Biomed Chromatogr ; 38(5): e5844, 2024 May.
Article in English | MEDLINE | ID: mdl-38326977

ABSTRACT

As first-line antimalarials used in the artemisinin combination therapy, artemisinin drugs exert their action inside red blood cells. However, the blood pharmacokinetic characteristics of artemisinin drugs have not been fully revealed owing to their built-in chemical instability initiated by Fe2+ released from hemoglobin, with limited information on their metabolites. In this study, liquid chromatography tandem high-resolution mass spectrometric (LC-HRMS) methods were developed for the quantification of two representative artemisinin drugs (artemisinin, ART; dihydroartemisinin, DHA) and their respective metabolite (deoxyartemisinin, D-ART; dihydroartemisinin glucuronide, DHA-Glu) in rat blood/plasma. The blood samples were pretreated with the stabilizer (0.4 m potassium dichromate and 3% EDTA-2Na). The methods displayed excellent specificity, linearity, accuracy and precision for ART (17.7-709.2 nm) and its metabolite D-ART (18.8-751.9 nm), and the linear range was 40.0-4,000.0 nm for both DHA and DHA-Glu. The methods were successfully applied to the pharmacokinetic studies of ART and DHA in rats. The blood-to-plasma ratio was 0.8-1.5 for ART, 1.0-1.5 for D-ART, 1.2-2.2 for DHA and 0.9-1.3 for DHA-Glu, which was time dependent. The results indicated that artemisinin drugs and their metabolites showed a high but different blood-to-plasma ratio, which should be considered when optimizating their dosing regimens or evaluating their clinical outcomes.


Subject(s)
Artemisinins , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Artemisinins/blood , Artemisinins/pharmacokinetics , Animals , Rats , Reproducibility of Results , Male , Linear Models , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Antimalarials/blood , Antimalarials/pharmacokinetics , Limit of Detection , Sensitivity and Specificity
14.
J Antimicrob Chemother ; 78(10): 2406-2418, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37638690

ABSTRACT

Pyronaridine-artesunate was recently strongly recommended in the 2022 update of the WHO Guidelines for the Treatment of Malaria, becoming the newest artemisinin-based combination therapy (ACT) for both uncomplicated Plasmodium falciparum and Plasmodium vivax malaria. Pyronaridine-artesunate, available as a tablet and paediatric granule formulations, is being adopted in regions where malaria treatment outcome is challenged by increasing chloroquine resistance. Pyronaridine is an old antimalarial agent that has been used for more than 50 years as a blood schizonticide, which exerts its antimalarial activity by interfering with the synthesis of the haemozoin pigment within the Plasmodium digestive vacuole. Pyronaridine exhibits a high blood-to-plasma distribution ratio due to its tendency to accumulate in blood cells. This feature is believed to play a crucial role in its pharmacokinetic (PK) properties and pharmacological activity. The PK characteristics of pyronaridine include rapid oral absorption, large volumes of distribution and low total body clearance, resulting in a long terminal apparent half-life. Moreover, differences in PK profiles have been observed between healthy volunteers and malaria-infected patients, indicating a potential disease-related impact on PK properties. Despite a long history, there is only limited knowledge of the clinical PK and pharmacodynamics of pyronaridine, particularly in special populations such as children and pregnant women. We here provide a comprehensive overview of the clinical pharmacology of pyronaridine in the treatment of malaria.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Pregnancy , Humans , Child , Female , Malaria, Falciparum/drug therapy , Antimalarials/therapeutic use , Antimalarials/pharmacokinetics , Malaria/drug therapy , Naphthyridines/pharmacology , Naphthyridines/therapeutic use , Chloroquine/therapeutic use
15.
Macromol Biosci ; 23(5): e2200518, 2023 05.
Article in English | MEDLINE | ID: mdl-36999404

ABSTRACT

Uncomplicated malaria is effectively treated with oral artemisinin-based combination therapy (ACT). Yet, there is an unmet clinical need for the intravenous treatment of the more fatal severe malaria. There is no combination intravenous therapy for uncomplicated due to the nonavailability of a water-soluble partner drug for the artemisinin, artesunate. The currently available treatment is a two-part regimen split into an intravenous artesunate followed by the conventional oral ACT . In a novel application of polymer therapeutics, the aqueous insoluble antimalarial lumefantrine is conjugated to a carrier polymer to create a new water-soluble chemical entity suitable for intravenous administration in a clinically relevant formulation . The conjugate is characterized by spectroscopic and analytical techniques, and the aqueous solubility of lumefantrine is determined to have increased by three orders of magnitude. Pharmacokinetic studies in mice indicate that there is a significant plasma release of lumefantrine and production its metabolite desbutyl-lumefantrine (area under the curve of metabolite is ≈10% that of the parent). In a Plasmodium falciparum malaria mouse model, parasitemia clearance is 50% higher than that of reference unconjugated lumefantrine. The polymer-lumefantrine shows potential for entering the clinic to meet the need for a one-course combination treatment for severe malaria.


Subject(s)
Antimalarials , Lumefantrine , Malaria , Polymers , Animals , Mice , Administration, Intravenous , Antimalarials/administration & dosage , Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Antimalarials/toxicity , Area Under Curve , Disease Models, Animal , Drug Combinations , Lumefantrine/administration & dosage , Lumefantrine/analogs & derivatives , Lumefantrine/chemical synthesis , Lumefantrine/pharmacokinetics , Lumefantrine/therapeutic use , Lumefantrine/toxicity , Malaria/drug therapy , Mice, Inbred BALB C , Parasitemia , Plasmodium falciparum , Polymers/chemistry , Polymers/pharmacology , Polymers/therapeutic use , Solubility , Water/chemistry , Male
16.
Antimicrob Agents Chemother ; 67(4): e0142722, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36916944

ABSTRACT

Dihydroartemisinin-piperaquine (DP) is highly effective for malaria chemoprevention during pregnancy, but the standard dosing of DP that is used for nonpregnant adults may not be optimal for pregnant women. We previously reported that the pharmacokinetic exposure of total piperaquine (PQ; both bound and unbound to plasma proteins) is reduced significantly in the context of pregnancy or efavirenz (EFV)-based antiretroviral therapy (ART). However, as PQ is >99% protein-bound, reduced protein binding during pregnancy may lead to an increase in the pharmacologically active unbound drug fraction (fu), relative to the total PQ. We investigated the impact of pregnancy and EFV use on the fu of PQ to inform the interpretation of pharmacokinetics. Plasma samples from 0 to 24 h after the third (final) DP dose were collected from pregnant women at 28 weeks gestation who were receiving or not receiving EFV-based ART as well as from women 34 to 54 weeks postpartum who were not receiving EFV-based ART, who served as controls. Unbound PQ was quantified via ultrafiltration and liquid chromatography-tandem mass spectrometry, with fu being calculated as PQunbound/PQtotal. The geometric mean fu did not differ between pregnant and postpartum women (P = 0.66), but it was 23% (P < 0.01) greater in pregnant women receiving EFV-based ART, compared to that in postpartum women who were not receiving EFV-based ART. The altered drug-protein binding, potentially due to the displacement of PQ from plasma proteins by EFV, resulted in only a 14% lower unbound PQ exposure (P = 0.13) in the presence of a 31% lower total PQ exposure (P < 0.01), as estimated by the area under the concentration time curve from 0 to 24 h post-last dose in pregnant women who were receiving EFV-based ART. The results suggest that the impact of pregnancy and EFV-based ART on the exposure and, in turn, the efficacy of PQ for malaria prevention may not be as significant as was suggested by the changes in the total PQ exposure. Further study during the terminal elimination phase (e.g., on day 28 post-dose) would help better characterize the unbound PQ exposure during the full dosing interval and, thus, the overall efficacy of PQ for malaria chemoprevention in this special population.


Subject(s)
Antimalarials , HIV Infections , Malaria , Quinolines , Adult , Pregnancy , Humans , Female , Antimalarials/pharmacokinetics , Malaria/drug therapy , Malaria/prevention & control , Quinolines/pharmacokinetics , HIV Infections/drug therapy , HIV Infections/prevention & control , Chemoprevention/methods
17.
Br J Clin Pharmacol ; 89(3): 1187-1197, 2023 03.
Article in English | MEDLINE | ID: mdl-36199201

ABSTRACT

AIM: Microsampling has the advantage of smaller blood sampling volume and suitability in vulnerable populations compared to venous sampling in clinical pharmacokinetics studies. Current regulatory guidance requires correlative studies to enable microsampling as a technique. A post hoc population pharmacokinetic (POPPK) approach was utilized to investigate blood capillary microsampling as an alternative to venous sampling. METHODS: Pharmacokinetic data from microsampling and venous sampling techniques during a paediatric study evaluating tafenoquine, a single-dose antimalarial for P. vivax, were used. Separate POPPK models were developed and validated based on goodness of fit and visual predictive checks, with pharmacokinetic data obtained via each sampling technique. RESULTS: Each POPPK model adequately described tafenoquine pharmacokinetics using a two-compartment model with body weight based on allometric scaling of clearance and volume of distribution. Tafenoquine pharmacokinetic parameter estimates including clearance (3.4 vs 3.7 L/h) were comparable across models with slightly higher interindividual variability (38.3% vs 27%) in capillary microsampling-based data. A bioavailability/bioequivalence comparison demonstrated that the point estimate (90% CI) of capillary microsample versus venous sample model-based individual post hoc estimates for area under the concentration-time curve from time zero to infinity (AUC0-inf ) (100.7%, 98.0-103.5%) and Cmax (79.7%, 76.9-82.5%) met the 80-125% and 70-143% criteria, respectively. Overall, both POPPK models led to the same dose regimen recommendations across weight bins based on achieving target AUC. CONCLUSIONS: This analysis demonstrated that a POPPK approach can be employed to assess the performance of alternative pharmacokinetic sampling techniques. This approach provides a robust solution in scenarios where variability in pharmacokinetic data collected via venous sampling and microsampling may not result in a strong linear relationship. The findings also established that microsampling techniques may replace conventional venous sampling methods.


Subject(s)
Antimalarials , Humans , Child , Feasibility Studies , Antimalarials/pharmacokinetics , Aminoquinolines/pharmacokinetics , Biological Availability
18.
Clin Pharmacol Ther ; 113(3): 660-669, 2023 03.
Article in English | MEDLINE | ID: mdl-36260349

ABSTRACT

Artemisinin-based combination therapies (ACTs) are the primary treatment for malaria. It is essential to characterize the pharmacokinetics (PKs) and pharmacodynamics (PDs) of ACTs in vulnerable populations at risk of suboptimal dosing. We developed a population PK/PD model using data from our previous study of artemether-lumefantrine in HIV-uninfected and HIV-infected children living in a high-transmission region of Uganda. HIV-infected children were on efavirenz-, nevirapine-, or lopinavir-ritonavir-based antiretroviral regimens, with daily trimethoprim-sulfamethoxazole prophylaxis. We assessed selection for resistance in two key parasite transporters, pfcrt and pfmdr1, over 42-day follow-up and incorporated genotyping into a time-to-event model to ascertain how resistance genotype in relation to drug exposure impacts recurrence risk. Two hundred seventy-seven children contributed 364 episodes to the model (186 HIV-uninfected and 178 HIV-infected), with recurrent microscopy-detectable parasitemia detected in 176 episodes by day 42. The final model was a two-compartment model with first-order absorption and an estimated age effect on bioavailability. Systemic lumefantrine exposure was highest with lopinavir-ritonavir, lowest with efavirenz, and equivalent with nevirapine and HIV-uninfected children. HIV status and lumefantrine concentration were significant factors associated with recurrence risk. Significant selection was demonstrated for pfmdr1 N86 and pfcrt K76 in recurrent infections, with no evidence of selection for pfmdr1 Y184F. Less sensitive parasites were able to tolerate lumefantrine concentrations ~ 3.5-fold higher than more sensitive parasites. This is the first population PK model of lumefantrine in HIV-infected children and demonstrates selection for reduced lumefantrine susceptibility, a concern as we confront the threat to ACTs posed by emerging artemisinin resistance in Africa.


Subject(s)
Antimalarials , Artemisinins , HIV Infections , Malaria, Falciparum , Malaria , Child , Humans , Antimalarials/therapeutic use , Antimalarials/pharmacokinetics , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Artemether/therapeutic use , Nevirapine/therapeutic use , Uganda , Fluorenes/therapeutic use , Fluorenes/pharmacokinetics , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria/drug therapy , Artemisinins/pharmacokinetics , Lumefantrine , Drug Combinations , HIV Infections/drug therapy , Malaria, Falciparum/drug therapy
19.
Antimicrob Agents Chemother ; 66(8): e0018522, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35862743

ABSTRACT

Mass drug administration (MDA) with monthly dihydroartemisinin-piperaquine (DHA-PQP) appears useful in malaria control and elimination strategies. Determining the relationship between consecutive piperaquine phosphate (PQP) exposure and its impact on QT interval prolongation is a key safety consideration for MDA campaigns. Healthy volunteers from Papua New Guinea received a 3-day course of DHA-PQP (2.1/17.1 mg/kg) monthly for 3 consecutive months in a single arm longitudinal study. Plasma PQP concentrations were measured after the third dose of each course (at 52-54 h) and at 0 h of course 3. Twelve-lead electrocardiographic readings were conducted at 0 h, 48 h, 52 h, and day 7 of each course. QT interval corrected by Fridericia's formula (QTcF) was measured at each time point. A pharmacokinetic-pharmacodynamic model using nonlinear mixed effects models was developed to correlate PQP concentrations with QTcF. Ten thousand female and 10,000 male individuals were simulated at each treatment course. Eighty-two participants were included; mean age was 28.3 years (standard deviation [SD] ±12.3 years), and 36 (44%) were female. Pharmacokinetic-pharmacodynamic models were determined with 290 PQP concentrations and 868 QTcF observations. The average baseline QTcF was 392 ms with a between-subject variability SD ±14.4 ms and between-occasion variability SD ±3.64 ms. From the population modeled, only 0.08% of males and 0.45% of females would be at risk of an absolute QTcF of >500 ms. DHA-PQP is safe at standard doses in consecutive months, and the likelihood of severe cardiac events occurring during an MDA campaign is very low. This study has been registered at ClinicalTrials.gov under identifier NCT02605720.


Subject(s)
Antimalarials , Malaria, Falciparum , Piperazines , Quinolines , Adult , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Artemisinins/adverse effects , Artemisinins/pharmacokinetics , Artemisinins/pharmacology , Female , Healthy Volunteers , Humans , Long QT Syndrome/chemically induced , Longitudinal Studies , Malaria, Falciparum/drug therapy , Male , Papua New Guinea , Piperazines/adverse effects , Piperazines/pharmacokinetics , Piperazines/pharmacology , Quinolines/adverse effects , Quinolines/pharmacokinetics , Quinolines/pharmacology
20.
Antimicrob Agents Chemother ; 66(7): e0011422, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35727057

ABSTRACT

The rate at which parasitemia declines in a host after treatment with an antimalarial drug is a major metric for assessment of antimalarial drug activity in preclinical models and in early clinical trials. However, this metric does not distinguish between viable and nonviable parasites. Thus, enumeration of parasites may result in underestimation of drug activity for some compounds, potentially confounding its use as a metric for assessing antimalarial activity in vivo. Here, we report a study of the effect of artesunate on Plasmodium falciparum viability in humans and in mice. We first measured the drug effect in mice by estimating the decrease in parasite viability after treatment using two independent approaches to estimate viability. We demonstrate that, as previously reported in humans, parasite viability declines much faster after artesunate treatment than does the decline in parasitemia (termed parasite clearance). We also observed that artesunate kills parasites faster at higher concentrations, which is not discernible from the traditional parasite clearance curve and that each subsequent dose of artesunate maintains its killing effect. Furthermore, based on measures of parasite viability, we could accurately predict the in vivo recrudescence of infection. Finally, using pharmacometrics modeling, we show that the apparent differences in the antimalarial activity of artesunate in mice and humans are partly explained by differences in host removal of dead parasites in the two hosts. However, these differences, along with different pharmacokinetic profiles, do not fully account for the differences in activity. (This study has been registered with the Australian New Zealand Clinical Trials Registry under identifier ACTRN12617001394336.).


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Parasites , Animals , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Artemisinins/pharmacokinetics , Artemisinins/therapeutic use , Artesunate/pharmacology , Artesunate/therapeutic use , Australia , Humans , Malaria, Falciparum/drug therapy , Mice , Parasitemia/drug therapy , Parasitemia/parasitology , Plasmodium falciparum
SELECTION OF CITATIONS
SEARCH DETAIL
...