Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 266
Filter
1.
PLoS Biol ; 22(7): e3002692, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954678

ABSTRACT

The prevalence of antibiotic-resistant pathogens has become a major threat to public health, requiring swift initiatives for discovering new strategies to control bacterial infections. Hence, antibiotic stewardship and rapid diagnostics, but also the development, and prudent use, of novel effective antimicrobial agents are paramount. Ideally, these agents should be less likely to select for resistance in pathogens than currently available conventional antimicrobials. The usage of antimicrobial peptides (AMPs), key components of the innate immune response, and combination therapies, have been proposed as strategies to diminish the emergence of resistance. Herein, we investigated whether newly developed random antimicrobial peptide mixtures (RPMs) can significantly reduce the risk of resistance evolution in vitro to that of single sequence AMPs, using the ESKAPE pathogen Pseudomonas aeruginosa (P. aeruginosa) as a model gram-negative bacterium. Infections of this pathogen are difficult to treat due the inherent resistance to many drug classes, enhanced by the capacity to form biofilms. P. aeruginosa was experimentally evolved in the presence of AMPs or RPMs, subsequentially assessing the extent of resistance evolution and cross-resistance/collateral sensitivity between treatments. Furthermore, the fitness costs of resistance on bacterial growth were studied and whole-genome sequencing used to investigate which mutations could be candidates for causing resistant phenotypes. Lastly, changes in the pharmacodynamics of the evolved bacterial strains were examined. Our findings suggest that using RPMs bears a much lower risk of resistance evolution compared to AMPs and mostly prevents cross-resistance development to other treatments, while maintaining (or even improving) drug sensitivity. This strengthens the case for using random cocktails of AMPs in favour of single AMPs, against which resistance evolved in vitro, providing an alternative to classic antibiotics worth pursuing.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/pharmacology , Drug Resistance, Bacterial/genetics , Biofilms/drug effects , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology
2.
Sci Rep ; 14(1): 15093, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956179

ABSTRACT

2K4L is a rationally designed analog of the short α-helical peptide temporin-1CEc, a natural peptide isolated and purified from the skin secretions of the Chinese brown frog Rana chensinensis by substituting amino acid residues. 2K4L displayed improved and broad-spectrum antibacterial activity than temporin-1CEc in vitro. Here, the antibacterial and anti-inflammatory activities of 2K4L in macrophages, C. elegans and mice were investigated. The results demonstrated that 2K4L could enter THP-1 cells to kill a multidrug-resistant Acinetobacter baumannii strain (MRAB 0227) and a sensitive A. baumannii strain (AB 22933), as well as reduce proinflammatory responses induced by MRAB 0227 by inhibiting NF-κB signaling pathway. Similarly, 2K4L exhibited strong bactericidal activity against A. baumannii uptake into C. elegans, extending the lifespan and healthspan of the nematodes. Meanwhile, 2K4L alleviated the oxidative stress response by inhibiting the expression of core genes in the p38 MAPK/PMK-1 signaling pathway and downregulating the phosphorylation level of p38, thereby protecting the nematodes from damage by A. baumannii. Finally, in an LPS-induced septic model, 2K4L enhanced the survival of septic mice and decreased the production of proinflammatory cytokines by inhibiting the signaling protein expression of the MAPK and NF-κB signaling pathways and protecting LPS-induced septic mice from a lethal inflammatory response. In conclusion, 2K4L ameliorated LPS-induced inflammation both in vitro and in vivo.


Subject(s)
Acinetobacter baumannii , Caenorhabditis elegans , Lipopolysaccharides , Macrophages , Shock, Septic , Animals , Caenorhabditis elegans/drug effects , Mice , Acinetobacter baumannii/drug effects , Macrophages/drug effects , Macrophages/metabolism , Shock, Septic/drug therapy , Shock, Septic/chemically induced , Shock, Septic/metabolism , NF-kappa B/metabolism , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Humans , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Oxidative Stress/drug effects , Mitogen-Activated Protein Kinases , Caenorhabditis elegans Proteins
3.
Nat Commun ; 15(1): 5636, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965232

ABSTRACT

Natural antimicrobial peptides (AMPs) and enzymes (AMEs) are promising non-antibiotic candidates against antimicrobial resistance but suffer from low efficiency and poor stability. Here, we develop peptide nanozymes which mimic the mode of action of AMPs and AMEs through de novo design and peptide assembly. Through modelling a minimal building block of IHIHICI is proposed by combining critical amino acids in AMPs and AMEs and hydrophobic isoleucine to conduct assembly. Experimental validations reveal that IHIHICI assemble into helical ß-sheet nanotubes with acetate modulation and perform phospholipase C-like and peroxidase-like activities with Ni coordination, demonstrating high thermostability and resistance to enzymatic degradation. The assembled nanotubes demonstrate cascade antifungal actions including outer mannan docking, wall disruption, lipid peroxidation and subsequent ferroptotic death, synergistically killing >90% Candida albicans within 10 min on disinfection pad. These findings demonstrate an effective de novo design strategy for developing materials with multi-antimicrobial mode of actions.


Subject(s)
Antifungal Agents , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Candida albicans/drug effects , Microbial Sensitivity Tests , Nanotubes/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Lipid Peroxidation/drug effects , Peptides/pharmacology , Peptides/chemistry
4.
Biomolecules ; 14(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38927062

ABSTRACT

Rattusin, an α-defensin-related antimicrobial peptide isolated from the small intestine of rats, has been previously characterized through NMR spectroscopy to elucidate its three-dimensional structure, revealing a C2 homodimeric scaffold stabilized by five disulfide bonds. This study aimed to identify the functional region of rattusin by designing and synthesizing various short analogs, subsequently leading to the development of novel peptide-based antibiotics. The analogs, designated as F1, F2, F3, and F4, were constructed based on the three-dimensional configuration of rattusin, among which F2 is the shortest peptide and exhibited superior antimicrobial efficacy compared to the wild-type peptide. The central cysteine residue of F2 prompted an investigation into its potential to form a dimer at neutral pH, which is critical for its antimicrobial function. This activity was abolished upon the substitution of the cysteine residue with serine, indicating the necessity of dimerization for antimicrobial action. Further, we synthesized ß-hairpin-like analogs, both parallel and antiparallel, based on the dimeric structure of F2, which maintained comparable antimicrobial potency. In contrast to rattusin, which acts by disrupting bacterial membranes, the F2 dimer binds directly to DNA, as evidenced by fluorescence assays and DNA retardation experiments. Importantly, F2 exhibited negligible cytotoxicity up to 515 µg/mL, assessed via hemolysis and MTT assays, underscoring its potential as a lead compound for novel peptide-based antibiotic development.


Subject(s)
alpha-Defensins , Animals , alpha-Defensins/chemistry , alpha-Defensins/pharmacology , alpha-Defensins/chemical synthesis , Microbial Sensitivity Tests , Rats , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemical synthesis , Protein Multimerization/drug effects , DNA/metabolism , DNA/chemistry , Hemolysis/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Amino Acid Sequence
5.
Proc Natl Acad Sci U S A ; 121(25): e2401802121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865264

ABSTRACT

The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota.


Subject(s)
Antimicrobial Peptides , Gastrointestinal Microbiome , Symbiosis , Animals , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/genetics , Antimicrobial Peptides/pharmacology , Bacteria/genetics , Bacteria/metabolism , Bacteria/drug effects , Gastrointestinal Tract/microbiology
6.
ACS Appl Mater Interfaces ; 16(25): 32087-32103, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38866723

ABSTRACT

Due to the extensive use of antibiotics, many highly resistant bacteria and extensively resistant bacteria have been produced. In recent years, the increase of drug-resistant bacteria and the resulting proliferation of drug-resistant bacteria have increased the incidence of hospital-acquired infections and caused great harm to human health. Antimicrobial peptides (AMPs) are considered to be an innovative antibiotic and belong to the latest advances in this field. We designed a polypeptide and verified its low minimum inhibitory concentration and broad-spectrum activity against Gram-positive bacteria, Gram-negative bacteria, and fungi in microbiology and pharmacology. Several experiments have confirmed that the screened antimicrobial peptides have significant antidrug resistance and also show significant therapeutic properties in the treatment of systemic bacterial infections. In addition, through our experimental research, it was proved that the antibacterial hydrogel composed of poly(vinyl alcohol), sodium alginate, and antimicrobial peptides had excellent antibacterial properties and showed good wound healing ability.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Wound Healing , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Mice , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Humans , Gram-Negative Bacteria/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Gram-Positive Bacteria/drug effects , Alginates/chemistry , Alginates/pharmacology
7.
Dalton Trans ; 53(26): 10890-10900, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874585

ABSTRACT

Herein, we describe the synthesis and characterisation of four new supramolecular cobalt conjugates of antimicrobial peptides functionalised with terpyridine ligands (L). Peptides were chosen based on the well-established arginine-tryptophan (RW)3 motif, with terpyridine-derivatized lysine (Lys(tpy)) added to the sequence, or replacing tryptophan residues. Self-assembly of the antimicrobial peptides with Co(BF4)2·6H2O formed exclusively CoL2 dimers (for peptides with one tpy ligand each) and Co2L4 metallo-macrocycles (for peptides with two tpy ligands for each peptide), which could be 'locked' by oxidation of Co(+II) to Co(+III) with ammonium ceric nitrate. The Co-peptide complexes were characterised by mass spectrometry and in solution by NMR spectroscopy, including 2D diffusion ordered NMR spectroscopy (DOSY) which confirmed the proposed stoichiometries. The antimicrobial activity of the novel peptides and their metallo-supramolecular assemblies was investigated by determination of their minimal inhibitory concentration (MIC) against a panel of Gram-positive and Gram-negative bacteria. Complexation with cobalt increases the activity of the peptides in almost every case. Most of the new metal-peptide conjugates showed good activity against Gram-positive bacteria, including a multi-resistant S. aureus strain and the opportunistic pathogenic yeast C. albicans (down to 7 µmol l-1 for the most active Co2L4 derivate), a value that is increased five-fold compared to the lysine-derivatized peptide ligand alone. Interestingly, conjugates of the CoL2 type also showed decent activity against Gram-negative bacteria including the WHO-flagged problematic A. baumannii strain (down to 18 µmol l-1 for the most active derivative).


Subject(s)
Anti-Bacterial Agents , Cobalt , Gram-Positive Bacteria , Microbial Sensitivity Tests , Cobalt/chemistry , Cobalt/pharmacology , Gram-Positive Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Gram-Negative Bacteria/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemical synthesis , Ligands
8.
J Nat Prod ; 87(6): 1548-1555, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38888620

ABSTRACT

Antimicrobial peptides (AMPs) have raised significant interest, forming a potential new class of antibiotics in the fight against multi-drug-resistant bacteria. Various AMPs are ribosomally synthesized and post-translationally modified peptides (RiPPs). One post-translational modification found in AMPs is the halogenation of Trp residues. This modification has, for example, been shown to be critical for the activity of the potent AMP NAI-107 from Actinoallomurus. Due to the importance of organohalogens, establishing methods for facile and selective halogen atom installation into AMPs is highly desirable. In this study, we introduce an expression system utilizing the food-grade strain Lactococcus lactis, facilitating the efficient incorporation of bromo-Trp (BrTrp) into (modified) peptides, exemplified by the lantibiotic nisin with a single Trp residue or analogue incorporated at position 1. This provides an alternative to the challenges posed by halogenase enzymes, such as poor substrate selectivity. Our method yields expression levels comparable to that of wild-type nisin, while BrTrp incorporation does not interfere with the post-translational modifications of nisin (dehydration and cyclization). One brominated nisin variant exhibits a 2-fold improvement in antimicrobial activity against two tested pathogens, including a WHO priority pathogen, while maintaining the same lipid II binding and bactericidal activity as wild-type nisin. The work presented here demonstrates the potential of this methodology for peptide halogenation, offering a new avenue for the development of diverse antimicrobial products labeled with BrTrp.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Halogenation , Microbial Sensitivity Tests , Nisin , Nisin/pharmacology , Nisin/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tryptophan/chemistry , Lactococcus lactis , Molecular Structure
9.
Int J Biol Macromol ; 273(Pt 2): 132990, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857719

ABSTRACT

Pseudomonas aeruginosa is a critical pathogen and novel treatments are urgently needed. The out membrane of P. aeruginosa facilitates biofilm formation and antibiotic resistance, and hinders the exogenous application against Gram-negative bacteria of endolysins. Engineered endolysins are investigated for enhancing antimicrobial activity, exemplified by artilysins. Nevertheless, existing research predominantly relies on laborious and time-consuming approaches of individually artilysin identification. This study proposes a novel strategy for expedited artilysin discovery using a recombinant artilysin library comprising proteins derived from 38 antimicrobial peptides and 8 endolysins. In this library, 19 colonies exhibited growth inhibition against P. aeruginosa exceeding 50 %, and three colonies were designated as dutarlysin-1, dutarlysin-2 and dutarlysin-3. Remarkably, dutarlysin-1, dutarlysin-2 and dutarlysin-3 demonstrated rapid and enhanced antibacterial activity, even minimum inhibitory concentration of them killed approximately 4.93 lg units, 6.75 lg units and 5.36 lg units P. aeruginosa, respectively. Dutarlysins were highly refractory to P. aeruginosa resistance development. Furthermore, 2 µmol/L dutarlysin-1 and dutarlysin-3 effectively eradicated over 76 % of the mature biofilm. These dutarlysins exhibited potential broad-spectrum activity against hospital susceptible Gram-negative bacteria. These results supported the effectiveness of this artilysins discovery strategy and suggested dutarlysin-1 and dutarlysin-3 could be promising antimicrobial agents for combating P. aeruginosa.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Recombinant Proteins/pharmacology , Endopeptidases/pharmacology , Endopeptidases/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry
10.
BMC Vet Res ; 20(1): 257, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867200

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is nowadays a major emerging challenge for public health worldwide. The over- and misuse of antibiotics, including those for cell culture, are promoting AMR while also encouraging the research and employment of alternative drugs. The addition of antibiotics to the cell media is strongly recommended in sperm preservation, being gentamicin the most used for boar semen. Because of its continued use, several bacterial strains present in boar semen have developed resistance to this antibiotic. Antimicrobial peptides and proteins (AMPPs) are promising candidates as alternative antibiotics because their mechanism of action is less likely to promote AMR. In the present study, we tested two AMPPs (lysozyme and nisin; 50 and 500 µg/mL) as possible substitutes of gentamicin for boar semen preservation up to 48 h of storage. RESULTS: We found that both AMPPs improved sperm plasma membrane and acrosome integrity during semen storage. The highest concentration tested for lysozyme also kept the remaining sperm parameters unaltered, at 48 h of semen storage, and reduced the bacterial load at comparable levels of the samples supplemented with gentamicin (p > 0.05). On the other hand, while nisin (500 µg/mL) reduced the total Enterobacteriaceae counts, it also decreased the rapid and progressive sperm population and the seminal oxidation-reduction potential (p < 0.05). CONCLUSIONS: The protective effect of lysozyme on sperm function together with its antimicrobial activity and inborn presence in body fluids, including semen and cervical mucus, makes this enzyme a promising antimicrobial agent for boar semen preservation.


Subject(s)
Anti-Bacterial Agents , Muramidase , Nisin , Semen Preservation , Animals , Semen Preservation/veterinary , Semen Preservation/methods , Male , Anti-Bacterial Agents/pharmacology , Swine , Muramidase/pharmacology , Nisin/pharmacology , Semen/drug effects , Spermatozoa/drug effects , Antimicrobial Peptides/pharmacology , Cell Membrane/drug effects , Gentamicins/pharmacology , Acrosome/drug effects
11.
PLoS One ; 19(6): e0302440, 2024.
Article in English | MEDLINE | ID: mdl-38870165

ABSTRACT

Rhizoctonia solani, the causative agent of sheath blight disease in rice, poses a significant threat to agricultural productivity. Traditional management approaches involving chemical fungicides have been effective but come with detrimental consequences for the ecosystem. This study aimed to investigate sustainable alternatives in the form of antifungal peptides derived from Solanaceous plant species as potential agents against R. solani. Peptide extracts were obtained using an optimized antimicrobial peptide (AMP) extraction method and desalted using the solid-phase extraction technique. The antifungal potential of peptide-rich extracts from Solanum tuberosum and Capsicum annum was assessed through in vitro tests employing the agar well diffusion method. Furthermore, peptide-protein docking analysis was performed on HPEPDOCK and HDOCK server; and molecular dynamics simulations (MDS) of 100 ns period were performed using the Gromacs 2020.4. The results demonstrated significant inhibition zones for both extracts at concentrations of 100 mg/mL. Additionally, the extracts of Solanum tuberosum and Capsicum annum had minimum inhibitory concentrations of 50 mg/mL and 25 mg/mL, respectively with minimum fungicidal concentrations of 25 mg/mL. Insights into the potential mechanisms of key peptides inhibiting R. solani targets were gleaned from in-silico studies. Notably, certain AMPs exhibited favorable free energy of binding against pathogenicity-related targets, including histone demethylase, sortin nexin, and squalene synthase, in protein-peptide docking simulations. Extended molecular dynamics simulations lasting 100 ns and MM-PBSA calculations were performed on select protein-peptide complexes. AMP10 displayed the most favorable binding free energy against all target proteins, with AMP3, AMP12b, AMP6, and AMP15 also exhibiting promising results against specific targets of R. solani. These findings underscore the potential of peptide extracts from S. tuberosum and C. annum as effective antifungal agents against rice sheath blight caused by R. solani.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Oryza , Plant Diseases , Rhizoctonia , Oryza/microbiology , Plant Diseases/microbiology , Rhizoctonia/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Solanum tuberosum/microbiology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Solanaceae/chemistry , Microbial Sensitivity Tests , Computer Simulation , Capsicum/microbiology , Capsicum/chemistry
12.
Sci Rep ; 14(1): 13818, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879638

ABSTRACT

The hematophagous common bed bug, Cimex lectularius, is not known to transmit human pathogens outside laboratory settings, having evolved various immune defense mechanisms including the expression of antimicrobial peptides (AMPs). We unveil three novel prolixicin AMPs in bed bugs, exhibiting strong homology to the prolixicin of kissing bugs, Rhodnius prolixus, and to diptericin/attacin AMPs. We demonstrate for the first time sex-specific and immune mode-specific upregulation of these prolixicins in immune organs, the midgut and rest of body, following injection and ingestion of Gr+ (Bacillus subtilis) and Gr- (Escherichia coli) bacteria. Synthetic CL-prolixicin2 significantly inhibited growth of E. coli strains and killed or impeded Trypanosoma cruzi, the Chagas disease agent. Our findings suggest that prolixicins are regulated by both IMD and Toll immune pathways, supporting cross-talk and blurred functional differentiation between major immune pathways. The efficacy of CL-prolixicin2 against T. cruzi underscores the potential of AMPs in Chagas disease management.


Subject(s)
Bedbugs , Escherichia coli , Trypanosoma cruzi , Animals , Trypanosoma cruzi/drug effects , Bedbugs/microbiology , Bedbugs/drug effects , Escherichia coli/drug effects , Bacillus subtilis/metabolism , Bacillus subtilis/drug effects , Female , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/metabolism , Male , Chagas Disease/parasitology , Insect Proteins/metabolism , Amino Acid Sequence
13.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892071

ABSTRACT

Peptides displaying antimicrobial properties are being regarded as useful tools to evade and combat antimicrobial resistance, a major public health challenge. Here we have addressed dendrimers, attractive molecules in pharmaceutical innovation and development displaying broad biological activity. Triazine-based dendrimers were fully synthesized in the solid phase, and their antimicrobial activity and some insights into their mechanisms of action were explored. Triazine is present in a large number of compounds with highly diverse biological targets with broad biological activities and could be an excellent branching unit to accommodate peptides. Our results show that the novel peptide dendrimers synthesized have remarkable antimicrobial activity against Gram-negative bacteria (E. coli and P. aeruginosa) and suggest that they may be useful in neutralizing the effect of efflux machinery on resistance.


Subject(s)
Dendrimers , Escherichia coli , Microbial Sensitivity Tests , Triazines , Dendrimers/chemistry , Dendrimers/chemical synthesis , Dendrimers/pharmacology , Triazines/chemistry , Triazines/pharmacology , Triazines/chemical synthesis , Escherichia coli/drug effects , Pseudomonas aeruginosa/drug effects , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/chemical synthesis
14.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892216

ABSTRACT

The escalating threat of multidrug-resistant pathogens necessitates innovative approaches to combat infectious diseases. In this study, we examined peptides R23FS*, V31KS*, and R44KS*, which were engineered to include an amyloidogenic fragment sourced from the S1 protein of S. aureus, along with one or two cell-penetrating peptide (CPP) components. We assessed the antimicrobial efficacy of these peptides in a liquid medium against various strains of both Gram-positive bacteria, including S. aureus (209P and 129B strains), MRSA (SA 180 and ATCC 43300 strains), and B. cereus (strain IP 5832), and Gram-negative bacteria such as P. aeruginosa (ATCC 28753 and 2943 strains) and E. coli (MG1655 and K12 strains). Peptides R23FS*, V31KS*, and R44KS* exhibited antimicrobial activity comparable to gentamicin and meropenem against all tested bacteria at concentrations ranging from 24 to 48 µM. The peptides showed a stronger antimicrobial effect against B. cereus. Notably, peptide R44KS* displayed high efficacy compared to peptides R23FS* and V31KS*, particularly evident at lower concentrations, resulting in significant inhibition of bacterial growth. Furthermore, modified peptides V31KS* and R44KS* demonstrated enhanced inhibitory effects on bacterial growth across different strains compared to their unmodified counterparts V31KS and R44KS. These results highlight the potential of integrating cell-penetrating peptides, amyloidogenic fragments, and amino acid residue modifications to advance the innovation in the field of antimicrobial peptides, thereby increasing their effectiveness against a broad spectrum of pathogens.


Subject(s)
Antimicrobial Peptides , Cell-Penetrating Peptides , Microbial Sensitivity Tests , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Amino Acids/chemistry , Drug Design , Amyloidogenic Proteins/chemistry
15.
Bioorg Chem ; 149: 107524, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38850782

ABSTRACT

Proteins and peptides, as polypeptide chains, have usually got unique conformational structures for effective biological activity. Antimicrobial peptides (AMPs) are a group of bioactive peptides, which have been increasingly studied during recent years for their promising antibacterial, antifungal, antiviral and anti-inflammatory activity, as well as, other esteemed bioactivities. Numerous AMPs have been separated from a wide range of natural resources, or produced in vitro through chemical synthesis and recombinant protein expression. Natural AMPs have had limited clinical application due to several drawbacks, such as their short half-life due to protease degradation, lack of activity at physiological salt concentrations, toxicity to mammalian cells, and the absence of suitable methods of delivery for the AMPs that are targeted and sustained. The creation of synthetic analogs of AMPs would both avoid the drawbacks of the natural analogs and maintain or even increase the antimicrobial effectiveness. The structure-activity relationship of discovered AMPs or their derivatives facilitates the development of synthetic AMPs. This review discovered that the relationship between the activity of AMPs and their positive net charge, hydrophobicity, and amino acid sequence and the relationship between AMPs' function and other features like their topology, glycosylation, and halogenation.


Subject(s)
Antimicrobial Peptides , Humans , Structure-Activity Relationship , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/chemical synthesis , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Animals , Molecular Structure , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Bacteria/drug effects
16.
Nat Commun ; 15(1): 4901, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851779

ABSTRACT

Antimicrobial resistance remains a significant global threat, driving up mortality rates worldwide. Ribosomally synthesized and post-translationally modified peptides have emerged as a promising source of novel peptide antibiotics due to their diverse chemical structures. Here, we report the discovery of new aminovinyl-(methyl)cysteine (Avi(Me)Cys)-containing peptide antibiotics through a synergistic approach combining biosynthetic rule-based omics mining and heterologous expression. We first bioinformatically identify 1172 RiPP biosynthetic gene clusters (BGCs) responsible for Avi(Me)Cys-containing peptides formation from a vast pool of over 50,000 bacterial genomes. Subsequently, we successfully establish the connection between three identified BGCs and the biosynthesis of five peptide antibiotics via biosynthetic rule-guided metabolic analysis. Notably, we discover a class V lanthipeptide, massatide A, which displays excellent activity against gram-positive pathogens, including drug-resistant clinical isolates like linezolid-resistant S. aureus and methicillin-resistant S. aureus, with a minimum inhibitory concentration of 0.25 µg/mL. The remarkable performance of massatide A in an animal infection model, coupled with a relatively low risk of resistance and favorable safety profile, positions it as a promising candidate for antibiotic development. Our study highlights the potential of Avi(Me)Cys-containing peptides in expanding the arsenal of antibiotics against multi-drug-resistant bacteria, offering promising drug leads in the ongoing battle against infectious diseases.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Humans , Multigene Family , Mice , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/genetics , Antimicrobial Peptides/metabolism , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/drug effects , Genome, Bacterial/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Computational Biology/methods , Cysteine/metabolism , Cysteine/chemistry
17.
Phys Chem Chem Phys ; 26(23): 16529-16539, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38828872

ABSTRACT

This study reports on the effects of conformationally controlled amphiphilicity of antimicrobial peptides (AMPs) on their ability to coat TiO2 nanoparticles (NPs) and boost the photocatalytic antimicrobial effects of such NPs. For this, TiO2 NPs were combined with AMP EFK17 (EFKRIVQRIKDFLRNLV), displaying a disordered conformation in aqueous solution but helix formation on interaction with bacterial membranes. The membrane-bound helix is amphiphilic, with all polar and charged amino acid residues located at one side and all non-polar and hydrophobic residues on the other. In contrast, the d-enantiomer variant EFK17-d (E(dF)KR(dI)VQR(dI)KD(dF)LRNLV) is unable to form the amphiphilic helix on bacterial membrane interaction, whereas the W-residues in EFK17-W (EWKRWVQRWKDFLRNLV) boost hydrophobic interactions of the amphiphilic helix. Circular dichroism results showed the effects displayed for the free peptide, to also be present for peptide-coated TiO2 NPs, causing peptide binding to decrease in the order EFK17-W > EFK17 > EFK17-d. Notably, the formation of reactive oxygen species (ROS) by the TiO2 NPs was essentially unaffected by the presence of peptide coating, for all the peptides investigated, and the coatings stabilized over hours of UV exposure. Photocatalytic membrane degradation from TiO2 NPs coated with EFK17-W and EFK17 was promoted for bacteria-like model bilayers containing anionic phosphatidylglycerol but suppressed in mammalian-like bilayers formed by zwitterionic phosphatidylcholine and cholesterol. Structural aspects of these effects were further investigated by neutron reflectometry with clear variations observed between the bacteria- and mammalian-like model bilayers for the three peptides. Mirroring these results in bacteria-like model membranes, combining TiO2 NPs with EFK17-W and EFK17, but not with non-adsorbing EFK17-d, resulted in boosted antimicrobial effects of the resulting cationic composite NPs already in darkness, effects enhanced further on UV illumination.


Subject(s)
Titanium , Titanium/chemistry , Titanium/pharmacology , Catalysis , Nanoparticles/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Reactive Oxygen Species/metabolism , Hydrophobic and Hydrophilic Interactions , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology
18.
Nano Lett ; 24(23): 6906-6915, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38829311

ABSTRACT

Herein, a multifunctional nanohybrid (PL@HPFTM nanoparticles) was fabricated to perform the integration of chemodynamic therapy, photothermal therapy, and biological therapy over the long term at a designed location for continuous antibacterial applications. The PL@HPFTM nanoparticles consisted of a polydopamine/hemoglobin/Fe2+ nanocomplex with comodification of tetrazole/alkene groups on the surface as well as coloading of antimicrobial peptides and luminol in the core. During therapy, the PL@HPFTM nanoparticles would selectively cross-link to surrounding bacteria via tetrazole/alkene cycloaddition under chemiluminescence produced by the reaction between luminol and overexpressed H2O2 at the infected area. The resulting PL@HPFTM network not only significantly damaged bacteria by Fe2+-catalyzed ROS production, effective photothermal conversion, and sustained release of antimicrobial peptides but dramatically enhanced the retention time of these therapeutic agents for prolonged antibacterial therapy. Both in vitro and in vivo results have shown that our PL@HPFTM nanoparticles have much higher bactericidal efficiency and remarkably longer periods of validity than free antibacterial nanoparticles.


Subject(s)
Anti-Bacterial Agents , Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Nanoparticles/chemistry , Mice , Escherichia coli/drug effects , Polymers/chemistry , Indoles/chemistry , Indoles/pharmacology , Photothermal Therapy , Humans , Staphylococcus aureus/drug effects , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology
19.
J Agric Food Chem ; 72(23): 13360-13370, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38830379

ABSTRACT

This study reports a peptide design model for engineering fusion-expressed antimicrobial peptides (AMPs) with the AflR dinuclear zinc finger motif to improve the defense against aflatoxins and Aspergillus flavus. The study identified AflR, a Zn2Cys6-type sequence-specific DNA-binding protein, as a key player in the regulation of aflatoxin biosynthesis. By integrating the AflR motif into AMPs, we demonstrate that these novel fusion peptides significantly lower the minimum inhibitory concentrations (MICs) and reduce aflatoxin B1 and B2 levels, outperforming traditional AMPs. Comprehensive analysis, including bioinformatics and structural determination, elucidates the enhanced structure-function relationship underlying their efficacy. Furthermore, the study reveals the possibility that the fusion peptides have the potential to bind to the DNA binding sites of transcriptional regulators, binding DNA sites of key transcriptional regulators, thereby inhibiting genes critical for aflatoxin production. This research not only deepens our understanding of aflatoxin inhibition mechanisms but also presents a promising avenue for developing advanced antifungal agents, which are essential for global food safety and crop protection.


Subject(s)
Aspergillus flavus , Zinc Fingers , Aspergillus flavus/drug effects , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Aspergillus flavus/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Antimicrobial Peptides/metabolism , Aflatoxins/biosynthesis , Aflatoxins/chemistry , Aflatoxins/genetics , Protein Engineering , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology
20.
Sci Rep ; 14(1): 12892, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839785

ABSTRACT

Antimicrobials are molecules that prevent the formation of microorganisms such as bacteria, viruses, fungi, and parasites. The necessity to detect antimicrobial peptides (AMPs) using machine learning and deep learning arises from the need for efficiency to accelerate the discovery of AMPs, and contribute to developing effective antimicrobial therapies, especially in the face of increasing antibiotic resistance. This study introduced AMP-RNNpro based on Recurrent Neural Network (RNN), an innovative model for detecting AMPs, which was designed with eight feature encoding methods that are selected according to four criteria: amino acid compositional, grouped amino acid compositional, autocorrelation, and pseudo-amino acid compositional to represent the protein sequences for efficient identification of AMPs. In our framework, two-stage predictions have been conducted. Initially, this study analyzed 33 models on these feature extractions. Then, we selected the best six models from these models using rigorous performance metrics. In the second stage, probabilistic features have been generated from the selected six models in each feature encoding and they are aggregated to be fed into our final meta-model called AMP-RNNpro. This study also introduced 20 features with SHAP, which are crucial in the drug development fields, where we discover AAC, ASDC, and CKSAAGP features are highly impactful for detection and drug discovery. Our proposed framework, AMP-RNNpro excels in the identification of novel Amps with 97.15% accuracy, 96.48% sensitivity, and 97.87% specificity. We built a user-friendly website for demonstrating the accurate prediction of AMPs based on the proposed approach which can be accessed at http://13.126.159.30/ .


Subject(s)
Antimicrobial Peptides , Neural Networks, Computer , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Machine Learning , Anti-Infective Agents/pharmacology , Deep Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...