Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.145
Filter
1.
Sci Rep ; 14(1): 15547, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969662

ABSTRACT

Root-knot nematodes (RKNs) are a vital pest that causes significant yield losses and economic damage to potato plants. The use of chemical pesticides to control these nematodes has led to environmental concerns and the development of resistance in the nematode populations. Endophytic fungi offer an eco-friendly alternative to control these pests and produce secondary metabolites that have nematicidal activity against RKNs. The objective of this study is to assess the efficacy of Aspergillus flavus (ON146363), an entophyte fungus isolated from Trigonella foenum-graecum seeds, against Meloidogyne incognita in filtered culture broth using GC-MS analysis. Among them, various nematicidal secondary metabolites were produced: Gadoleic acid, Oleic acid di-ethanolamide, Oleic acid, and Palmitic acid. In addition, biochemical compounds such as Gallic acid, Catechin, Protocatechuic acid, Esculatin, Vanillic acid, Pyrocatechol, Coumarine, Cinnamic acid, 4, 3-indol butyl acetic acid and Naphthyl acetic acid by HPLC. The fungus was identified through morphological and molecular analysis, including ITS 1-4 regions of ribosomal DNA. In vitro experiments showed that culture filtrate of A. flavus had a variable effect on reducing the number of egg hatchings and larval mortality, with higher concentrations showing greater efficacy than Abamectin. The fungus inhibited the development and multiplication of M. incognita in potato plants, reducing the number of galls and eggs by 90% and 89%, respectively. A. flavus increased the activity of defense-related enzymes Chitinas, Catalyse, and Peroxidase after 15, 45, and 60 days. Leaching of the concentrated culture significantly reduced the second juveniles' stage to 97% /250 g soil and decreased the penetration of nematodes into the roots. A. flavus cultural filtrates via soil spraying improved seedling growth and reduced nematode propagation, resulting in systemic resistance to nematode infection. Therefore, A. flavus can be an effective biological control agent for root-knot nematodes in potato plants. This approach provides a sustainable solution for farmers and minimizes the environmental impact.


Subject(s)
Aspergillus flavus , Endophytes , Pest Control, Biological , Plant Diseases , Solanum tuberosum , Tylenchoidea , Solanum tuberosum/parasitology , Solanum tuberosum/microbiology , Animals , Endophytes/physiology , Plant Diseases/parasitology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Tylenchoidea/drug effects , Tylenchoidea/physiology , Pest Control, Biological/methods , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism , Aspergillus flavus/drug effects , Plant Roots/parasitology , Plant Roots/microbiology , Antinematodal Agents/pharmacology , Antinematodal Agents/metabolism , Trigonella/microbiology
2.
Nat Commun ; 15(1): 5529, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956039

ABSTRACT

Left unchecked, plant-parasitic nematodes have the potential to devastate crops globally. Highly effective but non-selective nematicides are justifiably being phased-out, leaving farmers with limited options for managing nematode infestation. Here, we report our discovery of a 1,3,4-oxadiazole thioether scaffold called Cyprocide that selectively kills nematodes including diverse species of plant-parasitic nematodes. Cyprocide is bioactivated into a lethal reactive electrophilic metabolite by specific nematode cytochrome P450 enzymes. Cyprocide fails to kill organisms beyond nematodes, suggesting that the targeted lethality of this pro-nematicide derives from P450 substrate selectivity. Our findings demonstrate that Cyprocide is a selective nematicidal scaffold with broad-spectrum activity that holds the potential to help safeguard our global food supply.


Subject(s)
Antinematodal Agents , Cytochrome P-450 Enzyme System , Nematoda , Animals , Cytochrome P-450 Enzyme System/metabolism , Nematoda/drug effects , Antinematodal Agents/pharmacology , Sulfides/pharmacology , Sulfides/chemistry
3.
Phytopathology ; 114(6): 1244-1252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38916562

ABSTRACT

Three novel trifluoromethylated compounds were designed and synthesized by reacting trifluoroacetimidoyl chloride derivatives with acetamidine hydrochloride or thiourea in the presence of potassium carbonate or sodium hydrogen carbonate as a base. In vitro and in vivo assays demonstrated the efficacy of the tested compounds in controlling root-knot nematode disease on pistachio rootstocks caused by Meloidogyne incognita. Bis-trifluoromethylated derivatives, namely N,N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (compound A1), showed high efficacy as novel and promising nematicides, achieving up to 78.28% control at a concentration of 0.042 mg/liter. This effect is attributed to four methyl and two trifluoromethyl groups. In the pre-inoculation application of compound A1, all three concentrations (0.033, 0.037, and 0.042 mg/liter, and Velum) exhibited a higher level of control, with 83.79, 87.46, and 80.73% control, respectively. In the microplot trials, compound A1 effectively reduced population levels of M. incognita and enhanced plant growth at a concentration of 0.037 mg/liter. This suggests that compound A1 has the potential to inhibit hedgehog protein and could be utilized to prevent the progression of root-knot disease. Furthermore, the molecular docking results revealed that compounds A1 and A3 interact with specific amino acid residues (Gln60, Asp530, Glu70, Arg520, and Thr510) located in the active site of hedgehog protein. Based on the experimental findings of this study, compound A1 shows promise as a lead compound for future investigations.


Subject(s)
Antinematodal Agents , Molecular Docking Simulation , Pistacia , Plant Diseases , Plant Roots , Tylenchoidea , Animals , Tylenchoidea/drug effects , Antinematodal Agents/pharmacology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Roots/parasitology , Pistacia/chemistry
4.
J Nat Prod ; 87(6): 1532-1539, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38853528

ABSTRACT

Nematode infections affect a fifth of the human population, livestock, and crops worldwide, imposing a burden to global public health and economies, particularly in developing nations. Resistance to commercial anthelmintics has increased over the years in livestock infections and driven the pursuit for new drugs. We herein present a rapid, cost-effective, and automated assay for nematicide discovery using the free-living nematode Caenorhabditis elegans to screen a highly diverse natural product library enriched in bioactive molecules. Screening of 10,240 fractions obtained from extracts of various biological sources allowed the identification of 7 promising hit fractions, all from marine sponges. These fractions were further assayed for nematicidal activity against the sheep nematode parasite Haemonchus contortus and for innocuity in zebrafish. The most active extracts against parasites and innocuous toward vertebrates belong to two chemotypes. High-performance liquid chromatography (HPLC) coupled with nuclear magnetic resonance (NMR) revealed that the most abundant compound in one chemotype is halaminol A, an aminoalcohol previously identified in a small screen against H. contortus. Terpene-nucleotide hybrids known as agelasines predominate in the other chemotype. This study reinforces the power of C. elegans for nematicide discovery from large collections and the potential of the chemical diversity derived from marine invertebrate biota.


Subject(s)
Antinematodal Agents , Caenorhabditis elegans , Porifera , Animals , Porifera/chemistry , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Caenorhabditis elegans/drug effects , Molecular Structure , Zebrafish , Haemonchus/drug effects , Chromatography, High Pressure Liquid/methods
5.
Sci Rep ; 14(1): 13500, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38867066

ABSTRACT

The continuous search for natural product-based biopesticides from fungi isolated from untapped sources is an effective tool. In this study, we studied a pre-selected fungal endophyte, isolate Aa22, from the medicinal plant Artemisia absinthium, along with the antifungal, insect antifeedant and nematicidal compounds present in the extract. The endophyte Aa22 was identified as Stemphylium solani by molecular analysis. The antifungal activity was tested by broth microdilution against Fusarium solani, F. oxysporum, F. moniliforme and Botrytis cinerea, the insect antifeedant by choice bioassays against Spodoptera littoralis, Myzus persicae and Rhopalosiphum padi and the in vitro mortality against the root-knot nematode Meloiydogyne javanica. The structures of bioactive compounds were determined on the basis of 1D and 2D NMR spectroscopy and mass spectrometry. The ethyl acetate extract obtained from the solid rice fermentation showed mycelial growth inhibition of fungal pathogens (EC50 0.08-0.31 mg/mL), was antifeedant to M. persicae (99%) and nematicidal (68% mortality). A bioguided fractionation led to the isolation of the new compound stempholone A (1), and the known stempholone B (2) and stemphol (3). These compounds exhibited antifeedant (EC50 0.50 mg/mL), antifungal (EC50 0.02-0.43 mg/L) and nematicidal (MLD 0.5 mg/mL) activities. The extract activities can be explained by 3 (antifungal), 1-3 (antifeedant) and 1 (nematicidal). Phytotoxicity tests on Lolium perenne and Lactuca sativa showed that the extract and 1 increased L. sativa root growth (121-130%) and 1 reduced L. perenne growth (48-49%). These results highlight the potential of the endophytic fungi Aa22 as biotechnological source of natural product-based biopesticides.


Subject(s)
Antifungal Agents , Antinematodal Agents , Endophytes , Animals , Endophytes/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antinematodal Agents/pharmacology , Antinematodal Agents/isolation & purification , Antinematodal Agents/chemistry , Fusarium/drug effects , Spodoptera/drug effects , Spodoptera/growth & development , Ascomycota/drug effects , Botrytis/drug effects , Botrytis/growth & development , Microbial Sensitivity Tests , Tylenchoidea/drug effects
6.
Planta ; 260(2): 36, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922545

ABSTRACT

MAIN CONCLUSION: Integrated management strategies, including novel nematicides and resilient cultivars, offer sustainable solutions to combat root-knot nematodes, crucial for safeguarding global agriculture against persistent threats. Root-knot nematodes (RKN) pose a significant threat to a diverse range of host plants, with their obligatory endoparasitic nature leading to substantial agricultural losses. RKN spend much of their lives inside or in contact by secreting plant cell wall-modifying enzymes resulting in the giant cell development for establishing host-parasite relationships. Additionally, inflicting physical harm to host plants, RKN also contributes to disease complexes creation with fungi and bacteria. This review comprehensively explores the origin, history, distribution, and physiological races of RKN, emphasizing their economic impact on plants through gall formation. Management strategies, ranging from cultural and physical to biological and chemical controls, along with resistance mechanisms and marker-assisted selection, are explored. While recognizing the limitations of traditional nematicides, recent breakthroughs in non-fumigant alternatives like fluensulfone, spirotetramat, and fluopyram offer promising avenues for sustainable RKN management. Despite the success of resistance mechanisms like the Mi gene, challenges persist, prompting the need for integrative approaches to tackle Mi-virulent isolates. In conclusion, the review stresses the importance of innovative and resilient control measures for sustainable agriculture, emphasizing ongoing research to address evolving challenges posed by RKN. The integration of botanicals, resistant cultivars, and biological controls, alongside advancements in non-fumigant nematicides, contributes novel insights to the field, laying the ground work for future research directions to ensure the long-term sustainability of agriculture in the face of persistent RKN threats.


Subject(s)
Agriculture , Plant Diseases , Plant Roots , Animals , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Roots/parasitology , Agriculture/methods , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Host-Parasite Interactions , Disease Resistance , Crops, Agricultural/parasitology , Antinematodal Agents/pharmacology
7.
Int J Biol Macromol ; 269(Pt 2): 132131, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719017

ABSTRACT

Chitosan oligosaccharide (COS) modification is a feasible way to develop novel green nematicides. This study involved the synthesis of various COS sulfonamide derivatives via hydroxylated protection and deprotection, which were then characterized using NMR, FTIR, MS, elemental analysis, XRD, and TG/DTG. In vitro experiments found that COS-alkyl sulfonamide derivatives (S6 and S11-S13) exhibited high mortality (>98 % at 1 mg/mL) against Meloidogyne incognita second-instar larvaes (J2s) among the derivatives. S6 can cause vacuole-like structures in the middle and tail regions of the nematode body and effectively inhibit egg hatching. In vivo tests have found that S6 has well control effects and low plant toxicity. Additionally, the structure-activity studies revealed that S6 with a high degree of substitution, a low molecular weight, and a sulfonyl bond on the amino group of the COS backbone exhibited increased nematicidal activity. The sulfonamide group is a potential active group for developing COS-based nematicides.


Subject(s)
Antinematodal Agents , Chitosan , Oligosaccharides , Sulfonamides , Tylenchoidea , Chitosan/chemistry , Chitosan/pharmacology , Animals , Tylenchoidea/drug effects , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Structure-Activity Relationship , Larva/drug effects
8.
Acta Trop ; 256: 107274, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810900

ABSTRACT

The aim of this study was to evaluate the circadian and seasonal variation of Ageratum conyzoides essential oil (EO) and its nematicidal effect on the free-living nematode Caenorhabditis elegans as a model for parasitic helminths. For the seasonal study, the plants were collected from January to December 2022, at 6 a.m., and to assess the circadian rhythm, the plants were collected in April (rainy season) and October (dry season), at 6, 9, 12 a.m. and 3 and 6 p.m. The fresh plants were then subjected to hydrodistillation, and their chemical composition was analyzed using gas chromatography coupled with mass spectrometry (GC-MS). The motility test with C. elegans was carried out. The primary constituent of the oils was precocene I (65.97 to 78.42 %, respectively), followed by E-caryophyllene (6.04 to 12.16 %), comprising an average of 79.87 % of the composition throughout the year. The average yields of EOs were slightly higher in the rainy season, at 0.68 %, compared to the dry season, at 0.62 %. High light hours in the rainy season (12 a.m., 0.96 %) and in the dry season (9 a.m., 0.88 %) seem to contribute to higher daily oil yields. It was observed that the variation between the main constituents of A. conyzoides occurs in inverse proportion when analyzing the main classes of compounds present in the oils: chromenes (CH) and sesquiterpene hydrocarbons (SH). And that the month of March had the highest content of E-caryophyllene (12.16 %) when compared to the other months of the year. On the other hand, January and December had the lowest levels of precocene I (65.97 and 66.85 %). The IC50 of the EO of A. conyzoides varied according to the month and time of collection. The EO obtained in January was the most effective against C. elegans, with an IC50 of 0.01 mg/mL. Thus, A. conyzoides EO could be an alternative for nematode control, exhibiting greater efficacy if extracted during specific seasonal periods.


Subject(s)
Ageratum , Caenorhabditis elegans , Oils, Volatile , Seasons , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Ageratum/chemistry , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Circadian Rhythm/drug effects , Gas Chromatography-Mass Spectrometry
9.
PLoS Pathog ; 20(5): e1011835, 2024 May.
Article in English | MEDLINE | ID: mdl-38758969

ABSTRACT

A novel group of biocidal compounds are the Crystal 3D (Cry) and Cytolytic (Cyt) proteins produced by Bacillus thuringiensis (Bt). Some Bt Cry proteins have a selective nematocidal activity, with Cry5B being the most studied. Cry5B kills nematode parasites by binding selectively to membrane glycosphingolipids, then forming pores in the cell membranes of the intestine leading to damage. Cry5B selectively targets multiple species of nematodes from different clades and has no effect against mammalian hosts. Levamisole is a cholinergic anthelmintic that acts by selectively opening L-subtype nicotinic acetylcholine receptor ion-channels (L-AChRs) that have been found on muscles of nematodes. A synergistic nematocidal interaction between levamisole and Cry5B at the whole-worm level has been described previously, but the location, mechanism and time-course of this synergism is not known. In this study we follow the timeline of the effects of levamisole and Cry5B on the Ca2+ levels in enterocyte cells in the intestine of Ascaris suum using fluorescence imaging. The peak Ca2+ responses to levamisole were observed after approximately 10 minutes while the peak responses to activated Cry5B were observed after approximately 80 minutes. When levamisole and Cry5B were applied simultaneously, we observed that the responses to Cry5B were bigger and occurred sooner than when it was applied by itself. It is proposed that the synergism is due to the cytoplasmic Ca2+ overload that is induced by the combination of levamisole opening Ca2+ permeable L-subtype nAChRs and the Ca2+ permeable Cry5B toxin pores produced in the enterocyte plasma membranes. The effect of levamisole potentiates and speeds the actions of Cry5B that gives rise to bigger Ca2+ overloads that accelerates cell-death of the enterocytes.


Subject(s)
Ascaris suum , Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Levamisole , Levamisole/pharmacology , Animals , Bacillus thuringiensis Toxins/pharmacology , Endotoxins/pharmacology , Endotoxins/metabolism , Hemolysin Proteins/pharmacology , Hemolysin Proteins/metabolism , Bacterial Proteins/metabolism , Ascaris suum/drug effects , Anthelmintics/pharmacology , Intestines/drug effects , Intestines/parasitology , Drug Synergism , Antinematodal Agents/pharmacology , Bacillus thuringiensis/drug effects
10.
World J Microbiol Biotechnol ; 40(6): 170, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630319

ABSTRACT

Biological control using edible mushrooms as natural enemies is a sustainable alternative for pest management. Despite the well-established literature on toxins and secondary metabolites produced by these fungi in the biochemical control of nematodes, the nematicidal activity of proteases from different Pleurotus species is yet to be investigated. Therefore, this study aimed to correlate protease to the nematicidal activity of different mushrooms, Pleurotus sp., P. ostreatus (SB), P. ostreatus (Pearl), and P. djamor. For such a purpose, we performed motility assays of Panagrellus sp. at different time intervals, 6, 12, and 24 h for each of the mushrooms. In addition, the protease activity was measured using different pH (5, 7, and 9) and fermentation time intervals (45 and 75 days). Furthermore, we also evaluated the effect of this cell-free extract on Panagrellus sp. In response to these experiments, all edible mushrooms showed a reduction over 82% for the nematode-feeding activity (p < 0.01). The cell-free crude extract of each of the fungi studied showed nematocidal activity (p < 0.01). For the 45-day fermentation, P. djamor exhibited statistical significance (p < 0.01) compared with the others, reaching a reduction percentage of 73%. For the 75-day fermentation, Pleurotus sp. and P. ostreatus (Pearl) showed significant differences compared with the other fungi (p < 0.01), with reduction percentages of 64 and 62%, respectively. Herein, protease activity was associated with the nematicidal action of different Pleurotus species in controlling Panagrellus sp.


Subject(s)
Agaricales , Pleurotus , Proteolysis , Antinematodal Agents/pharmacology , Peptide Hydrolases , Endopeptidases
11.
J Agric Food Chem ; 72(17): 9746-9754, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38602331

ABSTRACT

The latex of Euphorbia peplus and its major component 20-deoxyingenol-3-angelate (DI3A) displayed significant nematicidal activity against Caenorhabditis elegans and Panagrellus redivivus. DI3A treatment inhibited the growth and development of nematodes and caused significantly negative effects on locomotion behavior, reproduction, and accumulation of reactive oxygen species. Transcriptome analysis indicated that differential expression genes in DI3A-treated C. elegans were mainly associated with the metabolism, growth, and development process, which were further confirmed by RT-qPCR experiments. The expression level of TPA-1 gene encoding a protein kinase C isotype was obviously upregulated by DI3A treatment, and knockdown of TPA-1 by RNAi technology in the nematode could relieve the growth-inhibitory effect of DI3A. Metabolic analysis indicated that DI3A was hardly metabolized by C. elegans, but a glycosylated indole derivative was specifically accumulated likely due to the activation of detoxification. Overall, our findings suggested that DI3A from E. peplus latex exerted a potent nematicidal effect through the gene TPA-1, which provides a potential target for the control of nematodes and also suggests the potential application value of E. peplus latex and DI3A as botanical nematicides.


Subject(s)
Antinematodal Agents , Caenorhabditis elegans , Euphorbia , Latex , Protein Kinase C , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/growth & development , Latex/chemistry , Latex/metabolism , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Antinematodal Agents/metabolism , Euphorbia/chemistry , Protein Kinase C/metabolism , Protein Kinase C/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry
12.
Chemosphere ; 358: 142143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685319

ABSTRACT

Conventional pest control measures, such as chemical pesticides and nematicides, have limited efficacy and raise environmental concerns, necessitating sustainable and eco-friendly alternatives for pest management. Therefore, to find a complementary eco-friendly pesticide/nematicide, this study investigated the role of fly ash (FA) in managing a notorious pest, Meloidogyne javanica and its impact on the growth and physiology of Abelmoschus esculentus. Molecular characterization using SSU and LSU rDNA gene markers confirmed the identity of Indian M. javanica as belonging to the same species. Biotic stress induced by nematode infection was significantly alleviated (P < 0.05) by FA application at a 20% w/v, regulating of ROS accumulation (44.1% reduction in superoxide anions and 39.7% reduction in hydrogen peroxide content) in the host plant. Moreover, FA enhanced antioxidant defence enzymes like superoxide dismutase (46.6%) and catalase (112%) to combat nematode induced ROS. Furthermore, the application of FA at a 20% concentration significantly improved the biomass and biochemical attributes of okra. Fly ash also upregulated the activity of the important osmo-protectant proline (11.5 µmol/g FW) to mitigate nematode stress in host cells. Suppression of disease indices like gall index and reproduction factor, combined with in-vitro experiments, revealed that FA exhibits strong nematode mortality capacity and thus can be used as a sustainable and eco-friendly control agent against root-knot nematodes.


Subject(s)
Abelmoschus , Antinematodal Agents , Antioxidants , Coal Ash , Reactive Oxygen Species , Tylenchoidea , Animals , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Antinematodal Agents/pharmacology , Tylenchoidea/drug effects , Tylenchoidea/physiology , Soil/chemistry , Soil/parasitology , Pesticides , Superoxide Dismutase/metabolism , Nematoda/drug effects , Nematoda/physiology , Catalase/metabolism
13.
J Invertebr Pathol ; 204: 108114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636720

ABSTRACT

Agricultural Productivity and plant health are threatened by the root-knot nematode. The use of biocontrol agents reduces the need for chemical nematicides and improves the general health of agricultural ecosystems by offering a more environmentally friendly and sustainable method of managing nematode infestations. Plant-parasitic nematodes can be efficiently managed with the use of entomopathogenic nematodes (EPNs), which are widely used biocontrol agents. This study focused on the nematicidal activity of the secondary metabolites present in the bacteria Ochrobactrum sp. identified in the EPN, Heterorhabditisindica against Root-Knot Nematode (Meloidogyne incognita). Its effect on egg hatching and survival of juveniles of root- knot nematode (RKN) was examined. The ethyl acetate component of the cell-free culture (CFC) filtrate of the Ochrobactrum sp. bacteria was tested at four different concentrations (25 %, 50 %, 75 % and 100 %) along with broth and distilled water as control. The bioactive compounds of Ochrobactrum sp. bacteria showed the highest suppression of M. incognita egg hatching (100 %) and juvenile mortality (100 %) at 100 % concentration within 24 h of incubation. In this study, unique metabolite compounds were identified through the Gas Chromatography- Mass Spectrometry (GC-MS) analysis, which were found to have anti- nematicidal activity. In light of this, molecular docking studies were conducted to determine the impact of biomolecules from Ochrobactrum sp. using significant proteins of M. incognita, such as calreticulin, sterol carrier protein 2, flavin-containing monooxygenase, pectate lyase, candidate secreted effector, oesophageal gland cell secretory protein and venom allergen-like protein. The results also showed that the biomolecules from Ochrobactrum sp. had a significant inhibitory effect on the different protein targets of M. incognita. 3-Epimacronine and Heraclenin were found to inhibit most of the chosen target protein. Among the targets, the docking analysis revealed that Heraclenin exhibited the highest binding affinity of -8.6 Kcal/mol with the target flavin- containing monooxygenase. Further, the in vitro evaluation of 3- Epimacronine confirmed their nematicidal activity against M. incognita at different concentrations. In light of this, the present study has raised awareness of the unique biomolecules of the bacterial symbiont Ochrobactrum sp. isolated from H. indica that have nematicidal properties.


Subject(s)
Molecular Docking Simulation , Ochrobactrum , Tylenchoidea , Animals , Ochrobactrum/metabolism , Antinematodal Agents/pharmacology , Antinematodal Agents/metabolism , Antinematodal Agents/chemistry , Pest Control, Biological
14.
J Agric Food Chem ; 72(11): 5585-5594, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38442026

ABSTRACT

To find novel nematicides, we screened the nematicidal activity of compounds in our laboratory compound library. Interestingly, the compound N-((1R,2R)-2-(2-fluoro-4-(trifluoromethyl)phenyl)cyclopropyl)-2-(trifluoromethyl)benzamide (W3) showed a broad spectrum and excellent nematicidal activity. The LC50 values of compound W3 against second-stage juveniles of Bursaphelenchus xylophilus (B. xylophilus), Aphelenchoides besseyi, and Ditylenchus destructor are 1.30, 1.63, and 0.72 mg/L, respectively. Nematicidal activities of compound W3 against second-stage juveniles of Meloidogyne incognita were 87.66% at 100 mg/L. Meanwhile, compound W3 can not only observably inhibit the feeding, reproduction, and egg hatching of B. xylophilus but can also effectively promote the oxidative stress adverse reactions of nematodes and cause intestinal damage. Compound W3 can promote the production of MDA and inhibit the activities of defense enzymes SOD and GST in B. xylophilus. Compound W3 can affect the transcription of genes involved in regulating the tricarboxylic acid cycle in nematodes, resulting in weakened nematode respiration and reduced nematode activity and even death. In addition, compound W3 had good inhibitory activity against five pathogenic fungi. Among them, the EC50 of compound W3 against Fusarium graminearum was 8.4 mg/L. In the future, we will devote ourselves to the toxicological and structural optimization research of the candidate nematicide W3.


Subject(s)
Tylenchida , Tylenchoidea , Animals , Amides/pharmacology , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Reproduction
15.
PLoS One ; 19(2): e0297925, 2024.
Article in English | MEDLINE | ID: mdl-38358978

ABSTRACT

Nematophagous fungi are the best alternatives to chemical nematicides for managing nematodes considering environmental health. In the current study, activity of metabolites from ten isolates of Purpureocillium lilacinum (Thom) Luangsa-ard (Hypocreales: Ophiocordycipitaceae) and two isolates of Paecilomyces variotii Bainier (Eurotiales: Trichocomaceae), were examined to inhibit the hatching of Meloidogyne incognita (Kofoid & White) Chitwood (Tylenchida: Heteroderidae) eggs. At 100%, 50%, and 25% concentrations, respectively, the culture filtrate of the isolate P. lilacinum 6887 prevented 97.55%, 90.52%, and 62.97% of egg hatching. Out of all the isolates, Pl 6887, Pl 6553, and Pl 2362 showed the greatest results in the hatching inhibition experiment.Gas chromatography-mass spectrometry (GC-MS) analysis revealed a variety of nematicidal compounds from different isolates. A total of seven nematicidal compounds, including four very potent nematicidal fatty acids were found in the isolate Pl 6553. Secondary metabolites of the same isolate possess the highest M. incognita juvenile mortality, i.e., 43.33% and 92% after 48 hrs of treatment at 100 and 200 ppm concentrations, respectively. Significant difference was observed in juvenile mortality percentage among the isolate having highest and lowest nematicidal compounds. Nematicidal fatty acids like myristic and lauric acid were found for the first time in P. lilacinum. Multiple vacuole-like droplets were found inside the unhatched eggs inoculated with the culture filtrate of isolate Pl 6887, and also in the juveniles that perished in the ethyl acetate extract of isolate Pl 6553.


Subject(s)
Byssochlamys , Hypocreales , Tylenchoidea , Animals , Gas Chromatography-Mass Spectrometry , Hypocreales/metabolism , Antinematodal Agents/pharmacology , Antinematodal Agents/metabolism , Tylenchoidea/metabolism , Fatty Acids
16.
Int J Parasitol Drugs Drug Resist ; 24: 100524, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38346379

ABSTRACT

Recently, a S168T variant in the acetylcholine receptor subunit ACR-8 was associated with levamisole resistance in the parasitic helminth Haemonchus contortus. Here, we used the Xenopus laevis oocyte expression system and two-electrode voltage-clamp electrophysiology to measure the functional impact of this S168T variant on the H. contortus levamisole-sensitive acetylcholine receptor, L-AChR-1.1. Expression of the ACR-8 S168T variant significantly reduced the current amplitude elicited by levamisole compared to acetylcholine, with levamisole changing from a full to partial agonist on the recombinant L-AChR. Functional validation of the S168T mutation on modulating levamisole activity at the receptor level highlights its critical importance as both a mechanism and a marker of levamisole resistance.


Subject(s)
Anthelmintics , Haemonchus , Parasites , Animals , Levamisole/pharmacology , Haemonchus/genetics , Haemonchus/metabolism , Antinematodal Agents/pharmacology , Receptors, Cholinergic/genetics , Parasites/metabolism , Drug Resistance/genetics , Anthelmintics/pharmacology , Anthelmintics/metabolism
17.
Exp Parasitol ; 259: 108707, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336095

ABSTRACT

Natural honey contains glycoconjugates as minor components. We characterized acacia honey glycoconjugates with molecular masses in the range of 2-5 kDa. The glycoconjugates were separated by RP-HPLC into three peaks (termed RP-2-5 k-I, RP-2-5 k-II, and RP-2-5 k-III) which demonstrated paralyzing effects on the model nematode C. elegans (ED50 of 50 ng glycoconjugates/µL). To examine molecular mechanisms underlying the nematicidal effects of honey glycoconjugates, expressional analyses of genes that are essential for the growth, development, reproduction, and movement of C. elegans were carried out. Quantitative PCR-based assays showed that these molecules moderately regulate the expression of genes involved in the citric acid cycle (mdh-1 and idhg-1) and cytoskeleton (act-1 and act-2). MALDI-ToF-MS/MS analysis of RP-HPLC peaks revealed the presence of paucimannose-like N-glycans which are known to play important roles in invertebrates e.g., worms and flies. These findings provided novel information regarding the structure and nematicidal function of honey glycoconjugates.


Subject(s)
Acacia , Honey , Animals , Bees , Honey/analysis , Caenorhabditis elegans , Tandem Mass Spectrometry , Antinematodal Agents/pharmacology , Glycoconjugates/pharmacology
18.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338986

ABSTRACT

Root knot nematodes cause serious damage to global agricultural production annually. Given that traditional chemical fumigant nematicides are harmful to non-target organisms and the environment, the development of biocontrol strategies has attracted significant attention in recent years. In this study, it was found that the Bacillus thuringiensis Berliner strain NBIN-863 exhibits strong fumigant nematicidal activity and has a high attraction effect on Meloidogyne incognita (Kofoid and White) Chitwood. Four volatile organic compounds (VOCs) produced by NBIN-863 were identified using solid-phase microextraction and gas chromatography-mass spectrometry. The nematicidal activity of four VOCs, namely, N-methylformamide, propenamide, 3-(methylthio)propionic acid, and phenylmalonic acid, was detected. Among these compounds, 3-(methylthio)propionic acid exhibited the highest direct contact nematicidal activity against M. incognita, with an LC50 value of 6.27 µg/mL at 24 h. In the fumigant bioassay, the mortality rate of M. incognita treated with 1 mg/mL of 3-(methylthio)propionic acid for 24 h increased to 69.93%. Furthermore, 3-(methylthio)propionic acid also exhibited an inhibitory effect on the egg-hatching of M. incognita. Using chemotaxis assays, it was determined that 3-(methylthio)propionic acid was highly attractive to M. incognita. In pot experiments, the application of 3-(methylthio)propionic acid resulted in a reduction in gall numbers, decreasing the number of galls per gram of tomato root from 97.58 to 6.97. Additionally, the root length and plant height of the treated plants showed significant increases in comparison with the control group. The current study suggests that 3-(methylthio)propionic acid is a novel nematicidal virulence factor of B. thuringiensis. Our research provides evidence for the potential use of NBIN-863 or its VOCs in biocontrol against root knot nematodes.


Subject(s)
Bacillus thuringiensis , Pesticides , Propionates , Tylenchoidea , Volatile Organic Compounds , Animals , Antinematodal Agents/pharmacology , Pesticides/pharmacology , Volatile Organic Compounds/pharmacology
19.
J Agric Food Chem ; 72(7): 3560-3571, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38340066

ABSTRACT

The formation of the trapping device induced by nematodes has been assumed as an indicator for a switch from saprophytic to predacious lifestyles for nematode-trapping fungi. However, fungal nematocidal activity is not completely synonymous with fungal trap formation. We found that the predominant nematode-trapping fungus Arthrobotrys oligospora harbored a rare NRPS (Ao415) gene cluster that was mainly distributed in nematode-trapping fungi. The gene Ao415 putatively encodes a protein with a unique domain organization, distinct from other NRPSs in other fungi. Mutation of the two key biosynthetic genes Ao415 and Ao414 combined with nontarget metabolic analysis revealed that the Ao415 gene cluster was responsible for the biosynthesis of a hydroxamate siderophore, desferriferrichrome (1). Lack of desferriferrichrome (1) and its hydroxamate precursor (3) could lead to significantly increased Fe3+ content, which induced fungal trap formation without a nematode inducer. Furthermore, the addition of Fe3+ strongly improved fungal trap formation but deleteriously caused broken traps. The addition of 1 significantly attenuated trap formation but enhanced fungal nematicidal activity. Our findings indicate that iron is a key factor for trap formation and provide a new insight into the underlying mechanism of siderophores in nematode-trapping fungi.


Subject(s)
Ascomycota , Nematoda , Animals , Nematoda/microbiology , Antinematodal Agents/pharmacology , Antinematodal Agents/metabolism , Ascomycota/genetics , Ascomycota/metabolism , Multigene Family
20.
Int J Parasitol Drugs Drug Resist ; 24: 100522, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38295619

ABSTRACT

Within the context of our anthelmintic discovery program, we recently identified and evaluated a quinoline derivative, called ABX464 or obefazimod, as a nematocidal candidate; synthesised a series of analogues which were assessed for activity against the free-living nematode Caenorhabditis elegans; and predicted compound-target relationships by thermal proteome profiling (TPP) and in silico docking. Here, we logically extended this work and critically evaluated the anthelmintic activity of ABX464 analogues on Haemonchus contortus (barber's pole worm) - a highly pathogenic nematode of ruminant livestock. First, we tested a series of 44 analogues on H. contortus (larvae and adults) to investigate the nematocidal pharmacophore of ABX464, and identified one compound with greater potency than the parent compound and showed moderate activity against a select number of other parasitic nematodes (including Ancylostoma, Heligmosomoides and Strongyloides species). Using TPP and in silico modelling studies, we predicted protein HCON_00074590 (a predicted aldo-keto reductase) as a target candidate for ABX464 in H. contortus. Future work aims to optimise this compound as a nematocidal candidate and investigate its pharmacokinetic properties. Overall, this study presents a first step toward the development of a new nematocide.


Subject(s)
Anthelmintics , Haemonchus , Nematoda , Quinolines , Animals , Antinematodal Agents/pharmacology , Anthelmintics/pharmacology , Structure-Activity Relationship , Caenorhabditis elegans , Quinolines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...