Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.597
Filter
1.
Curr Protoc ; 4(9): e70012, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39240240

ABSTRACT

The platinum-based anticancer drug cisplatin and its analog carboplatin are the most used chemotherapeutic agents worldwide. It is estimated that approximately half of all cancer patients are treated with platinum drugs at some point during the therapy regimen. Cisplatin covalently binds to purine nucleobases to form DNA adducts. Cisplatin therapy is faced with two key challenges. First, despite the initial response, many patients develop cisplatin resistance. Reduced cellular accumulation of cisplatin is one common cause of therapy resistance. Second, cisplatin treatment causes general cytotoxicity, leading to severe side effects. Monitoring the subcellular concentration of platinum chemotherapeutics will help yield clinical efficacy with the minimum possible dose. Inductively coupled plasma-mass spectrometry (ICP-MS) is an analytical technique to quantify the elemental composition of various types of liquified bulk samples with high sensitivity. This article describes quantifying cisplatin accumulation in chromatin and total cell lysate using ICP-MS. The method involves treating cells with cisplatin, isolating RNA-free DNA, digesting samples, ICP-MS instrumentation, and data analysis. Although we describe these steps in one cancer cell line, the protocol can be adapted to any cell line or tissue. The protocol should be a valuable resource for investigators interested in accurate measurement of subcellular concentration of platinum and other metallo-drugs. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Cell culture conditions for A2780 cells and cisplatin treatment Basic Protocol 2: Isolating cellular fractions and sample quantitation Basic Protocol 3: Sample digestion, ICP-MS data collection, and analysis.


Subject(s)
Antineoplastic Agents , Cisplatin , Mass Spectrometry , Humans , Cisplatin/metabolism , Cisplatin/pharmacology , Mass Spectrometry/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Platinum/chemistry , Platinum/metabolism , Cell Line, Tumor , Chromatin/metabolism
2.
Narra J ; 4(2): e775, 2024 08.
Article in English | MEDLINE | ID: mdl-39280296

ABSTRACT

Ferulic acid (4-hydroxy-3-methoxycinnamic acid) is a phytochemical compound that is commonly found in conjugated forms within mono-, di-, polysaccharides and other organic compounds in cell walls of grain, fruits, and vegetables. This compound is highly abundant in the palm oil waste. The aim of the study was to predict the anticancer activity of ferulic acid against the breast cancer cell lines (MCF-7) receptors through a computational analysis. MCF-7 receptors with PDB IDs of 1R5K, 2IOG, 4IV2, 4IW6, 5DUE, 5T92, and 5U2B were selected based on the Simplified Molecular Input Line Entry System (SMILES) similarity of the native ligand. Thereafter, the protein was prepared on Chimera 1.16 and docked with ferulic acid on Autodock Vina 1.2.5. The ligand-protein complex interaction was validated by computing the root mean square fluctuation (RMSF) and radius of gyration (Rg) through molecular dynamic simulation. In addition, an absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction was performed on ferulic acid using the pkCSM platform. The molecular docking revealed that the ferulic acid could interact with all receptors as indicated by the affinity energy <-5 kcal/mol. The compound had the most optimum interaction with receptor 2IOG (affinity energy=-6.96 kcal/mol), involving hydrophobic interaction (n=12) and polar hydrogen interaction (n=4). The molecular dynamic simulation revealed that the complex had an RMSF of 1.713 Å with a fluctuation of Rg value around 1.000 Å. The ADMET properties of ferulic acid suggested that the compound is an ideal drug candidate. In conclusion, this study suggested that ferulic acid, which can be isolated from palm oil waste, has the potential to interact with MCF-7 receptors.


Subject(s)
Coumaric Acids , Palm Oil , Palm Oil/chemistry , Palm Oil/metabolism , Coumaric Acids/chemistry , Coumaric Acids/metabolism , Coumaric Acids/pharmacology , Humans , MCF-7 Cells , Molecular Docking Simulation , Computer Simulation , Molecular Dynamics Simulation , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism
3.
Org Lett ; 26(36): 7489-7494, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39194005

ABSTRACT

Six new angucycline structures, including spirocyclione A (1), which contains an unusual oxaspiro[5.5]undecane architecture, and its ring-A-cleaved product spirocyclione B (2), were discovered by heterologous expression of a type II polyketide biosynthetic gene cluster captured from a marine actinomycete strain Streptomyces sp. HDN155000. Three flavoprotein monooxygenases are confirmed to be responsible for the oxidative carbon skeleton rearrangements in the biosynthesis of compounds 1 and 2. The obtained compounds showed promising cytotoxicity against different types of cancer cells.


Subject(s)
Mixed Function Oxygenases , Streptomyces , Streptomyces/enzymology , Streptomyces/chemistry , Streptomyces/metabolism , Mixed Function Oxygenases/metabolism , Molecular Structure , Multigene Family , Flavoproteins/metabolism , Flavoproteins/chemistry , Humans , Drug Screening Assays, Antitumor , Catalysis , Spiro Compounds/chemistry , Spiro Compounds/metabolism , Polyketides/chemistry , Polyketides/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Anthraquinones/chemistry , Anthraquinones/metabolism , Angucyclines and Angucyclinones
4.
J Microbiol Biotechnol ; 34(9): 1898-1911, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39187449

ABSTRACT

Phylloporia lonicerae is an annual fungus that specifically parasitizes living Lonicera plants, offering significant potential for developing new resource food and medicine. However, wild resources and mycelium production of this fungus is limited, and its anti-tumor active ingredients and mechanisms remain unclear, hampering the development of this fungus. Thus, we optimized the fermentation medium of P. lonicerae and studied the anti-tumor activity of its mycelium. The results indicated that the optimum fermentation medium consisted of 2% sucrose, 0.2% peptone, 0.1% KH2PO4, 0.05% MgSO4·7H2O, 0.16% Lonicera japonica petals, 0.18% P fungal elicitor, and 0.21% L. japonica stem. The biomass reached 7.82 ± 0.41 g/l after 15 days of cultivation in the optimized medium, a 142% increase compared with the potato dextrose broth medium, with a 64% reduction in cultivation time. The intracellular alcohol extract had a higher inhibitory effect on A549 and Eca-109 cells than the intracellular water extract, with half-maximal inhibitory concentration values of 2.42 and 2.92 mg/ml, respectively. Graded extraction of the alcohol extract yielded petroleum ether phase, chloroform phase, ethyl acetate phase, and n-butanol phase. Among them, the petroleum ether phase exhibited a better effect than the positive control, with a half-maximal inhibitory concentration of 113.3 µg/ml. Flow cytometry analysis indicated that petroleum ether components could induce apoptosis of Eca-109 cells, suggesting that this extracted component can be utilized as an anticancer agent in functional foods. This study offers valuable technical support and a theoretical foundation for promoting the comprehensive development and efficient utilization of P. lonicerae.


Subject(s)
Antineoplastic Agents , Culture Media , Fermentation , Lonicera , Mycelium , Mycelium/growth & development , Mycelium/metabolism , Humans , Culture Media/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Lonicera/chemistry , Cell Line, Tumor , Biomass , Ascomycota/metabolism , Ascomycota/growth & development , Ascomycota/drug effects , A549 Cells
5.
J Med Chem ; 67(17): 15168-15198, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39189384

ABSTRACT

Yes-associated protein (YAP) is a key oncogene in the Hippo tumor suppression pathway, historically challenging to target due to its intrinsically disordered nature. Leveraging recent advances in high-throughput screening that identified several YAP binders, we employed proteolysis-targeting chimera technology to develop a series of YAP degraders. Utilizing NSC682769, a known YAP binder, linked with VHL ligand 2 or pomalidomide via diverse linkers, we synthesized degraders including YZ-6. This degrader not only recruits the E3 ligase VHL for the rapid and sustained degradation of YAP but also effectively inhibits its nuclear localization, curtailing YAP/TEAD-mediated transcription in cancer cell lines such as NCI-H226 and Huh7. This dual action significantly diminishes YAP's oncogenic activity, contributing to the potent antiproliferative effects observed both in vitro and in a Huh7 xenograft mouse model. These results underscore the potential of PROTAC-mediated YAP degradation as a strategy for treating YAP-driven cancers.


Subject(s)
Adaptor Proteins, Signal Transducing , Proteolysis , Transcription Factors , YAP-Signaling Proteins , Humans , Proteolysis/drug effects , Animals , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Cell Line, Tumor , Mice , Adaptor Proteins, Signal Transducing/metabolism , YAP-Signaling Proteins/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Thalidomide/chemical synthesis , Thalidomide/chemistry , Cell Proliferation/drug effects , Mice, Nude , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Xenograft Model Antitumor Assays , Proteolysis Targeting Chimera
6.
J Sep Sci ; 47(15): e2400346, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39087624

ABSTRACT

Palbociclib (Ibrance; Pfizer) was approved for the management of metastatic breast cancer characterized by hormone receptor-positive/human epidermal growth factor receptor 2 negative status. The objective of this study was to create a fast, precise, environmentally friendly, and highly sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry approach for quantifying palbociclib (PAB) in human liver microsomes with the application for assessing metabolic stability. The validation features were performed in agreement with the bioanalytical method validation standards outlined by the US Food and Drug Administration. The StarDrop software (WhichP450 and DEREK modules) was used in screening the metabolic lability and structural alerts of PAB. The separation of PAB and encorafenib (as an internal standard) was achieved on a C8 column, employing an isocratic mobile phase. The inter-day and intra-day accuracy and precision ranged from -6.00% to 4.64% and from -2.33% to 3.13%, respectively. The constructed calibration curve displayed a linearity in the range of 1-3000 ng/mL. The sensitivity of the established approach was proven by the lower limit of quantification of 0.73 ng/mL. The Analytical GREEness calculator results revealed the high level of greenness of the developed method. The PAB's metabolic stability (t1/2 of 18.5 min and a moderate clearance (Clint) of 44.8 mL/min/kg) suggests a high extraction ratio medication that matched the WhichP450 software results.


Subject(s)
Microsomes, Liver , Piperazines , Pyridines , Tandem Mass Spectrometry , Humans , Piperazines/metabolism , Piperazines/analysis , Piperazines/chemistry , Microsomes, Liver/metabolism , Microsomes, Liver/chemistry , Pyridines/metabolism , Pyridines/chemistry , Pyridines/analysis , Chromatography, High Pressure Liquid , Computer Simulation , Antineoplastic Agents/analysis , Antineoplastic Agents/metabolism , Antineoplastic Agents/chemistry
7.
Metabolomics ; 20(5): 90, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095664

ABSTRACT

INTRODUCTION: Fungi biosynthesize chemically diverse secondary metabolites with a wide range of biological activities. Natural product scientists have increasingly turned towards bioinformatics approaches, combining metabolomics and genomics to target secondary metabolites and their biosynthetic machinery. We recently applied an integrated metabologenomics workflow to 110 fungi and identified more than 230 high-confidence linkages between metabolites and their biosynthetic pathways. OBJECTIVES: To prioritize the discovery of bioactive natural products and their biosynthetic pathways from these hundreds of high-confidence linkages, we developed a bioactivity-driven metabologenomics workflow combining quantitative chemical information, antiproliferative bioactivity data, and genome sequences. METHODS: The 110 fungi from our metabologenomics study were tested against multiple cancer cell lines to identify which strains produced antiproliferative natural products. Three strains were selected for further study, fractionated using flash chromatography, and subjected to an additional round of bioactivity testing and mass spectral analysis. Data were overlaid using biochemometrics analysis to predict active constituents early in the fractionation process following which their biosynthetic pathways were identified using metabologenomics. RESULTS: We isolated three new-to-nature stemphone analogs, 19-acetylstemphones G (1), B (2) and E (3), that demonstrated antiproliferative activity ranging from 3 to 5 µM against human melanoma (MDA-MB-435) and ovarian cancer (OVACR3) cells. We proposed a rational biosynthetic pathway for these compounds, highlighting the potential of using bioactivity as a filter for the analysis of integrated-Omics datasets. CONCLUSIONS: This work demonstrates how the incorporation of biochemometrics as a third dimension into the metabologenomics workflow can identify bioactive metabolites and link them to their biosynthetic machinery.


Subject(s)
Biosynthetic Pathways , Fungi , Metabolomics , Multigene Family , Humans , Metabolomics/methods , Fungi/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Biological Products/pharmacology , Biological Products/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124929, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39116592

ABSTRACT

The competition among drugs for binding to plasma proteins is regarded as a pharmacokinetic drug interaction. Competition between antitumor agents and other drugs for plasma protein binding can alter the free concentration of the drug, potentially impacting its efficacy and increasing the risk of toxic side effects. Through a range of spectroscopic techniques, this study examined the interaction between limonin and human serum albumin (HSA) in the context of berberine (Ber) and curcumin (Cur) under physiological conditions to clarify the binding mechanisms of binary and ternary systems at the molecular level. As demonstrated by fluorescence quenching experiments, Static quenching was identified as the mechanism of interaction between HSA and limonin. The results of site competition experiments indicated that the binding site between limonin and HSA was site I, a result further supported by molecular docking simulations. Through the use of thermodynamic data calculations, it was determined that limonin forms a stable complex with HSA by establishing hydrogen bonds and van der Waals forces. Circular dichroism (CD) spectroscopy, three-dimensional (3D) fluorescence spectroscopy, and synchronous fluorescence spectroscopy (SFS) employed to validate the notion that limonin perturbed the microenvironment of amino acids and induced conformational changes in HSA. What's more, the presence of Ber or Cur was found to have further modified the alterations observed in the interaction between the original HSA-limonin binary system. In vitro cellular experiments showed that interaction with HSA reduced the antitumor activity of limonin. In contrast, adding Ber or Cur increased the inhibition rate of tumor cells. The coexistence of both Ber and Cur significantly diminished limonin's binding affinity to HSA. The current investigation enhances comprehension regarding the binding characteristics and interaction mechanisms involving limonin, Ber, Cur, and HSA. It explores the potential of HSA as a versatile drug carrier and furnishes theoretical underpinnings for co-administrative strategies.


Subject(s)
Antineoplastic Agents , Berberine , Curcumin , Limonins , Molecular Docking Simulation , Protein Binding , Serum Albumin, Human , Spectrometry, Fluorescence , Humans , Berberine/pharmacology , Berberine/chemistry , Berberine/metabolism , Curcumin/pharmacology , Curcumin/metabolism , Curcumin/chemistry , Limonins/pharmacology , Limonins/chemistry , Limonins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Binding Sites , Thermodynamics , Cell Line, Tumor , Circular Dichroism
9.
J Chem Inf Model ; 64(16): 6521-6541, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39140958

ABSTRACT

A relationship between the electronic properties of metal ions in metallacarboranes and their ability to modulate mitochondrial oxidase activity and membrane hyperpolarization in cancer cells was demonstrated. Quantum chemistry methods, including DFT and molecular dynamics simulations, were used to understand the oxidized and reduced forms of metallacarboranes and their intramolecular rotatory behavior. According to the low-spin assumption for metal ions, the intramolecular oscillations of cluster ligands in metallacarboranes are significantly influenced by the type of metal and correspond to the cellular uptake of these complexes in vitro. In particular, the low-spin iron compound may be a new xenogeneic booster of redox homeostasis in cancer cells resistant to cisplatin, which induces metabolic 'exhaustion' of cancer cells and their death.


Subject(s)
Oxidation-Reduction , Quantum Theory , Humans , Boranes/chemistry , Boranes/pharmacology , Molecular Dynamics Simulation , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism
10.
Chem Biol Drug Des ; 104(1): e14599, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039616

ABSTRACT

In this study, we synthesized 15 novel quinazoline-morpholinobenzylideneamino hybrid compounds from methyl anthranilate and we assessed their cytotoxicity via in vitro assays against A549 and BEAS-2B cell lines. Molecular docking studies were conducted to evaluate the protein-ligand interactions and inhibition mechanisms on nine different molecular targets, while molecular dynamics (MD) simulations were carried out to assess the stability of the best docked ligand-protein complexes. Additionally, ADME prediction was carried out to determine physicochemical parameters and drug likeness. According to the cytotoxicity assays, compound 1 (IC50 = 2.83 µM) was found to be the most active inhibitor against A549 cells. While the selectivity index (SI) of compound 1 is 29, the SI of the reference drugs paclitaxel and sorafenib, used in this study, are 2.40 and 4.92, respectively. Among the hybrid compounds, 1 has the best docking scores against VEGFR1 (-11.744 kcal/mol), VEGFR2 (-12.407 kcal/mol) and EGFR (-10.359 kcal/mol). During MD simulations, compound 1 consistently exhibited strong hydrogen bond interactions with the active sites of VEGFR1 and 2, and these interactions were maintained for more than 90% of the simulation time. Additionally, the RMSD and RMSF values of the ligand-protein complexes exhibited high stability at their minimum levels around 1-2 Å. In conclusion, these findings suggest that compound 1 may be a potent and selective inhibitor candidate for lung cancer treatment and inhibition of VEGFR2, especially.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Molecular Docking Simulation , Molecular Dynamics Simulation , Morpholines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Morpholines/chemistry , Morpholines/pharmacology , Cell Line, Tumor , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , A549 Cells , Quinazolinones/chemistry , Quinazolinones/pharmacology , Quinazolinones/metabolism , Quinazolinones/chemical synthesis , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Quinazolines/chemistry , Quinazolines/pharmacology , Quinazolines/chemical synthesis , Quinazolines/metabolism , Binding Sites , Drug Screening Assays, Antitumor , Hydrogen Bonding
11.
J Chem Inf Model ; 64(14): 5413-5426, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38958413

ABSTRACT

In drug discovery, molecular docking methods face challenges in accurately predicting energy. Scoring functions used in molecular docking often fail to simulate complex protein-ligand interactions fully and accurately leading to biases and inaccuracies in virtual screening and target predictions. We introduce the "Docking Score ML", developed from an analysis of over 200,000 docked complexes from 155 known targets for cancer treatments. The scoring functions used are founded on bioactivity data sourced from ChEMBL and have been fine-tuned using both supervised machine learning and deep learning techniques. We validated our approach extensively using multiple data sets such as validation of selectivity mechanism, the DUDE, DUD-AD, and LIT-PCBA data sets, and performed a multitarget analysis on drugs like sunitinib. To enhance prediction accuracy, feature fusion techniques were explored. By merging the capabilities of the Graph Convolutional Network (GCN) with multiple docking functions, our results indicated a clear superiority of our methodologies over conventional approaches. These advantages demonstrate that Docking Score ML is an efficient and accurate tool for virtual screening and reverse docking.


Subject(s)
Machine Learning , Molecular Docking Simulation , Ligands , Humans , Drug Discovery/methods , Proteins/chemistry , Proteins/metabolism , Drug Evaluation, Preclinical/methods , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , User-Computer Interface
12.
Microb Cell Fact ; 23(1): 214, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060918

ABSTRACT

Suppression of fungal camptothecin (CPT) biosynthesis with the preservation and successive subculturing is the challenge that impedes fungi from the industrial application, so, screening for a novel fungal isolate with a conceivable stable producing potency of CPT was the main objective of this work. Catharanthus roseus with diverse contents of bioactive metabolites could have a plethora of novel endophytes with unique metabolic properties. Among the endophytes of C. roseus, Alternaria brassicicola EFBL-NV OR131587.1 was the highest CPT producer (96.5 µg/L). The structural identity of the putative CPT was verified by HPLC, FTIR, HNMR and LC-MS/MS, with a molecular mass 349 m/z, and molecular fragmentation patterns that typically identical to the authentic one. The purified A. brassicicola CPT has a strong antiproliferative activity towards UO-31 (0.75 µM) and MCF7 (3.2 µM), with selectivity index 30.8, and 7.1, respectively, in addition to resilient activity to inhibit Topo II (IC50 value 0.26 nM) than Topo 1 (IC50 value 3.2 nM). The purified CPT combat the wound healing of UO-31 cells by ~ 52%, stops their matrix formation, cell migration and metastasis. The purified CPT arrest the cellular division of the UO-31 at the S-phase, and inducing their cellular apoptosis by ~ 20.4 folds, compared to the control cells. Upon bioprocessing with the surface response methodology, the CPT yield by A. brassicicola was improved by ~ 3.3 folds, compared to control. The metabolic potency of synthesis of CPT by A. brassicicola was attenuated with the fungal storage and subculturing, losing ~ 50% of their CPT productivity by the 6th month of storage and 6th generation. Practically, the CPT productivity of the attenuated A. brassicicola was restored by addition of 1% surface sterilized leaves of C. roseus, ensuring the eliciting of cryptic gene cluster of A. brassicicola CPT via the plant microbiome-A. brassicicola interactions. So, for the first time, a novel endophytic isolate A. brassicicola, from C. roseus, was explored to have a relatively stable CPT biosynthetic machinery, with an affordable feasibility to restore their CPT productivity using C. roseus microbiome, in addition to the unique affinity of the extracted CPT to inhibit Topoisomerase I and II.


Subject(s)
Alternaria , Camptothecin , Catharanthus , Cell Proliferation , Endophytes , Camptothecin/pharmacology , Camptothecin/biosynthesis , Camptothecin/metabolism , Endophytes/metabolism , Catharanthus/microbiology , Humans , Cell Proliferation/drug effects , Cell Line, Tumor , MCF-7 Cells , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Apoptosis/drug effects
13.
Curr Opin Chem Biol ; 81: 102505, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39053236

ABSTRACT

Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.


Subject(s)
Drug Development , Glutathione , Humans , Glutathione/metabolism , Drug Development/methods , Animals , Organelles/metabolism , Mitochondria/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism
14.
World J Microbiol Biotechnol ; 40(8): 254, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916754

ABSTRACT

Sesquiterpenes and tetraterpenes are classes of plant-derived natural products with antineoplastic effects. While plant extraction of the sesquiterpene, germacrene A, and the tetraterpene, lycopene suffers supply chain deficits and poor yields, chemical synthesis has difficulties in separating stereoisomers. This review highlights cutting-edge developments in producing germacrene A and lycopene from microbial cell factories. We then summarize the antineoplastic properties of ß-elemene (a thermal product from germacrene A), sesquiterpene lactones (metabolic products from germacrene A), and lycopene. We also elaborate on strategies to optimize microbial-based germacrene A and lycopene production.


Subject(s)
Antineoplastic Agents , Lycopene , Sesquiterpenes, Germacrane , Lycopene/metabolism , Sesquiterpenes, Germacrane/metabolism , Antineoplastic Agents/metabolism , Humans , Carotenoids/metabolism , Carotenoids/chemistry , Sesquiterpenes/metabolism , Biosynthetic Pathways
15.
J Am Chem Soc ; 146(27): 18626-18638, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38918178

ABSTRACT

Metals are important cofactors in the metabolic processes of cyanobacteria, including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as to reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. Determination of the complex structures of these metabolites presented numerous challenges, but they were ultimately solved using integrated data from NMR, mass spectrometry and deductions from the biosynthetic gene cluster. The leptochelins are comprised of halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Postcolumn infusion of metals using an LC-MS metabolomics workflow performed with leptochelins A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play key ecological roles in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines.


Subject(s)
Cyanobacteria , Cyanobacteria/metabolism , Cyanobacteria/chemistry , Cyanobacteria/genetics , Humans , Multigene Family , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism
16.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928234

ABSTRACT

Mcl-1 (myeloid cell leukemia 1), a member of the Bcl-2 family, is upregulated in various types of cancer. Peptides representing the BH3 (Bcl-2 homology 3) region of pro-apoptotic proteins have been demonstrated to bind the hydrophobic groove of anti-apoptotic Mcl-1, and this interaction is responsible for regulating apoptosis. Structural studies have shown that, while there is high overall structural conservation among the anti-apoptotic Bcl-2 (B-cell lymphoma 2) proteins, differences in the surface groove of these proteins facilitates binding specificity. This binding specificity is crucial for the mechanism of action of the Bcl-2 family in regulating apoptosis. Bim-based peptides bind specifically to the hydrophobic groove of Mcl-1, emphasizing the importance of these interactions in the regulation of cell death. Molecular docking was performed with BH3-like peptides derived from Bim to identify high affinity peptides that bind to Mcl-1 and to understand the molecular mechanism of their interactions. The interactions of three identified peptides, E2gY, E2gI, and XXA1_F3dI, were further evaluated using 250 ns molecular dynamics simulations. Conserved hydrophobic residues of the peptides play an important role in their binding and the structural stability of the complexes. Understanding the molecular basis of interaction of these peptides will assist in the development of more effective Mcl-1 specific inhibitors.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Myeloid Cell Leukemia Sequence 1 Protein , Peptides , Protein Binding , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Humans , Peptides/chemistry , Peptides/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Hydrophobic and Hydrophilic Interactions , Binding Sites , Amino Acid Sequence , Bcl-2-Like Protein 11/metabolism , Bcl-2-Like Protein 11/chemistry
17.
J Biosci Bioeng ; 138(2): 144-152, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38858130

ABSTRACT

Flavonoids comprise a group of natural compounds with diverse bioactivities; however, their low water solubility and limited bioavailability often impede their potential health benefits for humans. In this study, five derivatives, namely 2',5'-dihydroxyflavanone (1), 2'-dihydroxyflavanone-5'-O-4″-O-methyl-ß-d-glucoside (2), 2'-dihydroxyflavanone-6-O-4″-O-methyl-ß-d-glucoside (3), 2'-dihydroxyflavanone-3'-O-4″-O-methyl-ß-d-glucoside (4) and hydroxyflavanone-2'-O-4″-O-methyl-ß-d-glucoside (5), were biosynthesized from 2'-hydroxyflavanone through microbial transformation using Beauveria bassiana ATCC 7159. Product 1 was identified as a known compound while 2-5 were structurally characterized as new structures through extensive 1D and 2D NMR analysis. The water solubility of biotransformed products 1-5 was enhanced by 30-280 times compared to the substrate 2'-hydroxyflavanone. Moreover, the antioxidant assay revealed that 1 and 2 exhibited improved 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity relative to the substrate, decreasing the logIC50 from 8.08 ± 0.11 µM to 6.19 ± 0.08 µM and 7.15 ± 0.08 µM, respectively. Compound 5 displayed significantly improved anticancer activity compared to the substrate 2'-hydroxyflavanone against Glioblastoma 33 cancer stem cells, decreasing the IC50 from 25.05 µM to 10.59 µM. Overall, fungal biotransformation represents an effective tool to modify flavonoids for enhanced water solubility and bioactivities.


Subject(s)
Beauveria , Biotransformation , Flavanones , Humans , Flavanones/metabolism , Flavanones/chemistry , Beauveria/metabolism , Beauveria/chemistry , Solubility , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Flavonoids/metabolism , Flavonoids/chemistry
18.
Angew Chem Int Ed Engl ; 63(37): e202405367, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-38898540

ABSTRACT

Recent advances in whole genome sequencing have revealed an immense microbial potential for the production of therapeutic small molecules, even from well-known producers. To access this potential, we subjected prominent antimicrobial producers to alternative antiproliferative assays using persistent cancer cell lines. Described herein is our discovery of hirocidins, novel secondary metabolites from Streptomyces hiroshimensis with antiproliferative activities against colon and persistent breast cancer cells. Hirocidin A is an unusual nine-membered carbocyclic maleimide and hirocidins B and C are relatives with an unprecedented, bridged azamacrocyclic backbone. Mode of action studies show that hirocidins trigger mitochondrion-dependent apoptosis by inducing expression of the key apoptotic effector caspase-9. The discovery of new cytotoxins contributes to scaffold diversification in anticancer drug discovery and the reported modes of action and concise total synthetic route for variant A set the stage for unraveling specific targets and biochemical interactions of the hirocidins.


Subject(s)
Antineoplastic Agents , Apoptosis , Mitochondria , Streptomyces , Streptomyces/metabolism , Streptomyces/chemistry , Humans , Apoptosis/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Molecular Structure
19.
J Basic Microbiol ; 64(9): e2400129, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38922954

ABSTRACT

Nanobiotechnology has gained significant attention due to its capacity to generate substantial benefits through the integration of microbial biotechnology and nanotechnology. Among microbial organisms, Actinomycetes, particularly the prominent genus Streptomycetes, have garnered attention for their prolific production of antibiotics. Streptomycetes have emerged as pivotal contributors to the discovery of a substantial number of antibiotics and play a dominant role in combating infectious diseases on a global scale. Despite the noteworthy progress achieved through the development and utilization of antibiotics to combat infectious pathogens, the prevalence of infectious diseases remains a prominent cause of mortality worldwide, particularly among the elderly and children. The emergence of antibiotic resistance among pathogens has diminished the efficacy of antibiotics in recent decades. Nevertheless, Streptomycetes continue to demonstrate their potential by producing bioactive metabolites for the synthesis of nanoparticles. Streptomycetes are instrumental in producing nanoparticles with diverse bioactive characteristics, including antiviral, antibacterial, antifungal, antioxidant, and antitumor properties. Biologically synthesized nanoparticles have exhibited a meaningful reduction in the impact of antibiotic resistance, providing resources for the development of new and effective drugs. This review succinctly outlines the significant applications of Streptomycetes as a crucial element in nanoparticle synthesis, showcasing their potential for diverse and enhanced beneficial applications.


Subject(s)
Anti-Bacterial Agents , Nanoparticles , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Streptomyces/metabolism , Humans , Nanotechnology , Antioxidants/pharmacology , Biotechnology/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Actinobacteria/metabolism
20.
J Basic Microbiol ; 64(9): e2400153, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38922993

ABSTRACT

Magnetic nanoparticles (MNPs), particularly iron oxide nanoparticles (IONPs), are a fascinating group of nanoparticles that have been considerably investigated for biomedical applications because of their superparamagnetic properties, biodegradable nature, and biocompatibility. A novel Gram-positive moderately thermophilic bacterial strain, namely Bacillus tequilensis ASFS.1, was isolated and identified. This strain is capable of producing superparamagnetic Fe3O4 nanoparticles and exhibiting magnetotaxis behavior. This strain swimming behavior was investigated under static and dynamic environments, where it behaved very much similar to the magnetotaxis in magnetotactic bacteria. This study is the first report of a bacterium from the Bacillaceae family that has the potential to intracellular biosynthesis of IONPs. MNPs were separated by a magnetic and reproducible method which was designed for the first time for this study. In addition, UV-visible spectrophotometer, Fourier-transform infrared spectroscopy, vibrating sample magnetometer, field emission scanning electron microscopy (FESEM), X-ray diffraction, and thermal gravimetric analysis were utilized to characterize the bio-fabricated magnetite nanoparticles. Analysis of the particle size distribution pattern of the biogenic MNPs by FESEM imaging revealed the size range of 10-100 nm with the size range of 10-40 nm MNPs being the most frequent particles. VSM analysis demonstrated that biogenic MNPs displayed superparamagnetic properties with a high saturation magnetization value of 184 emu/g. After 24 h treatment of 3T3, U87, A549, MCF-7, and HT-29 cell lines with the biogenic MNPs, IC50 values were measured to be 339, 641, 582, 149, and 184 µg mL-1, respectively. This study presents the novel strain ASFS.1 capable of magnetotaxis by the aid of its magnetite nanoparticles and paving information on isolation, characterization, and in vitro cytotoxicity of its MNPs. The MNPs showed promising potential for biomedical applications, obviously subject to additional studies.


Subject(s)
Antineoplastic Agents , Bacillus , Magnetic Iron Oxide Nanoparticles , Bacillus/metabolism , Bacillus/isolation & purification , Magnetic Iron Oxide Nanoparticles/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Particle Size , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Magnetite Nanoparticles/chemistry , Cell Survival/drug effects , Microscopy, Electron, Scanning , Ferric Compounds
SELECTION OF CITATIONS
SEARCH DETAIL