Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.962
Filter
1.
Methods Mol Biol ; 2833: 23-33, 2024.
Article in English | MEDLINE | ID: mdl-38949697

ABSTRACT

Mycobacterium tuberculosis is the main causative agent of tuberculosis (TB)-an ancient yet widespread global infectious disease to which 1.6 million people lost their lives in 2021. Antimicrobial resistance (AMR) has been an ongoing crisis for decades; 4.95 million deaths were associated with antibiotic resistance in 2019. While AMR is a multi-faceted problem, drug discovery is an urgent part of the solution and is at the forefront of modern research.The landscape of drug discovery for TB has undoubtedly been transformed by the development of high-throughput gene-silencing techniques that enable interrogation of every gene in the genome, and their relative contribution to fitness, virulence, and AMR. A recent advance in this area is CRISPR interference (CRISPRi). The application of this technique to antimicrobial susceptibility testing (AST) is the subject of ongoing research in basic science.CRISPRi technology can be used in conjunction with the high-throughput SPOT-culture growth inhibition assay (HT-SPOTi) to rapidly evaluate and assess gene essentiality including non-essential, conditionally essential (by using appropriate culture conditions), and essential genes. In addition, the HT-SPOTi method can develop drug susceptibility and drug resistance profiles.This technology is further useful for drug discovery groups who have designed target-based inhibitors rationally and wish to validate the primary mechanisms of their novel compounds' antibiotic action against the proposed target.


Subject(s)
Drug Discovery , Gene Silencing , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Drug Discovery/methods , Humans , CRISPR-Cas Systems , Antitubercular Agents/pharmacology , Anti-Bacterial Agents/pharmacology , High-Throughput Screening Assays/methods , Drug Resistance, Bacterial/genetics , Tuberculosis/microbiology , Tuberculosis/drug therapy
2.
Methods Mol Biol ; 2833: 65-77, 2024.
Article in English | MEDLINE | ID: mdl-38949702

ABSTRACT

Pyrazinamide (PZA) is a key component of chemotherapy for the treatment of drug-susceptible tuberculosis (TB) and is likely to continue to be included in new drug combinations. Potentiation of PZA could be used to reduce the emergence of resistance, shorten treatment times, and lead to a reduction in the quantity of PZA consumed by patients, thereby reducing the toxic effects. Acidified medium is required for the activity of PZA against Mycobacterium tuberculosis. In vitro assessments of pyrazinamide activity are often avoided because of the lack of standardization, which has led to a lack of effective in vitro tools for assessing and/or enhancing PZA activity.We have developed and optimized a novel, robust, and reproducible, microtiter plate assay, that centers around acidity levels that are low enough for PZA activity. The assay can be applied to the evaluation of novel compounds for the identification of potentiators that enhance PZA activity. In this assay, potentiation of PZA is demonstrated to be statistically significant with the addition of rifampicin (RIF), which can, therefore, be used as a positive control. Conversely, norfloxacin demonstrates no potentiating activity with PZA and can be used as a negative control. The method, and the associated considerations, described here, can be adapted in the search for potentiators of other antimicrobials.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Pyrazinamide , Pyrazinamide/pharmacology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Hydrogen-Ion Concentration , Microbial Sensitivity Tests/methods , Drug Synergism , Rifampin/pharmacology , Humans
3.
Methods Mol Biol ; 2833: 153-160, 2024.
Article in English | MEDLINE | ID: mdl-38949709

ABSTRACT

The diagnosis and monitoring of tuberculosis treatment is difficult as many patients are unable to produce sputum. This means that many patients are treated on the basis of clinical findings and consequently some will be exposed to anti-tuberculosis drugs unnecessarily. Moreover, for those appropriately on treatment and unable to produce a sputum sample, it will be impossible to monitor the response to treatment. We have shown that stool is a potential alternative sample type for diagnosis of tuberculosis. Currently, available protocols like the Xpert MTB/RIF use DNA as a target to detect Mycobacterium tuberculosis in stool but DNA survives long after the organism is dead so it is not certain whether a positive test is from an old or a partially treated infection. The TB MBLA only detects live organisms and thus, can be used to follow the response to treatment. In this chapter, we describe a protocol for TB-MBLA, an RNA-based assay, and apply it to quantify TB bacteria in stool.


Subject(s)
Bacterial Load , Feces , Mycobacterium tuberculosis , Tuberculosis , Feces/microbiology , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/genetics , Humans , Bacterial Load/methods , Tuberculosis/diagnosis , Tuberculosis/microbiology , Tuberculosis/drug therapy , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , DNA, Bacterial/genetics , Sputum/microbiology
4.
Methods Mol Biol ; 2833: 195-210, 2024.
Article in English | MEDLINE | ID: mdl-38949712

ABSTRACT

Whole genome sequencing of Mycobacterium tuberculosis complex (MTBC) isolates has been shown to provide accurate predictions for resistance and susceptibility for many first- and second-line anti-tuberculosis drugs. However, bioinformatic pipelines and mutation catalogs to predict antimicrobial resistances in MTBC isolates are often customized and detailed protocols are difficult to access. Here, we provide a step-by-step workflow for the processing and interpretation of short-read sequencing data and give an overview of available analysis pipelines.


Subject(s)
Antitubercular Agents , Computational Biology , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Whole Genome Sequencing , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Whole Genome Sequencing/methods , Microbial Sensitivity Tests/methods , Humans , Antitubercular Agents/pharmacology , Computational Biology/methods , Genome, Bacterial , Drug Resistance, Bacterial/genetics , Mutation , Tuberculosis/microbiology , Tuberculosis/drug therapy
5.
Methods Mol Biol ; 2833: 185-193, 2024.
Article in English | MEDLINE | ID: mdl-38949711

ABSTRACT

Whole genome sequencing (WGS) is becoming an important diagnostic tool for antimicrobial susceptibility testing of Mycobacterium tuberculosis complex (MTBC) isolates in many countries. WGS protocols usually start with the preparation of a DNA-library: the critical first step in the process. A DNA-library represents the genomic content of a DNA sample and consists of unique short DNA fragments. Although available DNA-library protocols come with manufacturer instructions, details of the entire process, including quality controls, instrument parameters, and run evaluations, often need to be developed and customized by each laboratory to implement WGS technology effectively. Here, we provide a detailed workflow for a DNA-library preparation based on an adapted Illumina protocol optimized for the reduction of reagent costs.


Subject(s)
Genome, Bacterial , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Whole Genome Sequencing , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Whole Genome Sequencing/methods , Microbial Sensitivity Tests/methods , Humans , Antitubercular Agents/pharmacology , Gene Library , DNA, Bacterial/genetics , Tuberculosis/microbiology , Tuberculosis/diagnosis , High-Throughput Nucleotide Sequencing/methods
7.
Drug Res (Stuttg) ; 74(6): 269-279, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968950

ABSTRACT

Every year, the World Health Organization reports 500,000 new cases of drug-resistant tuberculosis (TB), which poses a serious global danger. The increased number of XDR-TB and MDR-TB cases reported worldwide necessitates the use of new therapeutic approaches. The main issues with the antitubercular medications now in use for the treatment of multidrug-resistant tuberculosis are their poor side effect profile, reduced efficacy, and antimicrobial resistance. One possible remedy for these problems is bedaquiline. The need for better treatment strategies is highlighted by the strong minimum inhibitory concentrations that bedaquiline (BDQ), a novel anti-TB medicine, exhibits against both drug-resistant and drug-susceptible TB. Bedaquiline may be able to help with these problems. Bedaquiline is a medication that is first in its class and has a distinct and particular mode of action. Bedaquiline is an ATP synthase inhibitor that is specifically directed against Mycobacterium tuberculosis and some nontuberculous mycobacteria. It is metabolized by CYP3A4. Bedaquiline preclinical investigations revealed intralesional drug biodistribution. The precise intralesional and multi-compartment pharmacokinetics of bedaquiline were obtained using PET bioimaging and high-resolution autoradiography investigations. Reduced CFU counts were observed in another investigation after a 12-week course of therapy. Meta-analyses and systematic reviews of phase II trials on bedaquiline's efficacy in treating drug-resistant tuberculosis in patients reported higher rates of cure, better culture conversion, and lower death rates when taken in conjunction with a background regimen. Here is a thorough medication profile for bedaquiline to aid medical professionals in treating individuals with tuberculosis.


Subject(s)
Antitubercular Agents , Diarylquinolines , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Diarylquinolines/therapeutic use , Diarylquinolines/pharmacokinetics , Humans , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/pharmacology , Antitubercular Agents/administration & dosage , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Mycobacterium tuberculosis/drug effects , Microbial Sensitivity Tests , Animals
8.
BMC Infect Dis ; 24(1): 672, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965482

ABSTRACT

INTRODUCTION: Early diagnosis of tuberculosis (TB) and universal access to drug-susceptibility testing (DST) are critical elements of the WHO End TB Strategy. Current rapid tests (e.g., Xpert® MTB/RIF and Ultra-assays) can detect rifampicin resistance-conferring mutations, but cannot detect resistance to Isoniazid and second-line anti-TB agents. Although Line Probe Assay is capable of detecting resistance to second-line anti-TB agents, it requires sophisticated laboratory infrastructure and advanced skills which are often not readily available in settings replete with TB. A rapid test capable of detecting Isoniazid and second-line anti-TB drug resistance is highly needed. METHODS: We conducted a diagnostic accuracy study to evaluate a new automated Xpert MTB/XDR 10-colour assay for rapid detection of Isoniazid and second-line drugs, including ethionamide, fluoroquinolones, and injectable drugs (Amikacin, Kanamycin, and Capreomycin). Positive Xpert MTB/RIF respiratory specimens were prospectively collected through routine diagnosis and surveillance of drug resistance at the Central TB Reference Laboratory in Tanzania. Specimens were tested by both Xpert XDR assay and LPA against culture-based phenotypic DST as the reference standard. FINDINGS: We analysed specimens from 151 TB patients with a mean age (SD) of 36.2 (12.7) years. The majority (n = 109, 72.2%) were males. The sensitivity for Xpert MTB/XDR was 93.5% (95% CI, 87.4-96.7); for Isoniazid, 96.6 (95% CI, 92.1-98.6); for Fluoroquinolone, 98.7% (95% Cl 94.8-99.7); for Amikacin, 96.6%; and (95% CI 92.1-98.6) for Ethionamide. Ethionamide had the lowest specificity of 50% and the highest was 100% for Fluoroquinolone. The diagnostic performance was generally comparable to that of LPA with slight variations between the two assays. The non-determinate rate (i.e., invalid M. tuberculosis complex detection) of Xpert MTB/XDR was 2·96%. CONCLUSION: The Xpert MTB/XDR demonstrated high sensitivity and specificity for detecting resistance to Isoniazid, Fluoroquinolones, and injectable agents. This assay can be used in clinical settings to facilitate rapid diagnosis of mono-isoniazid and extensively drug-resistant TB.


Subject(s)
Antitubercular Agents , Isoniazid , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Sensitivity and Specificity , Humans , Tanzania , Isoniazid/pharmacology , Antitubercular Agents/pharmacology , Adult , Female , Male , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Middle Aged , Microbial Sensitivity Tests/methods , Young Adult , Adolescent , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Prospective Studies , Aged , Molecular Diagnostic Techniques/methods
9.
J Med Microbiol ; 73(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38973691

ABSTRACT

Introduction. Aminoglycoside antibiotics such as amikacin and kanamycin are important components in the treatment of Mycobacterium tuberculosis (Mtb) infection. However, more and more clinical strains are found to be aminoglycoside antibiotic-resistant. Apramycin is another kind of aminoglycoside antibiotic that is commonly used to treat infections in animals.Hypothesis. Apramycin may have in vitro activity against Mtb.Aim. This study aims to evaluate the efficacy of apramycin against Mtb in vitro and determine its epidemiological cut-off (ECOFF) value.Methodology. One hundred Mtb isolates, including 17 pansusceptible and 83 drug-resistant tuberculosis (DR-TB) strains, were analysed for apramycin resistance using the MIC assay.Results. Apramycin exhibited significant inhibitory activity against Mtb clinical isolates, with an MIC50 of 0.5 µg ml-1 and an MIC90 of 1 µg ml-1. We determined the tentative ECOFF value as 1 µg ml-1 for apramycin. The resistant rates of multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant (pre-XDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) strains were 12.12 % (4/33), 20.69 % (6/29) and 66.67 % (14/21), respectively. The rrs gene A1401G is associated with apramycin resistance, as well as the cross-resistance between apramycin and other aminoglycosides.Conclusion. Apramycin shows high in vitro activity against the Mtb clinical isolates, especially the MDR-TB clinical isolates. This encouraging discovery calls for more research on the functions of apramycin in vivo and as a possible antibiotic for the treatment of drug-resistant TB.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Nebramycin , Nebramycin/analogs & derivatives , Nebramycin/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Humans , Antitubercular Agents/pharmacology , Tuberculosis, Multidrug-Resistant/microbiology , Drug Resistance, Multiple, Bacterial
10.
Front Public Health ; 12: 1244353, 2024.
Article in English | MEDLINE | ID: mdl-38947352

ABSTRACT

Introduction: The Eastern Mediterranean Regional Office (EMRO) region accounts for almost 8% of all global Mycobacterium tuberculosis (TB) cases, with TB incidence rates ranging from 1 per 100,000 per year in the United Arab Emirates (UAE) to 204 per 100,000 in Djibouti. The national surveillance data from the Middle East and North Africa (MENA) region on the epidemiology and antimicrobial resistance trends of TB, including MDR-TB remains scarce. Methods: A retrospective 12-year analysis of N = 8,086 non-duplicate diagnostic Mycobacterium tuberculosis complex (MTB complex) isolates from the UAE was conducted. Data were generated through routine patient care during the 2010-2021 years, collected by trained personnel and reported by participating surveillance sites to the UAE National Antimicrobial Resistance (AMR) Surveillance program. Data analysis was conducted with WHONET, a windows-based microbiology laboratory database management software developed by the World Health Organization Collaborating Center for Surveillance of Antimicrobial Resistance, Boston, United States (https://whonet.org/). Results: A total of 8,086 MTB-complex isolates were analyzed. MTB-complex was primarily isolated from respiratory samples (sputum 80.1%, broncho-alveolar lavage 4.6%, pleural fluid 4.1%). Inpatients accounted for 63.2%, including 1.3% from ICU. Nationality was known for 84.3% of patients, including 3.8% Emiratis. Of UAE non-nationals, 80.5% were from 110 countries, most of which were Asian countries. India accounted for 20.8%, Pakistan 13.6%, Philippines 12.7%, and Bangladesh 7.8%. Rifampicin-resistant MTB-complex isolates (RR-TB) were found in 2.8% of the isolates, resistance to isoniazid, streptomycin, pyrazinamide, and ethambutol, was 8.9, 6.9, 3.4 and 0.4%, respectively. A slightly increasing trend of resistance among MTB-complex was observed for rifampicin from 2.5% (2010) to 2.8% (2021). Conclusion: Infections due to MTB-complex are relatively uncommon in the United Arab Emirates compared to other countries in the MENA region. Most TB patients in the UAE are of Asian origin, mainly from countries with a high prevalence of TB. Resistance to first line anti-tuberculous drugs is generally low, however increasing trends for MDR-TB mainly rifampicin linked resistance is a major concern. MDR-TB was not associated with a higher mortality, admission to ICU, or increased length of hospitalization as compared to non-MDR-TB.


Subject(s)
Tuberculosis, Multidrug-Resistant , United Arab Emirates/epidemiology , Humans , Retrospective Studies , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Male , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Female , Adult , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Middle Aged , Drug Resistance, Bacterial , Adolescent , Microbial Sensitivity Tests , Young Adult , Population Surveillance
11.
Biomolecules ; 14(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38927114

ABSTRACT

Incidences of drug-resistant tuberculosis have become common and are rising at an alarming rate. Aminoacyl t-RNA synthetase has been validated as a newer target against Mycobacterium tuberculosis. Leucyl t-RNA synthetase (LeuRS) is ubiquitously found in all organisms and regulates transcription, protein synthesis, mitochondrial RNA cleavage, and proofreading of matured t-RNA. Leucyl t-RNA synthetase promotes growth and development and is the key enzyme needed for biofilm formation in Mycobacterium. Inhibition of this enzyme could restrict the growth and development of the mycobacterial population. A database consisting of 2734 drug-like molecules was screened against leucyl t-RNA synthetase enzymes through virtual screening. Based on the docking scores and MMGBSA energy values, the top three compounds were selected for molecular dynamics simulation. The druggable nature of the top three hits was confirmed by predicting their pharmacokinetic parameters. The top three hits-compounds 1035 (ZINC000001543916), 1054 (ZINC000001554197), and 2077 (ZINC000008214483)-were evaluated for their binding affinity toward leucyl t-RNA synthetase by an isothermal titration calorimetry study. The inhibitory activity of these compounds was tested against antimycobacterial activity, biofilm formation, and LeuRS gene expression potential. Compound 1054 (Macimorelin) was found to be the most potent molecule, with better antimycobacterial activity, enzyme binding affinity, and significant inhibition of biofilm formation, as well as inhibition of the LeuRS gene expression. Compound 1054, the top hit compound, has the potential to be used as a lead to develop successful leucyl t-RNA synthetase inhibitors.


Subject(s)
Antitubercular Agents , Enzyme Inhibitors , Leucine-tRNA Ligase , Molecular Docking Simulation , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Ligands , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Leucine-tRNA Ligase/antagonists & inhibitors , Leucine-tRNA Ligase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Calorimetry , Molecular Dynamics Simulation , Tuberculosis/drug therapy , Tuberculosis/microbiology , Computer Simulation , Protein Binding , Humans
12.
Bioorg Med Chem Lett ; 109: 129846, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38857850

ABSTRACT

Over the past 2000 years, tuberculosis (TB) has been responsible for more deaths than any other infectious disease. In recent years, there has been a recovery of research and development (R&D) efforts focused on TB drugs. This is driven by the pressing need to combat the global spread of the disease and develop improved therapies for both drug-sensitive and drug-resistant strains. Many new TB drug candidates have recently entered clinical trials, marking the beginning of a rebirth in this area after decades of neglect. The problem is that very few of the hundreds of compounds identified each year as potential anti-TB drugs really make it to the clinical development stage. This perspective focuses on the primary obstacles and approaches involved in the development of new medications for TB. This will help medicinal chemists better understand TB drug challenges and develop novel drug candidates.


Subject(s)
Antitubercular Agents , Drug Discovery , Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Humans , Tuberculosis/drug therapy , Mycobacterium tuberculosis/drug effects , Microbial Sensitivity Tests , Molecular Structure
13.
Sci Rep ; 14(1): 14660, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918410

ABSTRACT

The emergence of drug-resistant Mycobacterium tuberculosis strains is a threat to global health necessitating the discovery of novel chemotherapeutic agents. Natural products drug discovery, which previously led to the discovery of rifamycins, is a valuable approach in this endeavor. Against this backdrop, we set out to investigate the in vitro antimycobacterial properties of medicinal plants from Ghana and South Africa, evaluating 36 extracts and their 252 corresponding solid phase extraction (SPE) generated fractions primarily against the non-pathogenic Mycobacterium smegmatis and Mycobacterium aurum species. The most potent fraction was further evaluated in vitro against infectious M. tuberculosis strain. Crinum asiaticum (bulb) (Amaryllidaceae) emerged as the most potent plant species with specific fractions showing exceptional, near equipotent activity against the non-pathogenic Mycobacterium species (0.39 µg/ml ≤ MIC ≤ 25 µg/ml) with one fraction being moderately active (MIC = 32.6 µg/ml) against M. tuberculosis. Metabolomic analysis led to the identification of eight compounds predicted to be active against M. smegmatis and M. aurum. In conclusion, from our comprehensive study, we generated data which provided an insight into the antimycobacterial properties of Ghanaian and South African plants. Future work will be focused on the isolation and evaluation of the compounds predicted to be active.


Subject(s)
Microbial Sensitivity Tests , Mycobacterium tuberculosis , Plant Extracts , Plants, Medicinal , Plants, Medicinal/chemistry , South Africa , Plant Extracts/pharmacology , Plant Extracts/chemistry , Ghana , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Mycobacterium/drug effects , Mycobacterium smegmatis/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
14.
Mar Drugs ; 22(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38921570

ABSTRACT

A new dimeric C-glycoside polyketide chrysomycin F (1), along with four new monomeric compounds, chrysomycins G (2), H (3), I (4), J (5), as well as three known analogues, chrysomycins A (6), B (7), and C (8), were isolated and characterised from a strain of Streptomyces sp. obtained from a sediment sample collected from the South China Sea. Their structures were determined by detailed spectroscopic analysis. Chrysomycin F contains two diastereomers, whose structures were further elucidated by a biomimetic [2 + 2] photodimerisation of chrysomycin A. Chrysomycins B and C showed potent anti-tuberculosis activity against both wild-type Mycobacterium tuberculosis and a number of clinically isolated MDR M. tuberculosis strains.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Polyketides , Streptomyces , Streptomyces/chemistry , Streptomyces/metabolism , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/isolation & purification , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , China , Molecular Structure , Anthraquinones/pharmacology , Anthraquinones/chemistry , Anthraquinones/isolation & purification
15.
Proc Natl Acad Sci U S A ; 121(25): e2315670121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861604

ABSTRACT

Tuberculosis (TB) is the world's deadliest infectious disease, with over 1.5 million deaths and 10 million new cases reported anually. The causative organism Mycobacterium tuberculosis (Mtb) can take nearly 40 d to culture, a required step to determine the pathogen's antibiotic susceptibility. Both rapid identification and rapid antibiotic susceptibility testing of Mtb are essential for effective patient treatment and combating antimicrobial resistance. Here, we demonstrate a rapid, culture-free, and antibiotic incubation-free drug susceptibility test for TB using Raman spectroscopy and machine learning. We collect few-to-single-cell Raman spectra from over 25,000 cells of the Mtb complex strain Bacillus Calmette-Guérin (BCG) resistant to one of the four mainstay anti-TB drugs, isoniazid, rifampicin, moxifloxacin, and amikacin, as well as a pan-susceptible wildtype strain. By training a neural network on this data, we classify the antibiotic resistance profile of each strain, both on dried samples and on patient sputum samples. On dried samples, we achieve >98% resistant versus susceptible classification accuracy across all five BCG strains. In patient sputum samples, we achieve ~79% average classification accuracy. We develop a feature recognition algorithm in order to verify that our machine learning model is using biologically relevant spectral features to assess the resistance profiles of our mycobacterial strains. Finally, we demonstrate how this approach can be deployed in resource-limited settings by developing a low-cost, portable Raman microscope that costs <$5,000. We show how this instrument and our machine learning model enable combined microscopy and spectroscopy for accurate few-to-single-cell drug susceptibility testing of BCG.


Subject(s)
Antitubercular Agents , Machine Learning , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Mycobacterium tuberculosis/drug effects , Humans , Microbial Sensitivity Tests/methods , Antitubercular Agents/pharmacology , Drug Resistance, Bacterial , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis/drug therapy , Tuberculosis/microbiology , Isoniazid/pharmacology
16.
Int J Mycobacteriol ; 13(2): 197-205, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38916392

ABSTRACT

BACKGROUND: Tuberculosis (TB), a global infectious threat, has seen a concerning rise in aminoglycoside-resistant Mycobacterium tuberculosis (M.tb) strains. The potential role of capsule proteins remains largely unexplored. This layer acts as the primary barrier for tubercle bacilli, attempting to infiltrate host cells and subsequent disease development. METHODS: The study aims to bridge this gap by investigating the differentially expressed capsule proteins in aminoglycoside-resistant M.tb clinical isolates compared with drug-sensitive isolates employing two-dimensional gel electrophoresis, mass spectrometry, and bioinformatic approaches. RESULTS: We identified eight proteins that exhibited significant upregulation in aminoglycoside-resistant isolates. Protein Rv3029c and Rv2110c were associated with intermediary metabolism and respiration; Rv2462c with cell wall and cell processes; Rv3804c with lipid metabolism; Rv2416c and Rv2623 with virulence and detoxification/adaptation; Rv0020c with regulatory functions; and Rv0639 with information pathways. Notably, the Group-based Prediction System for Prokaryotic Ubiquitin-like Protein (GPS-PUP) algorithm identified potential pupylation sites within all proteins except Rv3804c. Interactome analysis using the STRING 12.0 database revealed potential interactive partners for these proteins, suggesting their involvement in aminoglycoside resistance. Molecular docking studies revealed suitable binding between amikacin and kanamycin drugs with Rv2462c, Rv3804c, and Rv2623 proteins. CONCLUSION: As a result, our findings illustrate the multifaceted nature of aminoglycoside resistance in M.tb and the importance of understanding how capsule proteins play a role in counteracting drug efficacy. Identifying the role of these proteins in drug resistance is crucial for developing more effective treatments and diagnostics for TB.


Subject(s)
Aminoglycosides , Bacterial Proteins , Drug Resistance, Bacterial , Mycobacterium tuberculosis , Proteomics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Aminoglycosides/pharmacology , Bacterial Capsules/metabolism , Antitubercular Agents/pharmacology , Microbial Sensitivity Tests , Computational Biology , Electrophoresis, Gel, Two-Dimensional , Tuberculosis/microbiology
17.
Int J Mycobacteriol ; 13(2): 191-196, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38916391

ABSTRACT

BACKGROUND: On a global scale, India holds the distinction of having the greatest number of tuberculosis (TB) cases caused by Mycobacterium tuberculosis (MTB) complex. The study aimed at evaluating the sensitivity, specificity, accuracy, cost, rapidity, and feasibility of the performance of the colorimetric nitrate reductase-based antibiotic susceptibility (CONRAS) test against the indirect proportion method (IPM) on Lowenstein-Jensen media as the gold standard. METHODS: A comparative cross-sectional study was performed on 51 MTB isolates. Fresh subcultures were used for drug susceptibility testing by IPM on the Lowenstein-Jensen medium and the CONRAS method in liquid medium. Quality control for drug susceptibility testing was done using a known sensitive strain of MTB (H37Rv) and strains resistant to both isoniazid (INH) and rifampicin (RIF) - multidrug-resistant (MDR), mono-resistant to RIF, streptomycin (STM), and ethambutol (EMB). Statistical analysis was performed using MedCalc software (Version 20.027). RESULTS: CONRAS, carried out in microfuge tubes, was cost-efficient and easy to perform/interpret with most results being available in 10 days compared to 42 days in the case of IPM. The sensitivity, specificity, and accuracy of RIF and INH were 100%, 97.37%, and 98.04 and 93.33%, 97.59%, and 96.08%, respectively, which translates into an almost perfect agreement between the two methods as indicated by κ value of 0.905 and 0.949, respectively, for the two drugs. The performance of CONRAS was less satisfactory for STM and EMB when compared to IPM. CONCLUSIONS: CONRAS may serve as a useful test for the detection of MDR-TB because of its accuracy, low cost, ease of performance/interpretation, and rapidity when compared to IPM on LJ medium. It does not involve the use of expensive reagents and equipment, as is the case with molecular methods like GeneXpert and line probe assay, making it a suitable option for the detection of MDR-TB in resource-poor settings.


Subject(s)
Antitubercular Agents , Colorimetry , Culture Media , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Nitrate Reductase , Sensitivity and Specificity , Nitrate Reductase/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Colorimetry/methods , Microbial Sensitivity Tests/methods , Antitubercular Agents/pharmacology , Humans , Cross-Sectional Studies , Culture Media/chemistry , India , Tuberculosis, Multidrug-Resistant/microbiology
18.
Future Med Chem ; 16(10): 949-961, 2024.
Article in English | MEDLINE | ID: mdl-38910577

ABSTRACT

Aim: The WHO, Global tuberculosis report 2022 estimated number of tuberculosis (TB) cases reached 10.6 million in 2021, reflecting a 4.5% increase compared with the 10.1 million reported in 2020. The incidence rate of TB showed 3.6% rise from 2020 to 2021. Results/methodology: This manuscript discloses Cu-promoted single pot A3-coupling between triclosan (TCS)-based alkyne, formaldehyde and secondary amines to yield TCS-based Mannich adducts. Additionally, the coupling of TCS-alkynes in the presence of Cu(OAc)2 afforded the corresponding homodimers. Among tested compounds, the most potent one in the series 11 exhibited fourfold higher potency than rifabutin against drug-resistant Mycobacterium abscessus. The selectivity index was also substantially improved, being 26 (day 1) and 15 (day 3), which is four-times better than TCS.


[Box: see text].


Subject(s)
Copper , Microbial Sensitivity Tests , Triclosan , Triclosan/pharmacology , Triclosan/chemistry , Triclosan/chemical synthesis , Copper/chemistry , Copper/pharmacology , Molecular Structure , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Mycobacterium abscessus/drug effects , Computer Simulation , Structure-Activity Relationship , Humans , Mannich Bases/chemistry , Mannich Bases/pharmacology , Mannich Bases/chemical synthesis
19.
Drug Des Devel Ther ; 18: 1969-1979, 2024.
Article in English | MEDLINE | ID: mdl-38836115

ABSTRACT

Tuberculosis (TB) stands as the second most prevalent cause of global human mortality from infectious diseases. In 2022, the World Health Organization documented an estimated number of global TB cases reaching 7.5 million, which causes death for 1.13 million patients. The continuous growth of drug-resistant TB cases due to various mutations in the Mycobacterium tuberculosis (MTB) strain, raises the urgency of the exploration of novel anti-TB treatments. Ursolic acid (UA) is a natural pentacyclic triterpene found in various plants that has shown potential as a novel anti-TB agent. This review aims to provide an overview of the therapeutic prospects of UA against MTB, with a particular emphasis on in silico, in vitro, and in vivo studies. Various mechanisms of action of UA against MTB are briefly recapped from in silico studies, such as enoyl acyl carrier protein reductase inhibitors, FadA5 (Acetyl-CoA acetyltransferase) inhibitors, tuberculosinyl adenosine transferase inhibitors, and small heat shock protein 16.3 inhibitor. The potential of UA to overcome drug resistance and its synergistic effects with existing antituberculosis drugs are briefly explained from in vitro studies using a variety of methods, such as Microplate Alamar Blue Assay, Mycobacteria Growth Indicator Tube 960 and Resazurin Assays, morphological change evaluation using transmission electron microscopy, and in vivo studies using BALB/C infected with multi drug resistant clinical isolates. Besides its promising mechanism as an antituberculosis drug, its complex chemical composition, limited availability and supply, and lack of intellectual property are also reviewed as those are the most frequently occurring challenges that need to be addressed for the successful development of UA as novel anti-TB agent.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Triterpenes , Ursolic Acid , Triterpenes/pharmacology , Triterpenes/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Humans , Mycobacterium tuberculosis/drug effects , Animals , Microbial Sensitivity Tests , Tuberculosis/drug therapy , Tuberculosis/microbiology
20.
Front Immunol ; 15: 1402024, 2024.
Article in English | MEDLINE | ID: mdl-38873598

ABSTRACT

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen capable of adapting and surviving within macrophages, utilizing host nutrients for its growth and replication. Cholesterol is the main carbon source during the infection process of Mtb. Cholesterol metabolism in macrophages is tightly associated with cell functions such as phagocytosis of pathogens, antigen presentation, inflammatory responses, and tissue repair. Research has shown that Mtb infection increases the uptake of low-density lipoprotein (LDL) and cholesterol by macrophages, and enhances de novo cholesterol synthesis in macrophages. Excessive cholesterol is converted into cholesterol esters, while the degradation of cholesterol esters in macrophages is inhibited by Mtb. Furthermore, Mtb infection suppresses the expression of ATP-binding cassette (ABC) transporters in macrophages, impeding cholesterol efflux. These alterations result in the massive accumulation of cholesterol in macrophages, promoting the formation of lipid droplets and foam cells, which ultimately facilitates the persistent survival of Mtb and the progression of tuberculosis (TB), including granuloma formation, tissue cavitation, and systemic dissemination. Mtb infection may also promote the conversion of cholesterol into oxidized cholesterol within macrophages, with the oxidized cholesterol exhibiting anti-Mtb activity. Recent drug development has discovered that reducing cholesterol levels in macrophages can inhibit the invasion of Mtb into macrophages and increase the permeability of anti-tuberculosis drugs. The development of drugs targeting cholesterol metabolic pathways in macrophages, as well as the modification of existing drugs, holds promise for the development of more efficient anti-tuberculosis medications.


Subject(s)
Cholesterol , Macrophages , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/immunology , Cholesterol/metabolism , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Tuberculosis/immunology , Tuberculosis/metabolism , Tuberculosis/microbiology , Animals , Host-Pathogen Interactions/immunology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Lipid Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...