Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.509
Filter
1.
Behav Brain Funct ; 20(1): 18, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965529

ABSTRACT

BACKGROUND: Anxiety disorders are one of the most common mental disorders. Ghrelin is a critical orexigenic brain-gut peptide that regulates food intake and metabolism. Recently, the ghrelin system has attracted more attention for its crucial roles in psychiatric disorders, including depression and anxiety. However, the underlying neural mechanisms involved have not been fully investigated. METHODS: In the present study, the effect and underlying mechanism of ghrelin signaling in the nucleus accumbens (NAc) core on anxiety-like behaviors were examined in normal and acute stress rats, by using immunofluorescence, qRT-PCR, neuropharmacology, molecular manipulation and behavioral tests. RESULTS: We reported that injection of ghrelin into the NAc core caused significant anxiolytic effects. Ghrelin receptor growth hormone secretagogue receptor (GHSR) is highly localized and expressed in the NAc core neurons. Antagonism of GHSR blocked the ghrelin-induced anxiolytic effects. Moreover, molecular knockdown of GHSR induced anxiogenic effects. Furthermore, injection of ghrelin or overexpression of GHSR in the NAc core reduced acute restraint stress-induced anxiogenic effects. CONCLUSIONS: This study demonstrates that ghrelin and its receptor GHSR in the NAc core are actively involved in modulating anxiety induced by acute stress, and raises an opportunity to treat anxiety disorders by targeting ghrelin signaling system.


Subject(s)
Anxiety , Ghrelin , Nucleus Accumbens , Rats, Sprague-Dawley , Receptors, Ghrelin , Signal Transduction , Stress, Psychological , Animals , Ghrelin/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Male , Anxiety/metabolism , Anxiety/psychology , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics , Rats , Stress, Psychological/metabolism , Stress, Psychological/psychology , Signal Transduction/drug effects , Signal Transduction/physiology , Behavior, Animal/drug effects
2.
Dev Psychobiol ; 66(6): e22523, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970242

ABSTRACT

The current literature suggests that relaxin-3/relaxin/insulin-like family peptide receptor 3 (RLN-3/RXFP-3) system is involved in the pathophysiology of affective disorders because the results of anatomical and pharmacological studies have shown that the RLN-3 signaling pathway plays a role in modulating the stress response, anxiety, arousal, depression-like behavior, and neuroendocrine homeostasis. The risk of developing mental illnesses in adulthood is increased by exposure to stress in early periods of life. The available data indicate that puberty is especially characterized by the development of the neural system and emotionality and is a "stress-sensitive" period. The presented study assessed the short-term changes in the expression of RLN-3 and RXFP-3 mRNA in the stress-dependent brain regions in male pubertal Wistar rats that had been subjected to acute stress. Three stressors were applied from 42 to 44 postnatal days (first day: a single forced swim; second day: stress on an elevated platform that was repeated three times; third day: restraint stress three times). Anxiety (open field, elevated plus maze test) and anhedonic-like behavior (sucrose preference test) were estimated during these tests. The corticosterone (CORT) levels and blood morphology were estimated. We found that the RXFP-3 mRNA expression decreased in the brainstem, whereas it increased in the hypothalamus 72 h after acute stress. These molecular changes were accompanied by the increased levels of CORT and anxiety-like behavior detected in the open field test that had been conducted earlier, that is, 24 h after the stress procedure. These findings shed new light on the neurochemical changes that are involved in the compensatory response to adverse events in pubertal male rats and support other data that suggest a regulatory interplay between the RLN-3 pathway and the hypothalamus-pituitary-adrenal axis activity in the mechanisms of anxiety-like behavior.


Subject(s)
Anxiety , Brain , RNA, Messenger , Rats, Wistar , Receptors, G-Protein-Coupled , Stress, Psychological , Animals , Male , Rats , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Anxiety/metabolism , Anxiety/physiopathology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Brain/metabolism , RNA, Messenger/metabolism , Behavior, Animal/physiology , Relaxin/metabolism , Relaxin/genetics , Receptors, Peptide/metabolism , Receptors, Peptide/genetics , Sexual Maturation/physiology , Nerve Tissue Proteins
3.
J Neuroinflammation ; 21(1): 166, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956653

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) and obstructive sleep apnea (OSA) are mutual risk factors, with both conditions inducing cognitive impairment and anxiety. However, whether OSA exacerbates cognitive impairment and anxiety in patients with T2DM remains unclear. Moreover, TREM2 upregulation has been suggested to play a protective role in attenuating microglia activation and improving synaptic function in T2DM mice. The aim of this study was to explore the regulatory mechanisms of TREM2 and the cognitive and anxiety-like behavioral changes in mice with OSA combined with T2DM. METHODS: A T2DM with OSA model was developed by treating mice with a 60% kcal high-fat diet (HFD) combined with intermittent hypoxia (IH). Spatial learning memory capacity and anxiety in mice were investigated. Neuronal damage in the brain was determined by the quantity of synapses density, the number and morphology of brain microglia, and pro-inflammatory factors. For mechanism exploration, an in vitro model of T2DM combined with OSA was generated by co-treating microglia with high glucose (HG) and IH. Regulation of TREM2 on IFNAR1-STAT1 pathway was determined by RNA sequencing and qRT-PCR. RESULTS: Our results showed that HFD mice exhibited significant cognitive dysfunction and anxiety-like behavior, accompanied by significant synaptic loss. Furthermore, significant activation of brain microglia and enhanced microglial phagocytosis of synapses were observed. Moreover, IH was found to significantly aggravate anxiety in the HFD mice. The mechanism of HG treatment may potentially involve the promotion of TREM2 upregulation, which in turn attenuates the proinflammatory microglia by inhibiting the IFNAR1-STAT1 pathway. Conversely, a significant reduction in TREM2 in IH-co-treated HFD mice and HG-treated microglia resulted in the further activation of the IFNAR1-STAT1 pathway and consequently increased proinflammatory microglial activation. CONCLUSIONS: HFD upregulated the IFNAR1-STAT1 pathway and induced proinflammatory microglia, leading to synaptic damage and causing anxiety and cognitive deficits. The upregulated TREM2 inT2DM mice brain exerted a negative regulation of the IFNAR1-STAT1 pathway. Mice with T2DM combined with OSA exacerbated anxiety via the downregulation of TREM2, causing heightened IFNAR1-STAT1 pathway activation and consequently increasing proinflammatory microglia.


Subject(s)
Anxiety , Diabetes Mellitus, Type 2 , Diet, High-Fat , Hypoxia , Membrane Glycoproteins , Mice, Inbred C57BL , Receptor, Interferon alpha-beta , Receptors, Immunologic , Signal Transduction , Animals , Mice , Diet, High-Fat/adverse effects , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Anxiety/etiology , Anxiety/metabolism , Signal Transduction/physiology , Signal Transduction/drug effects , Hypoxia/metabolism , Hypoxia/complications , Male , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/psychology , Receptor, Interferon alpha-beta/metabolism , Receptor, Interferon alpha-beta/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Microglia/metabolism , STAT1 Transcription Factor/metabolism , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Sleep Apnea, Obstructive/psychology
4.
Nat Commun ; 15(1): 5439, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937485

ABSTRACT

Efficient control of feeding behavior requires the coordinated adjustment of complex motivational and affective neurocircuits. Neuropeptides from energy-sensing hypothalamic neurons are potent feeding modulators, but how these endogenous signals shape relevant circuits remains unclear. Here, we examine how the orexigenic neuropeptide Y (NPY) adapts GABAergic inputs to the bed nucleus of the stria terminalis (BNST). We find that fasting increases synaptic connectivity between agouti-related peptide (AgRP)-expressing 'hunger' and BNST neurons, a circuit that promotes feeding. In contrast, GABAergic input from the central amygdala (CeA), an extended amygdala circuit that decreases feeding, is reduced. Activating NPY-expressing AgRP neurons evokes these synaptic adaptations, which are absent in NPY-deficient mice. Moreover, fasting diminishes the ability of CeA projections in the BNST to suppress food intake, and NPY-deficient mice fail to decrease anxiety in order to promote feeding. Thus, AgRP neurons drive input-specific synaptic plasticity, enabling a selective shift in hunger and anxiety signaling during starvation through NPY.


Subject(s)
Agouti-Related Protein , Feeding Behavior , Neuronal Plasticity , Neuropeptide Y , Septal Nuclei , Starvation , Animals , Neuropeptide Y/metabolism , Neuropeptide Y/genetics , Neuronal Plasticity/physiology , Agouti-Related Protein/metabolism , Agouti-Related Protein/genetics , Feeding Behavior/physiology , Septal Nuclei/metabolism , Septal Nuclei/physiology , Mice , Starvation/metabolism , Male , Amygdala/metabolism , Amygdala/physiology , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Neurons/physiology , GABAergic Neurons/metabolism , Eating/physiology , Fasting/physiology , Anxiety/metabolism , Anxiety/physiopathology , Hunger/physiology
5.
Front Endocrinol (Lausanne) ; 15: 1380779, 2024.
Article in English | MEDLINE | ID: mdl-38919481

ABSTRACT

Objective: Aromatherapy is a holistic healing method to promote health and well-being by using natural plant extracts. However, its precise mechanism of action and influence on the endocrine system remains unclear. Since recent studies reported that a neuropeptide, oxytocin, can attenuate anxiety, we hypothesized that if oxytocin secretion is promoted through aromatherapy, it may improve mood and anxiety. The present study is aimed to investigate the relationship between oxytocin and the effects of aromatherapy with lavender oil on anxiety level, by measuring salivary oxytocin levels in healthy men and women. Methods: We conducted a randomized open crossover trial in 15 men and 10 women. Each participant received a placebo intervention (control group) and aromatherapy with lavender oil (aromatherapy group). For the aromatherapy group, each participant spent a 30-min session in a room with diffused lavender essential oil, followed by a 10-min hand massage using a carrier oil containing lavender oil. Anxiety was assessed using the State-Trait Anxiety Inventory (STAI) before the intervention, 30-min after the start of intervention, and after hand massage, in both groups. Saliva samples were collected at the same time points of the STAI. Results: In women, either aromatherapy or hand massage was associated with a reduction in anxiety levels, independently. Moreover, salivary oxytocin levels were increased after aromatherapy. On the other hand, in men, anxiety levels were decreased after aromatherapy, as well as after hand massage, regardless of the use of lavender oil. However, there were no significant differences in changes of salivary oxytocin levels between the control and aromatherapy groups during the intervention period. Interestingly, there was a positive correlation between anxiety levels and salivary oxytocin levels before the intervention, but a negative correlation was observed after hand massage with lavender oil. Conclusion: The results of the present study indicate that in women, aromatherapy with lavender oil attenuated anxiety with increase in oxytocin level in women, whereas in men, there was no clear relationship of aromatherapy with anxiety or oxytocin levels but, there was a change in correlation between anxiety and oxytocin. The results of the present study suggest that the effect of aromatherapy can vary depending on sex.


Subject(s)
Anxiety , Aromatherapy , Cross-Over Studies , Lavandula , Oils, Volatile , Oxytocin , Plant Oils , Saliva , Humans , Oxytocin/metabolism , Aromatherapy/methods , Female , Male , Saliva/chemistry , Saliva/metabolism , Anxiety/therapy , Anxiety/metabolism , Adult , Oils, Volatile/therapeutic use , Lavandula/chemistry , Young Adult , Sex Characteristics
6.
Neurosci Lett ; 835: 137851, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38838971

ABSTRACT

Chronic psychosocial stress stands as a significant heterogeneous risk factor for psychiatric disorders. The brain's physiological response to such stress varies based on the frequency and intensity of stress episodes. However, whether stress episodes divergently could affect hippocampal cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling remains unclear, a key regulator of psychiatric symptoms. We aimed to assess how two distinct patterns of social defeat stress exposure impact anxiety- and depression-like behaviors, fear, and hippocampal CREB-BDNF signaling in adult male rats. To explore this, adult male Sprague-Dawley rats were subjected to psychosocial stress using a Resident/Intruder paradigm for ten consecutive days (continuous social defeat stress: [CS]) or ten social defeat stress over the course of 21 days (intermittent social defeat stress [IS]). Behavioral tests (including novelty-suppressed feeding test, forced swimming test, and contextually conditioned fear) were conducted. Protein expression levels of phosphorylated CREB and BDNF in the dorsal and ventral hippocampi were examined. CS led to heightened anxiety-like behavior, fear, and increased levels of phosphorylated CREB in both the dorsal and ventral hippocampi. Conversely, IS resulted in increased anxiety-like behavior and behavioral despair alongside decreased levels of phosphorylated CREB and BDNF, particularly in the dorsal hippocampus. These findings indicate that chronic psychosocial stress divergently affects hippocampal CREB-BDNF signaling and emotional regulation depending on the stress episode. Such insights could enhance our understanding of the molecular basis of the heterogeneity of psychiatric disorders and facilitate the development of innovative treatment approaches to patients with psychiatric disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Cyclic AMP Response Element-Binding Protein , Hippocampus , Rats, Sprague-Dawley , Stress, Psychological , Animals , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Male , Stress, Psychological/metabolism , Stress, Psychological/psychology , Phosphorylation , Cyclic AMP Response Element-Binding Protein/metabolism , Social Defeat , Rats , Anxiety/metabolism , Anxiety/psychology , Behavior, Animal/physiology , Fear/physiology , Fear/psychology , Emotions/physiology , Depression/metabolism , Depression/psychology
7.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38866499

ABSTRACT

Previous studies have shown that ligands that bind to sigma-2 receptor/TMEM97 (s2R/TMEM97), a transmembrane protein, have anxiolytic/antidepressant-like properties and relieve neuropathic pain-like effects in rodents. Despite medical interest in s2R/TMEM97, little affective and pain behavioral characterization has been done using transgenic mice, which limits the development of s2R/TMEM97 as a viable therapeutic target. Using wild-type (WT) and global Tmem97 knock-out (KO) mice, we sought to identify the contribution of Tmem97 in modulating affective and pain-like behaviors using a battery of affective and pain assays, including open field, light/dark preference, elevated plus maze, forced swim test, tail suspension test, and the mechanical sensitivity tests. Our results demonstrate that female Tmem97 KO mice show less anxiety-like and depressive-like behaviors in light/dark preference and tail suspension tests but not in an open field, elevated plus maze, and forced swim tests at baseline. We next performed spared nerve injury in WT and Tmem97 KO mice to assess the role of Tmem97 in neuropathic pain-induced anxiety and depression. WT mice, but not Tmem97 KO mice, developed a prolonged neuropathic pain-induced depressive-like phenotype when tested 10 weeks after nerve injury in females. Our results show that Tmem97 plays a role in modulating anxiety-like and depressive-like behaviors in naive animals with a significant change in the presence of nerve injury in female mice. Overall, these data demonstrate that Tmem97 could be a target to alleviate affective comorbidities of pain disorders.


Subject(s)
Depression , Membrane Proteins , Mice, Inbred C57BL , Mice, Knockout , Neuralgia , Receptors, sigma , Animals , Receptors, sigma/metabolism , Female , Neuralgia/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Depression/metabolism , Depression/etiology , Behavior, Animal/physiology , Mice , Anxiety/metabolism , Disease Models, Animal , Male
8.
FASEB J ; 38(11): e23648, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38822661

ABSTRACT

Previous studies on germ-free (GF) animals have described altered anxiety-like and social behaviors together with dysregulations in brain serotonin (5-HT) metabolism. Alterations in circulating 5-HT levels and gut 5-HT metabolism have also been reported in GF mice. In this study, we conducted an integrative analysis of various behaviors as well as markers of 5-HT metabolism in the brain and along the GI tract of GF male mice compared with conventional (CV) ones. We found a strong decrease in locomotor activity, accompanied by some signs of increased anxiety-like behavior in GF mice compared with CV mice. Brain gene expression analysis showed no differences in HTR1A and TPH2 genes. In the gut, we found decreased TPH1 expression in the colon of GF mice, while it was increased in the cecum. HTR1A expression was dramatically decreased in the colon, while HTR4 expression was increased both in the cecum and colon of GF mice compared with CV mice. Finally, SLC6A4 expression was increased in the ileum and colon of GF mice compared with CV mice. Our results add to the evidence that the microbiota is involved in regulation of behavior, although heterogeneity among studies suggests a strong impact of genetic and environmental factors on this microbiota-mediated regulation. While no impact of GF status on brain 5-HT was observed, substantial differences in gut 5-HT metabolism were noted, with tissue-dependent results indicating a varying role of microbiota along the GI tract.


Subject(s)
Behavior, Animal , Germ-Free Life , Serotonin , Animals , Serotonin/metabolism , Mice , Male , Gastrointestinal Microbiome/physiology , Brain/metabolism , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Anxiety/metabolism , Anxiety/microbiology , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Mice, Inbred C57BL , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Colon/metabolism , Colon/microbiology
9.
PLoS One ; 19(6): e0304261, 2024.
Article in English | MEDLINE | ID: mdl-38870197

ABSTRACT

PURPOSE: Patients with Retinitis Pigmentosa (RP) commonly experience sleep-related issues and are susceptible to stress. Moreover, variatiaons in their vision are often linked to anxiety, stress and drowsiness, indicating that stress and sleep deprivation lead to a decline in vision, and vision improves when both are mitigated. The objective of this study was to investigate the utility of salivary biomarkers as biochemical indicators of anxiety and sleep deprivation in RP patients. METHODS: Seventy-eight RP patients and 34 healthy controls were included in this observational study. Anxiety and sleep-quality questionnaires, a complete ophthalmological exam for severity grading and, the collection of salivary samples from participants were assessed for participants. The activity of biomarkers was estimated by ELISA, and statistical analysis was performed to determine associations between the parameters. Associations between underlying psychological factors, grade of disease severity, and biomarkers activity were also examined. RESULTS: Fifty-two (67%) of patients had a severe RP, and 26 (33%) had a mild-moderate grade. Fifty-eight (58,9%) patients reported severe levels of anxiety and 18 (23.,1%) a high level. Forty-six (59%) patients obtained pathological values in sleep-quality questionaries and 43 (55.1%) in sleepiness. Patients with RP exhibited significant differences in testosterone, cortisol, sTNFαRII, sIgA and melatonin as compared to controls and patients with a mild-moderate and advanced stage of disease showed greater differences. In covariate analysis, patients with a severe anxiety level also showed greater differences in mean salivary cortisol, sTNFαRII and melatonin and male patients showed lower IgA levels than female. CONCLUSIONS: The present findings suggest that salivary biomarkers could be suitable non-invasive biochemical markers for the objective assessment of sleep deprivation and anxiety in RP patients. Further research is needed to characterize the effects of untreated negative psychological states and sleep deprivation on increased variability of vision and disease progression, if any.


Subject(s)
Biomarkers , Retinitis Pigmentosa , Saliva , Sleep Deprivation , Humans , Male , Female , Saliva/chemistry , Saliva/metabolism , Biomarkers/metabolism , Biomarkers/analysis , Retinitis Pigmentosa/metabolism , Adult , Middle Aged , Sleep Deprivation/metabolism , Stress, Psychological/metabolism , Anxiety/metabolism , Case-Control Studies , Hydrocortisone/analysis , Hydrocortisone/metabolism
10.
Drug Des Devel Ther ; 18: 2227-2248, 2024.
Article in English | MEDLINE | ID: mdl-38882046

ABSTRACT

Purpose: The Baihe Dihuang decoction (BDD) is a representative traditional Chinese medicinal formula that has been used to treat anxiety disorders for thousands of years. This study aimed to reveal mechanisms of anxiolytic effects of BDD with multidimensional omics. Methods: First, 28-day chronic restraint stress (CRS) was used to create a rat model of anxiety, and the open field test and elevated plus maze were used to assess anxiety-like behavior. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin staining, and immunofluorescence staining were used to evaluate inflammatory response. Besides, 16S rRNA gene sequencing assessed fecal microbiota composition and differential microbiota. Non-targeted metabolomics analysis of feces was performed to determine fecal biomarkers, and targeted metabolomics was used to observe the levels of hippocampus neurotransmitters. Finally, Pearson correlation analysis was used to examine relationships among gut microbiota, fecal metabolites, and neurotransmitters. Results: BDD significantly improved anxiety-like behaviors in CRS-induced rats and effectively ameliorated hippocampal neuronal damage and abnormal activation of hippocampal microglia. It also had a profound effect on the diversity of microbiota, as evidenced by significant changes in the abundance of 10 potential microbial biomarkers at the genus level. Additionally, BDD led to significant alterations in 18 fecal metabolites and 12 hippocampal neurotransmitters, with the majority of the metabolites implicated in amino acid metabolism pathways such as D-glutamine and D-glutamate, alanine, arginine and proline, and tryptophan metabolism. Furthermore, Pearson analysis showed a strong link among gut microbiota, metabolites, and neurotransmitters during anxiety and BDD treatment. Conclusion: BDD can effectively improve anxiety-like behaviors by regulating the gut-brain axis, including gut microbiota and metabolite modification, suppression of hippocampal neuronal inflammation, and regulation of neurotransmitters.


Subject(s)
Anti-Anxiety Agents , Disease Models, Animal , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Metabolomics , Rats, Sprague-Dawley , Animals , Rats , Anti-Anxiety Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Male , Gastrointestinal Microbiome/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Anxiety/drug therapy , Anxiety/metabolism , Restraint, Physical , Hippocampus/drug effects , Hippocampus/metabolism
11.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892090

ABSTRACT

Fetal hypoxia and maternal stress frequently culminate in neuropsychiatric afflictions in life. To replicate this condition, we employed a model of prenatal severe hypoxia (PSH) during days 14-16 of rat gestation. Subsequently, both control and PSH rats at 3 months old were subjected to episodes of inescapable stress to induce learned helplessness (LH). The results of the open field test revealed an inclination towards depressive-like behavior in PSH rats. Following LH episodes, control (but not PSH) rats displayed significant anxiety. LH induced an increase in glucocorticoid receptor (GR) levels in extrahypothalamic brain structures, with enhanced nuclear translocation in the hippocampus (HPC) observed both in control and PSH rats. However, only control rats showed an increase in GR nuclear translocation in the amygdala (AMG). The decreased GR levels in the HPC of PSH rats correlated with elevated levels of hypothalamic corticotropin-releasing hormone (CRH) compared with the controls. However, LH resulted in a reduction of the CRH levels in PSH rats, aligning them with those of control rats, without affecting the latter. This study presents evidence that PSH leads to depressive-like behavior in rats, associated with alterations in the glucocorticoid system. Notably, these impairments also contribute to increased resistance to severe stressors.


Subject(s)
Anxiety , Depression , Glucocorticoids , Prenatal Exposure Delayed Effects , Receptors, Glucocorticoid , Animals , Rats , Female , Anxiety/metabolism , Pregnancy , Glucocorticoids/metabolism , Depression/metabolism , Depression/etiology , Receptors, Glucocorticoid/metabolism , Prenatal Exposure Delayed Effects/metabolism , Stress, Psychological/metabolism , Male , Corticotropin-Releasing Hormone/metabolism , Hippocampus/metabolism , Hypoxia/metabolism , Phenotype , Behavior, Animal , Helplessness, Learned , Disease Models, Animal , Amygdala/metabolism , Fetal Hypoxia/metabolism , Fetal Hypoxia/complications
12.
Biochem Biophys Res Commun ; 724: 150218, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38865810

ABSTRACT

Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/ß, and α/ß) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.


Subject(s)
Amygdala , Anxiety Disorders , gamma-Aminobutyric Acid , Humans , Animals , Anxiety Disorders/metabolism , Anxiety Disorders/physiopathology , gamma-Aminobutyric Acid/metabolism , Amygdala/metabolism , Amygdala/physiopathology , Anxiety/metabolism , Anxiety/physiopathology , Receptors, GABA-A/metabolism
13.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38839305

ABSTRACT

Social behavior is important for our well-being, and its dysfunctions impact several pathological conditions. Although the involvement of glutamate is undeniable, the relevance of vesicular glutamate transporter type 3 (VGluT3), a specific vesicular transporter, in the control of social behavior is not sufficiently explored. Since midbrain median raphe region (MRR) is implicated in social behavior and the nucleus contains high amount of VGluT3+ neurons, we compared the behavior of male VGluT3 knock-out (KO) and VGluT3-Cre mice, the latter after chemogenetic MRR-VGluT3 manipulation. Appropriate control groups were included. Behavioral test battery was used for social behavior (sociability, social discrimination, social interaction, resident intruder test) and possible confounding factors (open field, elevated plus maze, Y-maze tests). Neuronal activation was studied by c-Fos immunohistochemistry. Human relevance was confirmed by VGluT3 gene expression in relevant human brainstem areas. VGluT3 KO mice exhibited increased anxiety, social interest, but also aggressive behavior in anxiogenic environment and impaired social memory. For KO animals, social interaction induced lower cell activation in the anterior cingulate, infralimbic cortex, and medial septum. In turn, excitation of MRR-VGluT3+ neurons was anxiolytic. Inhibition increased social interest 24 h later but decreased mobility and social behavior in aggressive context. Chemogenetic activation increased the number of c-Fos+ neurons only in the MRR. We confirmed the increased anxiety-like behavior and impaired memory of VGluT3 KO strain and revealed increased, but inadequate, social behavior. MRR-VGluT3 neurons regulated mobility and social and anxiety-like behavior in a context-dependent manner. The presence of VGluT3 mRNA on corresponding human brain areas suggests clinical relevance.


Subject(s)
Anxiety , Mice, Knockout , Social Behavior , Animals , Male , Humans , Anxiety/metabolism , Raphe Nuclei/metabolism , Mice , Neurons/metabolism , Mice, Inbred C57BL , Behavior, Animal/physiology , Mice, Transgenic , Amino Acid Transport Systems, Acidic/metabolism , Amino Acid Transport Systems, Acidic/genetics , Proto-Oncogene Proteins c-fos/metabolism , Aggression/physiology
14.
Behav Brain Res ; 470: 115094, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38844057

ABSTRACT

Estrogen receptor (ER) activation by 17-ß estradiol (E2) can attenuate neuronal injury and behavioral impairments following global cerebral ischemia (GCI) in rodents. This study sought to further examine the discrete roles of ERs through characterization of the effects of selective ER activation on post-ischemic pro-inflammatory microglial activation, hippocampal neuronal injury, and anxiety-like behaviors. Forty-six ovariectomized (OVX) adult female Wistar rats received daily s.c injections (100 µg/kg/day) of propylpyrazole triol (PPT; ERα agonist), diarylpropionitrile (DPN; ERß agonist), G-1 (G-protein coupled ER agonist; GPER), E2 (activating all receptors), or vehicle solution (VEH) for 21 days. After final injection, rats underwent GCI via 4-vessel occlusion (n=8 per group) or sham surgery (n=6, vehicle injections). The Open Field Test (OFT), Elevated Plus Maze (EPM), and Hole Board Test (HBT) assessed anxiety-like behaviors. Microglial activation (Iba1, CD68, CD86) in the basolateral amygdala (BLA), CA1 of the hippocampus, and paraventricular nucleus of the hypothalamus (PVN) was determined 8 days post-ischemia. Compared to sham rats, Iba1 activation and CA1 neuronal injury were increased in all ischemic groups except DPN-treated rats, with PPT-treated ischemic rats also showing increased PVN Iba1-ir expression. Behaviorally, VEH ischemic rats showed slightly elevated anxiety in the EPM compared to sham counterparts, with no significant effects of agonists. While no changes were observed in the OFT, emotion regulation via grooming in the HBT was increased in G-1 rats compared to E2 rats. Our findings support selective ER activation to regulate post-ischemic microglial activation and coping strategies in the HBT, despite minimal impact on hippocampal injury.


Subject(s)
Anxiety , Brain Ischemia , CA1 Region, Hippocampal , Microglia , Phenols , Pyrazoles , Rats, Wistar , Animals , Female , Microglia/metabolism , Microglia/drug effects , Rats , Anxiety/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/drug effects , Brain Ischemia/metabolism , Pyrazoles/pharmacology , Phenols/pharmacology , Ovariectomy , Neurons/metabolism , Neurons/drug effects , Propionates/pharmacology , Propionates/administration & dosage , Behavior, Animal/drug effects , Behavior, Animal/physiology , Estradiol/pharmacology , Disease Models, Animal , Receptors, Estrogen/metabolism , Nitriles/pharmacology
15.
Adv Neurobiol ; 35: 157-182, 2024.
Article in English | MEDLINE | ID: mdl-38874723

ABSTRACT

Pain, fear, stress, and anxiety are separate yet interrelated phenomena. Each of these concepts has an extensive individual body of research, with some more recent work focusing on points of conceptual overlap. The role of the endogenous opioid system in each of these phenomena is only beginning to be examined and understood. Research examining the ways in which endogenous opioids (e.g., beta-endorphin; ßE) may mediate the relations among pain, fear, stress, and anxiety is even more nascent. This chapter explores the extant evidence for endogenous opioid activity as an underpinning mechanism of these related constructs, with an emphasis on research examining ßE.


Subject(s)
Anxiety , Fear , Pain , Stress, Psychological , Animals , Humans , Anxiety/metabolism , beta-Endorphin/metabolism , Fear/physiology , Opioid Peptides/metabolism , Pain/psychology , Pain/metabolism , Stress, Psychological/metabolism
16.
Transl Psychiatry ; 14(1): 239, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834575

ABSTRACT

Prior research has identified differential protein expression levels of linker histone H1x within the ventral hippocampus (vHipp) of stress-susceptible versus stress-resilient mice. These mice are behaviorally classified based on their divergent responses to chronic social stress. Here, we sought to determine whether elevated vHipp H1x protein levels directly contribute to these diverging behavioral adaptations to stress. First, we demonstrated that stress-susceptible mice uniquely express elevated vHipp H1x protein levels following chronic stress. Given that linker histones coordinate heterochromatin compaction, we hypothesize that elevated levels of H1x in the vHipp may impede pro-resilience transcriptional adaptations and prevent development of the resilient phenotype following social stress. To test this, 8-10-week-old male C57BL/6 J mice were randomly assigned to groups undergoing 10 days of chronic social defeat stress (CSDS) or single housing, respectively. Following CSDS, mice were classified as susceptible versus resilient based on their social interaction behaviors. We synthesized a viral overexpression (OE) vector for H1x and transduced all stressed and single housed mice with either H1x or control GFP within vHipp. Following viral delivery, we conducted social, anxiety-like, and memory-reliant behavior tests on distinct cohorts of mice. We found no behavioral adaptations following H1x OE compared to GFP controls in susceptible, resilient, or single housed mice. In sum, although we confirm elevated vHipp protein levels of H1x associate with susceptibility to social stress, we observe no significant behavioral consequence of H1x OE. Thus, we conclude elevated levels of H1x are associated with, but are not singularly sufficient to drive development of behavioral adaptations to stress.


Subject(s)
Behavior, Animal , Hippocampus , Histones , Mice, Inbred C57BL , Stress, Psychological , Animals , Male , Hippocampus/metabolism , Mice , Stress, Psychological/metabolism , Histones/metabolism , Behavior, Animal/physiology , Adaptation, Psychological/physiology , Resilience, Psychological , Social Defeat , Anxiety/metabolism
17.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892044

ABSTRACT

Anxiety is a common comorbidity of obesity, resulting from prescribing long-term caloric restriction diets (CRDs); patients with a reduced food intake lose weight but present anxious behaviors, poor treatment adherence, and weight regain in the subsequent 5 years. Intermittent fasting (IF) restricts feeding time to 8 h during the activity phase, reducing patients' weight even with no caloric restriction; it is unknown whether an IF regime with ad libitum feeding avoids stress and anxiety development. We compared the corticosterone blood concentration between male Wistar rats fed ad libitum or calorie-restricted with all-day or IF food access after 4 weeks, along with their anxiety parameters when performing the elevated plus maze (EPM). As the amygdalar thyrotropin-releasing hormone (TRH) is believed to have anxiolytic properties, we evaluated its expression changes in association with anxiety levels. The groups formed were the following: a control which was offered food ad libitum (C-adlib) or 30% of C-adlib's energy requirements (C-CRD) all day, and IF groups provided food ad libitum (IF-adlib) or 30% of C-adlib's requirements (IF-CRD) with access from 9:00 to 17:00 h. On day 28, the rats performed the EPM and, after 30 min, were decapitated to analyze their amygdalar TRH mRNA expression by in situ hybridization and corticosterone serum levels. Interestingly, circadian feeding synchronization reduced the body weight, food intake, and animal anxiety levels in both IF groups, with ad libitum (IF-adlib) or restricted (IF-CRD) food access. The anxiety levels of the experimental groups resulted to be negatively associated with TRH expression, which supported its anxiolytic role. Therefore, the low anxiety levels induced by synchronizing feeding with the activity phase would help patients who are dieting to improve their diet therapy adherence.


Subject(s)
Amygdala , Anxiety , Caloric Restriction , Circadian Rhythm , Corticosterone , Rats, Wistar , Thyrotropin-Releasing Hormone , Animals , Anxiety/metabolism , Rats , Male , Amygdala/metabolism , Thyrotropin-Releasing Hormone/metabolism , Thyrotropin-Releasing Hormone/genetics , Caloric Restriction/methods , Corticosterone/blood , Down-Regulation , Feeding Behavior , Fasting , Eating , Body Weight
18.
Peptides ; 178: 171239, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723948

ABSTRACT

Arginine vasotocin (AVT) is produced mainly in the hypothalamus and as a neurohypophyseal hormone peripherally regulates water-mineral balance in sub-mammals. In addition, AVT-containing neurons innervate several areas of the brain, and AVT also acts centrally as both an anorexigenic and anxiogenic factor in goldfish. However, it is unclear whether these central effects operate in fish in general. In the present study, therefore, we investigated AVT-like immunoreactivity in the brain of the tiger puffer, a cultured fish with a high market value in Japan and also a representative marine teleost species, focusing particularly on whether AVT affects food intake and psychomotor activity. AVT-like immunoreactivity was distributed higher in the ventral region of the telencephalon, the hypothalamus and midbrain. Intraperitoneal (IP) administration of AVT at 100 pmol g-1 body weight (BW) increased the immunoreactivity of phosphorylated ribosomal proteinS6 (RPS6), a neuronal activation marker, in the telencephalon and diencephalon, decreased food consumption and enhanced thigmotaxis. AVT-induced anorexigenic and anxiogenic actions were blocked by IP co-injection of a V1a receptor (V1aR) antagonist, Manning compound (MC) at 300 pmol g-1 BW. These results suggest that AVT acts as an anorexigenic and anxiogenic factor via the V1aR-signaling pathway in the tiger puffer brain.


Subject(s)
Receptors, Vasopressin , Signal Transduction , Vasotocin , Animals , Vasotocin/pharmacology , Vasotocin/metabolism , Receptors, Vasopressin/metabolism , Signal Transduction/drug effects , Takifugu/metabolism , Injections, Intraperitoneal , Brain/metabolism , Brain/drug effects , Eating/drug effects , Anxiety/metabolism , Anxiety/chemically induced , Telencephalon/metabolism , Telencephalon/drug effects
19.
J Affect Disord ; 358: 129-137, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38697224

ABSTRACT

BACKGROUND: The underlying pathogenesis of anxiety remain elusive, making the pinpointing of potential therapeutic and diagnostic biomarkers for anxiety paramount to its efficient treatment. METHODS: We undertook a proteome-wide association study (PWAS), fusing human brain proteomes from both discovery (ROS/MAP; N = 376) and validation cohorts (Banner; N = 152) with anxiety genome-wide association study (GWAS) summary statistics. Complementing this, we executed transcriptome-wide association studies (TWAS) leveraging human brain transcriptomic data from the Common Mind Consortium (CMC) to discern the confluence of genetic influences spanning both proteomic and transcriptomic levels. We further scrutinized significant genes through a suite of methodologies. RESULTS: We discerned 14 genes instrumental in the genesis of anxiety through their specific cis-regulated brain protein abundance. Out of these, 6 were corroborated in the confirmatory PWAS, with 4 also showing associations with anxiety via their cis-regulated brain mRNA levels. A heightened confidence level was attributed to 5 genes (RAB27B, CCDC92, BTN2A1, TMEM106B, and DOC2A), taking into account corroborative evidence from both the confirmatory PWAS and TWAS, coupled with insights from mendelian randomization analysis and colocalization evaluations. A majority of the identified genes manifest in brain regions intricately linked to anxiety and predominantly partake in lysosomal metabolic processes. LIMITATIONS: The limited scope of the brain proteome reference datasets, stemming from a relatively modest sample size, potentially curtails our grasp on the entire gamut of genetic effects. CONCLUSION: The genes pinpointed in our research present a promising groundwork for crafting therapeutic interventions and diagnostic tools for anxiety.


Subject(s)
Anxiety , Brain , Genome-Wide Association Study , Proteome , Humans , Proteome/genetics , Brain/metabolism , Anxiety/genetics , Anxiety/metabolism , Transcriptome , Proteomics , Anxiety Disorders/genetics , Anxiety Disorders/metabolism
20.
Proc Natl Acad Sci U S A ; 121(21): e2319595121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739786

ABSTRACT

As a global problem, fine particulate matter (PM2.5) really needs local fixes. Considering the increasing epidemiological relevance to anxiety and depression but inconsistent toxicological results, the most important question is to clarify whether and how PM2.5 causally contributes to these mental disorders and which components are the most dangerous for crucial mitigation in a particular place. In the present study, we chronically subjected male mice to a real-world PM2.5 exposure system throughout the winter heating period in a coal combustion area and revealed that PM2.5 caused anxiety and depression-like behaviors in adults such as restricted activity, diminished exploratory interest, enhanced repetitive stereotypy, and elevated acquired immobility, through behavioral tests including open field, elevated plus maze, marble-burying, and forced swimming tests. Importantly, we found that dopamine signaling was perturbed using mRNA transcriptional profile and bioinformatics analysis, with Drd1 as a potential target. Subsequently, we developed the Drd1 expression-directed multifraction isolating and nontarget identifying framework and identified a total of 209 compounds in PM2.5 organic extracts capable of reducing Drd1 expression. Furthermore, by applying hierarchical characteristic fragment analysis and molecular docking and dynamics simulation, we clarified that phenyl-containing compounds competitively bound to DRD1 and interfered with dopamine signaling, thereby contributing to mental disorders. Taken together, this work provides experimental evidence for researchers and clinicians to identify hazardous factors in PM2.5 and prevent adverse health outcomes and for local governments and municipalities to control source emissions for diminishing specific disease burdens.


Subject(s)
Anxiety , Depression , Particulate Matter , Receptors, Dopamine D1 , Animals , Particulate Matter/toxicity , Mice , Male , Anxiety/metabolism , Depression/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/genetics , Air Pollutants/toxicity , Behavior, Animal/drug effects , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...