Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 499
Filter
1.
Viruses ; 16(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38932211

ABSTRACT

The advancement of bioinformatics and sequencing technology has resulted in the identification of an increasing number of new RNA viruses. This study systematically identified the RNA virome of the willow-carrot aphid, Cavariella aegopodii (Hemiptera: Aphididae), using metagenomic sequencing and rapid amplification of cDNA ends (RACE) approaches. C. aegopodii is a sap-sucking insect widely distributed in Europe, Asia, North America, and Australia. The deleterious effects of C. aegopodii on crop growth primarily stem from its feeding activities and its role as a vector for transmitting plant viruses. The virome includes Cavariella aegopodii virga-like virus 1 (CAVLV1) and Cavariella aegopodii iflavirus 1 (CAIV1). Furthermore, the complete genome sequence of CAVLV1 was obtained. Phylogenetically, CAVLV1 is associated with an unclassified branch of the Virgaviridae family and is susceptible to host antiviral RNA interference (RNAi), resulting in the accumulation of a significant number of 22nt virus-derived small interfering RNAs (vsiRNAs). CAIV1, on the other hand, belongs to the Iflaviridae family, with vsiRNAs ranging from 18 to 22 nt. Our findings present a comprehensive analysis of the RNA virome of C. aegopodii for the first time, offering insights that could potentially aid in the future control of the willow-carrot aphid.


Subject(s)
Aphids , Genome, Viral , Phylogeny , RNA Viruses , Animals , Aphids/virology , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , Virome/genetics , RNA, Viral/genetics , Metagenomics , Plant Diseases/virology
2.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891989

ABSTRACT

Negeviruses are insect-specific enveloped RNA viruses that exhibit a wide geographic distribution. A novel nege-like virus, tentatively named Aphis gossypii nege-like virus (AGNLV, GenBank: OR880429.1), was isolated from aphids (Aphis gossypii) in Lijiang City, Yunnan, China. AGNLV has a genome sequence of 9258 nt (excluding the polyA tail) encoding three open reading frames (ORFs). ORF1 (7149 nt) encodes a viral methyltransferase, a viral RNA helicase, and an RNA-dependent RNA polymerase. ORF2 (1422 nt) encodes a DiSB-ORF2_chro domain and ORF3 encodes an SP24 domain. The genome sequence of AGNLV shares the highest nucleotide identity of 60.0% and 59.5% with Wuhan house centipede virus 1 (WHCV1) and Astegopteryx formosana nege-like virus (AFNLV), respectively. Phylogenetic analysis based on the RNA-dependent RNA polymerase shows that AGNLV is clustered with other negeviruses and nege-like viruses discovered in aphids, forming a distinct "unclassified clade". Interestingly, AGNLV only encodes three ORFs, whereas AFNLV and WHCV1 have four ORFs. Structure and transmembrane domain predictions show the presence of eight alpha helices and five transmembrane helices in the AGNLV ORF3. Translational enhancement of the AGNLV 5' UTR was similar to that of the 5' UTR of plant viruses. Our findings provide evidence of the diversity and structure of nege-like viruses and are the first record of such a virus from a member of the genus Aphis.


Subject(s)
Aphids , Genome, Viral , Open Reading Frames , Phylogeny , Animals , Aphids/virology , China , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Viral Proteins/chemistry , Insect Viruses/genetics , Insect Viruses/isolation & purification , Insect Viruses/classification , RNA, Viral/genetics
3.
Biol Lett ; 20(5): 20240095, 2024 May.
Article in English | MEDLINE | ID: mdl-38774968

ABSTRACT

The transmission efficiency of aphid-vectored plant viruses can differ between aphid populations. Intra-species diversity (genetic variation, endosymbionts) is a key determinant of aphid phenotype; however, the extent to which intra-species diversity contributes towards variation in virus transmission efficiency is unclear. Here, we use multiple populations of two key aphid species that vector barley yellow dwarf virus (BYDV) strain PAV (BYDV-PAV), the grain aphid (Sitobion avenae) and the bird cherry-oat aphid (Rhopalosiphum padi), and examine how diversity in vector populations influences virus transmission efficiency. We use Illumina sequencing to characterize genetic and endosymbiont variation in multiple Si. avenae and Rh. padi populations and conduct BYDV-PAV transmission experiments to identify links between intra-species diversity in the vector and virus transmission efficiency. We observe limited variation in the transmission efficiency of Si. avenae, with transmission efficiency consistently low for this species. However, for Rh. padi, we observe a range of transmission efficiencies and show that BYDV transmission efficiency is influenced by genetic diversity within the vector, identifying 542 single nucleotide polymorphisms that potentially contribute towards variable transmission efficiency in Rh. padi. Our results represent an important advancement in our understanding of the relationship between genetic diversity, vector-virus interactions, and virus transmission efficiency.


Subject(s)
Aphids , Genetic Variation , Insect Vectors , Luteovirus , Plant Diseases , Aphids/virology , Aphids/genetics , Animals , Insect Vectors/virology , Insect Vectors/genetics , Plant Diseases/virology , Luteovirus/genetics , Luteovirus/physiology , Symbiosis
4.
Virus Res ; 344: 199369, 2024 06.
Article in English | MEDLINE | ID: mdl-38608732

ABSTRACT

Tobacco (Nicotiana tabacum) is one of the major cash crops in China. Potato virus Y (PVY), a representative member of the genus Potyvirus, greatly reduces the quality and yield of tobacco leaves by inducing veinal necrosis. Mild strain-mediated cross-protection is an attractive method of controlling diseases caused by PVY. Currently, there is a lack of effective and stable attenuated PVY mutants. Potyviral helper component-protease (HC-Pro) is a likely target for the development of mild strains. Our previous studies showed that the residues lysine at positions 124 and 182 (K124 and K182) in HC-Pro were involved in PVY virulence, and the conserved KITC motif in HC-Pro was involved in aphid transmission. In this study, to improve the stability of PVY mild strains, K at position 50 (K50) in KITC motif, K124, and K182 were separately substituted with glutamic acid (E), leucine (L), and arginine (R), resulting in a triple-mutant PVY-HCELR. The mutant PVY-HCELR had attenuated virulence and did not induce leaf veinal necrosis symptoms in tobacco plants and could not be transmitted by Myzus persicae. Furthermore, PVY-HCELR mutant was genetically stable after six serial passages, and only caused mild mosaic symptoms in tobacco plants even at 90 days post inoculation. The tobacco plants cross-protected by PVY-HCELR mutant showed high resistance to the wild-type PVY. This study showed that PVY-HCELR mutant was a promising mild mutant for cross-protection to control PVY.


Subject(s)
Cross Protection , Mutation , Nicotiana , Plant Diseases , Potyvirus , Viral Proteins , Potyvirus/genetics , Potyvirus/pathogenicity , Potyvirus/enzymology , Nicotiana/virology , Plant Diseases/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Virulence , Animals , Aphids/virology , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Plant Leaves/virology , China
5.
Microbiol Spectr ; 12(5): e0028724, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38517168

ABSTRACT

Multipartite viruses exhibit a fragmented genome composed of several nucleic acid segments individually packaged in distinct viral particles. The genome of all species of the genus Nanovirus holds eight segments, which accumulate at a very specific and reproducible relative frequency in the host plant tissues. In a given host species, the steady state pattern of the segments' relative frequencies is designated the genome formula and is thought to have an adaptive function through the modulation of gene expression. Nanoviruses are aphid-transmitted circulative non-propagative viruses, meaning that the virus particles are internalized into the midgut cells, transferred to the hemolymph, and then to the saliva, with no replication during this transit. Unexpectedly, a previous study on the faba bean necrotic stunt virus revealed that the genome formula changes after ingestion by aphids. We investigate here the possible mechanism inducing this change by first comparing the relative segment frequencies in different compartments of the aphid. We show that changes occur both in the midgut lumen and in the secreted saliva but not in the gut, salivary gland, or hemolymph. We further establish that the viral particles differentially resist physicochemical variations, in particular pH, ionic strength, and/or type of salt, depending on the encapsidated segment. We thus propose that the replication-independent genome formula changes within aphids are not adaptive, contrary to changes occurring in plants, and most likely reflect a fortuitous differential degradation of virus particles containing distinct segments when passing into extra-cellular media such as gastric fluid or saliva. IMPORTANCE: The genome of multipartite viruses is composed of several segments individually packaged into distinct viral particles. Each segment accumulates at a specific frequency that depends on the host plant species and regulates gene expression. Intriguingly, the relative frequencies of the genome segments also change when the octopartite faba bean necrotic stunt virus (FBNSV) is ingested by aphid vectors, despite the present view that this virus travels through the aphid gut and salivary glands without replicating. By monitoring the genomic composition of FBNSV populations during the transit in aphids, we demonstrate here that the changes take place extracellularly in the gut lumen and in the saliva. We further show that physicochemical factors induce differential degradation of viral particles depending on the encapsidated segment. We propose that the replication-independent changes within the insect vector are not adaptive and result from the differential stability of virus particles containing distinct segments according to environmental parameters.


Subject(s)
Aphids , Genome, Viral , Insect Vectors , Nanovirus , Virus Replication , Aphids/virology , Animals , Genome, Viral/genetics , Nanovirus/genetics , Nanovirus/physiology , Insect Vectors/virology , Saliva/virology , Plant Diseases/virology , Virion/genetics , Vicia faba/virology , Hemolymph/virology
6.
Plant Dis ; 108(6): 1486-1490, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38372721

ABSTRACT

Although it is currently eradicated from the United States, Plum pox virus (PPV) poses an ongoing threat to U.S. stone fruit production. Although almond (Prunus dulcis) is known to be largely resistant to PPV, there is conflicting evidence about its potential to serve as an asymptomatic reservoir host for the virus and thus serve as a potential route of entry. Here, we demonstrate that both Tuono and Texas Mission cultivars can be infected by the U.S. isolate PPV Dideron (D) Penn4 and that Tuono is a transmission-competent host, capable of serving as a source of inoculum for aphid transmission of the virus. These findings have important implications for efforts to keep PPV out of the United States and highlight the need for additional research to test the susceptibility of almond to other PPV-D isolates.


Subject(s)
Aphids , Plant Diseases , Plum Pox Virus , Prunus dulcis , Plum Pox Virus/physiology , Plum Pox Virus/genetics , Prunus dulcis/virology , Plant Diseases/virology , Aphids/virology , Animals , Prunus/virology
7.
Plant Dis ; 108(6): 1799-1811, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38277653

ABSTRACT

The aphid-transmitted polerovirus, cotton leafroll dwarf virus (CLRDV), first characterized from symptomatic cotton plants in South America, has been identified in commercial cotton plantings in the United States. Here, the CLRDV intraspecific diversity was investigated by comparative sequence analysis of the most divergent CLRDV coding region, ORF0/P0. Bayesian analysis of ORF0 sequences for U.S. and reference populations resolved three well-supported sister clades comprising one U.S. and two South American lineages. Principal component analysis (PCA) identified seven statistically supported intraspecific populations. The Bayesian phylogeny and PCA dendrogram-inferred relationships were congruent. Population analysis of ORF0 sequences indicated most lineages have evolved under negative selection, albeit certain sites/isolates evolved under positive selection. Both U.S. and South American isolates exhibited extensive ORF0 diversity. At least two U.S. invasion foci were associated with their founder populations in Alabama-Georgia and eastern Texas. The Alabama-Georgia founder is implicated as the source of recent widespread expansion and establishment of secondary disease foci throughout the southeastern-central United States. Based on the geographically restricted distribution, spread of another extant Texas population appeared impeded by a population bottleneck. Extant CLRDV isolates represent several putative introductions potentially associated with catastrophic weather events dispersing viruliferous cotton aphids of unknown origin(s).


Subject(s)
Genetic Variation , Gossypium , Luteoviridae , Phylogeny , Plant Diseases , Gossypium/virology , United States , Plant Diseases/virology , Luteoviridae/genetics , Luteoviridae/isolation & purification , Luteoviridae/classification , South America , Bayes Theorem , Aphids/virology , Open Reading Frames/genetics , Animals , Sequence Analysis, DNA
8.
Nature ; 622(7981): 139-148, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704724

ABSTRACT

Aphids transmit viruses and are destructive crop pests1. Plants that have been attacked by aphids release volatile compounds to elicit airborne defence (AD) in neighbouring plants2-5. However, the mechanism underlying AD is unclear. Here we reveal that methyl-salicylate (MeSA), salicylic acid-binding protein-2 (SABP2), the transcription factor NAC2 and salicylic acid-carboxylmethyltransferase-1 (SAMT1) form a signalling circuit to mediate AD against aphids and viruses. Airborne MeSA is perceived and converted into salicylic acid by SABP2 in neighbouring plants. Salicylic acid then causes a signal transduction cascade to activate the NAC2-SAMT1 module for MeSA biosynthesis to induce plant anti-aphid immunity and reduce virus transmission. To counteract this, some aphid-transmitted viruses encode helicase-containing proteins to suppress AD by interacting with NAC2 to subcellularly relocalize and destabilize NAC2. As a consequence, plants become less repellent to aphids, and more suitable for aphid survival, infestation and viral transmission. Our findings uncover the mechanistic basis of AD and an aphid-virus co-evolutionary mutualism, demonstrating AD as a potential bioinspired strategy to control aphids and viruses.


Subject(s)
Air , Aphids , Plant Diseases , Plants , Salicylic Acid , Signal Transduction , Aphids/physiology , Aphids/virology , Host Microbial Interactions , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Diseases/virology , Plant Proteins/metabolism , Plants/metabolism , Plants/parasitology , Plants/virology , Salicylic Acid/metabolism , Symbiosis , Nicotiana/immunology , Nicotiana/metabolism , Nicotiana/parasitology , Nicotiana/virology , Viral Proteins/metabolism , Animals
9.
Mol Plant Pathol ; 24(6): 513-526, 2023 06.
Article in English | MEDLINE | ID: mdl-37038256

ABSTRACT

TAXONOMY: Cotton leafroll dwarf virus (CLRDV) is a member of the genus Polerovirus, family Solemoviridae. Geographical Distribution: CLRDV is present in most cotton-producing regions worldwide, prominently in North and South America. PHYSICAL PROPERTIES: The virion is a nonenveloped icosahedron with T = 3 icosahedral lattice symmetry that has a diameter of 26-34 nm and comprises 180 molecules of the capsid protein. The CsCl buoyant density of the virion is 1.39-1.42 g/cm3 and S20w is 115-127S. Genome: CLRDV shares genomic features with other poleroviruses; its genome consists of monopartite, single-stranded, positive-sense RNA, is approximately 5.7-5.8 kb in length, and is composed of seven open reading frames (ORFs) with an intergenic region between ORF2 and ORF3a. TRANSMISSION: CLRDV is transmitted efficiently by the cotton aphid (Aphis gossypii Glover) in a circulative and nonpropagative manner. Host: CLRDV has a limited host range. Cotton is the primary host, and it has also been detected in different weeds in and around commercial cotton fields in Georgia, USA. SYMPTOMS: Cotton plants infected early in the growth stage exhibit reddening or bronzing of foliage, maroon stems and petioles, and drooping. Plants infected in later growth stages exhibit intense green foliage with leaf rugosity, moderate to severe stunting, shortened internodes, and increased boll shedding/abortion, resulting in poor boll retention. These symptoms are variable and are probably influenced by the time of infection, plant growth stage, varieties, soil health, and geographical location. CLRDV is also often detected in symptomless plants. CONTROL: Vector management with the application of chemical insecticides is ineffective. Some host plant varieties grown in South America are resistant, but all varieties grown in the United States are susceptible. Integrated disease management strategies, including weed management and removal of volunteer stalks, could reduce the abundance of virus inoculum in the field.


Subject(s)
Gossypium , Luteoviridae , Plant Diseases , Plant Diseases/virology , Gossypium/virology , Aphids/virology , Luteoviridae/chemistry , Luteoviridae/genetics , Luteoviridae/physiology
10.
J Virol ; 96(16): e0042122, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35924924

ABSTRACT

Weeds surrounding crops may act as alternative hosts, playing important epidemiological roles as virus reservoirs and impacting virus evolution. We used high-throughput sequencing to identify viruses in Spanish melon crops and plants belonging to three pluriannual weed species, Ecballium elaterium, Malva sylvestris, and Solanum nigrum, sampled at the edges of the crops. Melon and E. elaterium, both belonging to the family Cucurbitaceae, shared three virus species, whereas there was no virus species overlap between melon and the other two weeds. The diversity of cucurbit aphid-borne yellows virus (CABYV) and tomato leaf curl New Delhi virus (ToLCNDV), both in melon and E. elaterium, was further studied by amplicon sequencing. Phylogenetic and population genetics analyses showed that the CABYV population was structured by the host, identifying three sites in the CABYV RNA-dependent RNA polymerase under positive selection, perhaps reflecting host adaptation. The ToLCNDV population was much less diverse than the CABYV one, likely as a consequence of the relatively recent introduction of ToLCNDV in Spain. In spite of its low diversity, we identified geographical but no host differentiation for ToLCNDV. Potential virus migration fluxes between E. elaterium and melon plants were also analyzed. For CABYV, no evidence of migration between the populations of the two hosts was found, whereas important fluxes were identified between geographically distant subpopulations for each host. For ToLCNDV, in contrast, evidence of migration from melon to E. elaterium was found, but not the other way around. IMPORTANCE It has been reported that about half of the emerging diseases affecting plants are caused by viruses. Alternative hosts often play critical roles in virus emergence as virus reservoirs, bridging host species that are otherwise unconnected and/or favoring virus diversification. In spite of this, the viromes of potential alternative hosts remain largely unexplored. In the case of crops, pluriannual weeds at the crop edges may play these roles. Here, we took advantage of the power of high-throughput sequencing to characterize the viromes of three weed species frequently found at the edges of melon crops. We identified three viruses shared by melon and the cucurbit weed, with two of them being epidemiologically relevant for melon crops. Further genetic analyses showed that these two viruses had contrasting patterns of diversification and migration, providing an interesting example on the role that weeds may play in the ecology and evolution of viruses affecting crops.


Subject(s)
Begomovirus , Crops, Agricultural , Cucurbitaceae , Host Microbial Interactions , Luteoviridae , Plant Diseases , Plant Weeds , Animals , Aphids/virology , Begomovirus/classification , Begomovirus/genetics , Crops, Agricultural/virology , Cucurbitaceae/virology , Genetics, Population , Host Microbial Interactions/genetics , Luteoviridae/genetics , Malva/virology , Phylogeny , Plant Diseases/virology , Plant Weeds/virology , RNA-Dependent RNA Polymerase/metabolism , Solanum nigrum/virology
11.
Proc Natl Acad Sci U S A ; 119(32): e2201453119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914138

ABSTRACT

Because multipartite viruses package their genome segments in different viral particles, they face a potentially huge cost if the entire genomic information, i.e., all genome segments, needs to be present concomitantly for the infection to function. Previous work with the octapartite faba bean necrotic stunt virus (FBNSV; family Nanoviridae, genus Nanovirus) showed that this issue can be resolved at the within-host level through a supracellular functioning; all viral segments do not need to be present within the same host cell but may complement each other through intercellular trafficking of their products (protein or messenger RNA [mRNA]). Here, we report on whether FBNSV can as well decrease the genomic integrity cost during between-host transmission. Using viable infections lacking nonessential virus segments, we show that full-genome infections can be reconstituted and function through separate acquisition and/or inoculation of complementary sets of genome segments in recipient hosts. This separate acquisition/inoculation can occur either through the transmission of different segment sets by different individual aphid vectors or by the sequential acquisition by the same aphid of complementary sets of segments from different hosts. The possibility of a separate between-host transmission of different genome segments thus offers a way to at least partially resolve the genomic maintenance problem faced by multipartite viruses.


Subject(s)
Aphids , Genome, Viral , Host Microbial Interactions , Insect Vectors , Nanovirus , Vicia faba , Animals , Aphids/virology , Genome, Viral/genetics , Insect Vectors/virology , Nanovirus/genetics , Plant Diseases/virology , Protein Transport , RNA Transport , RNA, Viral/genetics , RNA, Viral/metabolism , Vicia faba/virology , Viral Proteins/genetics , Viral Proteins/metabolism
12.
Pest Manag Sci ; 78(2): 416-427, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34478603

ABSTRACT

Aphids severely affect crop production by transmitting many plant viruses. Viruses are obligate intracellular pathogens that mostly depend on vectors for their transmission and survival. A majority of economically important plant viruses are transmitted by aphids. They transmit viruses either persistently (circulative or non-circulative) or non-persistently. Plant virus transmission by insects is a process that has evolved over time and is strongly influenced by insect morphological features and biology. Over the past century, a large body of research has provided detailed knowledge of the molecular processes underlying virus-vector interactions. In this review, we discuss how aphid biology and morphology can affect plant virus transmission. © 2021 Society of Chemical Industry.


Subject(s)
Aphids , Plant Diseases/virology , Plant Viruses , Animals , Aphids/virology , Insect Vectors/virology
13.
Arch Virol ; 167(1): 267-270, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34762150

ABSTRACT

Negeviruses are a group of insect-specific viruses that have a wide geographic distribution and broad host range. In recent years, nege-like viruses have been discovered in aphids of various genera of the family Aphididae, including Aphis, Rhopalosiphum, Sitobion, and Indomegoura. Here, we report the complete genome sequence of a nege-like virus isolated from Astegopteryx formosana aphids collected in Guangdong, China, which we have designated as "Astegopteryx formosana nege-like virus" (AFNLV). AFNLV has a genome length of 10,107 nt (excluding the polyA tail) and possesses the typical conserved domains of negeviruses. These include a viral methyltransferase, an S-adenosylmethionine-dependent methyltransferase, a viral helicase, and an RNA-dependent RNA polymerase (RdRP) domain in open reading frame 1 (ORF1), a DiSB-ORF2_chro domain in ORF2, and a SP24 domain in ORF3. The genome of AFNLV shares the highest nucleotide sequence identity (74.89%) with Wuhan house centipede virus, identified in a mixture of barley aphids. As clearly revealed by RdRP-based phylogenetic analysis, AFNLV, together with other negeviruses and nege-like viruses discovered in aphids, formed a distinct "unclassified clade" closely related to members of the proposed genus "Sandewavirus" and the family Kitaviridae. In addition, small interfering RNAs (siRNAs) derived from AFNLV did not exhibit typical characteristics of virus-derived siRNAs processed by the host RNAi-based antiviral pathway. However, the extremely high abundance of viral transcripts (average read coverage 73,403X) strongly suggested that AFNLV might actively replicate in the aphid host. AFNLV described in this study is the first nege-like virus discovered in aphids of the genus Astegopteryx, which will contribute to future study of the co-evolution of nege/nege-like viruses and their host aphids.


Subject(s)
Aphids , Genome, Viral , RNA Viruses , Animals , Aphids/virology , Open Reading Frames , Phylogeny , RNA Viruses/genetics , RNA, Viral/genetics , Sequence Analysis, DNA
14.
Sci Rep ; 11(1): 24103, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916537

ABSTRACT

Changes in plant abiotic environments may alter plant virus epidemiological traits, but how such changes actually affect their quantitative relationships is poorly understood. Here, we investigated the effects of water deficit on Cauliflower mosaic virus (CaMV) traits (virulence, accumulation, and vectored-transmission rate) in 24 natural Arabidopsis thaliana accessions grown under strictly controlled environmental conditions. CaMV virulence increased significantly in response to water deficit during vegetative growth in all A. thaliana accessions, while viral transmission by aphids and within-host accumulation were significantly altered in only a few. Under well-watered conditions, CaMV accumulation was correlated positively with CaMV transmission by aphids, while under water deficit, this relationship was reversed. Hence, under water deficit, high CaMV accumulation did not predispose to increased horizontal transmission. No other significant relationship between viral traits could be detected. Across accessions, significant relationships between climate at collection sites and viral traits were detected but require further investigation. Interactions between epidemiological traits and their alteration under abiotic stresses must be accounted for when modelling plant virus epidemiology under scenarios of climate change.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/virology , Caulimovirus/pathogenicity , Climate Change , Plant Diseases/virology , Stress, Physiological , Virulence , Water , Animals , Aphids/physiology , Aphids/virology , Arabidopsis/parasitology , Environment
15.
Sci Rep ; 11(1): 23931, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907187

ABSTRACT

Viruses in the Luteoviridae family, such as Potato leafroll virus (PLRV), are transmitted by aphids in a circulative and nonpropagative mode. This means the virions enter the aphid body through the gut when they feed from infected plants and then the virions circulate through the hemolymph to enter the salivary glands before being released into the saliva. Although these viruses do not replicate in their insect vectors, previous studies have demonstrated viruliferous aphid behavior is altered and the obligate symbiont of aphids, Buchnera aphidocola, may be involved in transmission. Here we provide the transcriptome of green peach aphids (Myzus persicae) carrying PLRV and virus-free control aphids using Illumina sequencing. Over 150 million paired-end reads were obtained through Illumina sequencing, with an average of 19 million reads per library. The comparative analysis identified 134 differentially expressed genes (DEGs) between the M. persicae transcriptomes, including 64 and 70 genes that were up- and down-regulated in aphids carrying PLRV, respectively. Using functional classification in the GO databases, 80 of the DEGs were assigned to 391 functional subcategories at category level 2. The most highly up-regulated genes in aphids carrying PLRV were cytochrome p450s, genes related to cuticle production, and genes related to development, while genes related to heat shock proteins, histones, and histone modification were the most down-regulated. PLRV aphids had reduced Buchnera titer and lower abundance of several Buchnera transcripts related to stress responses and metabolism. These results suggest carrying PLRV may reduce both aphid and Buchnera genes in response to stress. This work provides valuable basis for further investigation into the complicated mechanisms of circulative and nonpropagative transmission.


Subject(s)
Aphids , Buchnera/metabolism , Insect Vectors , Luteoviridae/metabolism , Plant Diseases , Solanum tuberosum , Animals , Aphids/microbiology , Aphids/virology , Insect Vectors/microbiology , Insect Vectors/virology , Plant Diseases/microbiology , Plant Diseases/virology , Solanum tuberosum/microbiology , Solanum tuberosum/virology
16.
Nat Commun ; 12(1): 7087, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873158

ABSTRACT

Cucumber mosaic virus (CMV) often accompanies a short RNA molecule called a satellite RNA (satRNA). When infected with CMV in the presence of Y-satellite RNA (Y-sat), tobacco leaves develop a green mosaic, then turn yellow. Y-sat has been identified in the fields in Japan. Here, we show that the yellow leaf colour preferentially attracts aphids, and that the aphids fed on yellow plants, which harbour Y-sat-derived small RNAs (sRNAs), turn red and subsequently develop wings. In addition, we found that leaf yellowing did not necessarily reduce photosynthesis, and that viral transmission was not greatly affected despite the low viral titer in the Y-sat-infected plants. Y-sat-infected plants can therefore support a sufficient number of aphids to allow for efficient virus transmission. Our results demonstrate that Y-sat directly alters aphid physiology via Y-sat sRNAs to promote wing formation, an unprecedented survival strategy that enables outward spread via the winged insect vector.


Subject(s)
Aphids/genetics , Cucumovirus/genetics , Insect Proteins/genetics , Insect Vectors/genetics , RNA, Satellite/genetics , RNA, Viral/genetics , Animals , Aphids/physiology , Aphids/virology , Cucumovirus/physiology , Gene Expression Regulation , Host-Pathogen Interactions , Insect Proteins/metabolism , Insect Vectors/physiology , Insect Vectors/virology , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Diseases/virology , Plant Leaves/genetics , Plant Leaves/parasitology , Plant Leaves/virology , Plants, Genetically Modified , RNA, Satellite/physiology , RNA, Viral/physiology , Nicotiana/genetics , Nicotiana/parasitology , Nicotiana/virology , Virion/genetics , Virion/physiology , Virus Replication/genetics , Virus Replication/physiology
17.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: mdl-34960756

ABSTRACT

In total, 332 strawberry plants from 33 different locations in the Czech Republic with or without disease symptoms were screened by RT-PCR for the presence of strawberry polerovirus 1 (SPV1) and five other viruses: strawberry mottle virus, strawberry crinkle virus, strawberry mild yellow edge virus, strawberry vein banding virus, and strawberry virus 1. SPV1 was detected in 115 tested strawberry plants (35%), including 89 mixed infections. No correlation between symptoms and the detected viruses was found. To identify potential invertebrate SPV1 vectors, strawberry-associated invertebrate species were screened by RT-PCR, and the virus was found in the aphids Aphis forbesi, A. gossypii, A. ruborum, A.sanquisorbae, Aulacorthum solani, Chaetosiphon fragaefolii, Myzus ascalonicus, and several other non-aphid invertebrate species. SPV1 was also detected in aphid honeydew. Subsequent tests of C. fragaefolii and A.gossypii virus transmission ability showed that at least 4 h of acquisition time were needed to acquire the virus. However, 1 day was sufficient for inoculation using C. fragaefolii. In conclusion, being aphid-transmitted like other tested viruses SPV1 was nevertheless the most frequently detected agent. Czech SPV1 isolates belonged to at least two phylogenetic clusters. The sequence analysis also indicated that recombination events influence evolution of SPV1 genomes.


Subject(s)
Aphids/virology , Fragaria/virology , Insect Vectors/virology , Luteoviridae/genetics , Luteoviridae/isolation & purification , Plant Diseases/virology , Animals , Aphids/classification , Aphids/physiology , Czech Republic , Genetic Variation , Genome, Viral , Insect Vectors/classification , Insect Vectors/physiology , Luteoviridae/classification , Phylogeny , Recombination, Genetic
18.
PLoS Comput Biol ; 17(12): e1009727, 2021 12.
Article in English | MEDLINE | ID: mdl-34962929

ABSTRACT

Aphids are the primary vector of plant viruses. Transient aphids, which probe several plants per day, are considered to be the principal vectors of non-persistently transmitted (NPT) viruses. However, resident aphids, which can complete their life cycle on a single host and are affected by agronomic practices, can transmit NPT viruses as well. Moreover, they can interfere both directly and indirectly with transient aphids, eventually shaping plant disease dynamics. By means of an epidemiological model, originally accounting for ecological principles and agronomic practices, we explore the consequences of fertilization and irrigation, pesticide deployment and roguing of infected plants on the spread of viral diseases in crops. Our results indicate that the spread of NPT viruses can be i) both reduced or increased by fertilization and irrigation, depending on whether the interference is direct or indirect; ii) counter-intuitively increased by pesticide application and iii) reduced by roguing infected plants. We show that a better understanding of vectors' interactions would enhance our understanding of disease transmission, supporting the development of disease management strategies.


Subject(s)
Aphids/virology , Crops, Agricultural/virology , Insect Vectors/virology , Plant Diseases/virology , Plant Viruses , Animals , Insect Control , Plant Viruses/genetics , Plant Viruses/physiology
19.
J Gen Virol ; 102(6)2021 06.
Article in English | MEDLINE | ID: mdl-34161221

ABSTRACT

In recent years, several recombinant strains of potato virus Y, notably PVYNTN and PVYN:O have displaced the ordinary strain, PVYO, and emerged as the predominant strains affecting the USA potato crop. Previously we reported that recombinant strains were transmitted more efficiently than PVYO when they were acquired sequentially, regardless of acquisition order. In another recent study, we showed that PVYNTN binds preferentially to the aphid stylet over PVYO when aphids feed on a mixture of PVYO and PVYNTN. To understand the mechanism of this transmission bias as well as preferential virus binding, we separated virus and active helper component proteins (HC), mixed them in homologous and heterologous combinations, and then fed them to aphids using Parafilm sachets. Mixtures of PVYO HC with either PVYN:O or PVYNTN resulted in efficient transmission. PVYN:O HC also facilitated the transmission of PVYO and PVYNTN, albeit with reduced efficiency. PVYNTN HC failed to facilitate transmission of either PVYO or PVYN:O. When PVYO HC or PVYN:O HC was mixed with equal amounts of the two viruses, both viruses in all combinations were transmitted at high efficiencies. In contrast, no transmission occurred when combinations of viruses were mixed with PVYNTN HC. Further study evaluated transmission using serial dilutions of purified virus mixed with HCs. While PVYNTN HC only facilitated the transmission of the homologous virus, the HCs of PVYO and PVYN:O facilitated the transmission of all strains tested. This phenomenon has likely contributed to the increase in the recombinant strains affecting the USA potato crop.


Subject(s)
Aphids/virology , Cysteine Endopeptidases/metabolism , Plant Diseases/virology , Potyvirus/genetics , Potyvirus/physiology , Solanum tuberosum/virology , Viral Proteins/metabolism , Amino Acid Motifs , Animals , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Recombination, Genetic , Nicotiana/virology , Viral Proteins/chemistry , Viral Proteins/genetics
20.
Virology ; 560: 54-65, 2021 08.
Article in English | MEDLINE | ID: mdl-34038845

ABSTRACT

Pepper crops in Israel are infected by poleroviruses, Pepper vein yellows virus 2 (PeVYV-2) and Pepper whitefly-borne vein yellows virus (PeWBVYV). Herein we characterize the transmission of PeWBVYV and the aphid-transmitted PeVYV-2, and show that PeWBVYV is specifically transmitted by MEAM1 species of the whitefly Bemisia tabaci, with a minimum latency period of 120 h, and not by the Mediterranean (MED). PeWBVYV and PeVYV-2 were detected in the hemolymph of MED and MEAM1, respectively, however, amounts of PeWBVYV in the hemolymph of MED or PeVYV-2 in MEAM1 were much lower than PeWBVYV in hemolymph of MEAM1. Moreover, we show that PeWBVYV does not interact with the GroEL protein of the symbiont Hamiltonella and thus does not account for the non-transmissibility by MED. An insect glycoprotein, C1QBP, interacting in vitro with the capsid proteins of both PeWBVYV and PeVYV-2 is reported which suggests a putative functional role in polerovirus transmission.


Subject(s)
Capsid Proteins/metabolism , Hemiptera/virology , Insect Proteins/metabolism , Luteoviridae/metabolism , Potyvirus/metabolism , Animals , Aphids/virology , Chaperonin 60/genetics , Crops, Agricultural/virology , Gastrointestinal Tract/virology , Hemolymph/virology , Israel , Plant Diseases/virology , Virus Latency/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...