Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.295
Filter
1.
BMC Cardiovasc Disord ; 24(1): 486, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39261765

ABSTRACT

OBJECTIVE: Apolipoprotein E (APOE) gene polymorphisms were associated with coronary atherosclerosis and hypertension. However, the relationship between APOE polymorphisms and coronary atherosclerosis susceptibility in hypertensive patients is unclear. The aim of this study was to assess the relationship. METHODS: A total of 1713 patients with hypertension who were admitted to Meizhou People's Hospital from November 2019 to August 2023 were retrospectively analyzed, including 848 patients with coronary atherosclerosis and 865 patients without coronary atherosclerosis. The rs429358 and rs7412 polymorphisms of APOE were genotyped, and relationship between APOE polymorphisms and the risk of coronary atherosclerosis in hypertensive patients were analyzed. RESULTS: There were 10 (0.6%), 193 (11.3%), 30 (1.8%), 1234 (72.0%), 233 (13.6%), and 13 (0.8%) individuals with APOE ɛ2/ɛ2, ɛ2/ɛ3, ɛ2/ɛ4, ɛ3/ɛ3, ɛ3/ɛ4, and ɛ4/ɛ4 genotype, respectively. The frequency of APOE ɛ3/ɛ4 was higher (16.4% vs. 10.9%, p = 0.001) in the patients with coronary atherosclerosis than controls. Logistic analysis showed that body mass index (BMI) ≥ 24.0 kg/m2 (24.0 kg/m2 vs. 18.5-23.9 kg/m2, odds ratio (OR): 1.361, 95% confidence interval (CI): 1.112-1.666, p = 0.003), advanced age (≥ 65/<65, OR:1.303, 95% CI: 1.060-1.602, p = 0.012), history of smoking (OR: 1.830, 95% CI: 1.379-2.428, p < 0.001), diabetes mellitus (OR: 1.380, 95% CI: 1.119-1.702, p = 0.003), hyperlipidemia (OR: 1.773, 95% CI: 1.392-2.258, p < 0.001), and APOE ɛ3/ɛ4 genotype (ɛ3/ɛ4 vs. ɛ3/ɛ3, OR: 1.514, 95% CI: 1.133-2.024, p = 0.005) were associated with coronary atherosclerosis in hypertensive patients. CONCLUSIONS: Overweight (BMI ≥ 24.0 kg/m2), advanced age, history of smoking, diabetes mellitus, and APOE ɛ3/ɛ4 genotype were independent risk factors for coronary atherosclerosis in hypertensive patients.


Subject(s)
Apolipoprotein E3 , Apolipoprotein E4 , Coronary Artery Disease , Genetic Predisposition to Disease , Hypertension , Humans , Male , Female , Coronary Artery Disease/genetics , Middle Aged , Hypertension/genetics , Hypertension/epidemiology , Hypertension/diagnosis , Retrospective Studies , Risk Assessment , Aged , Risk Factors , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , China/epidemiology , Phenotype , Polymorphism, Single Nucleotide , Genetic Association Studies , Apolipoproteins E
2.
Sci Rep ; 14(1): 18641, 2024 08 11.
Article in English | MEDLINE | ID: mdl-39128931

ABSTRACT

There are genetic and environmental risk factors that contribute to the development of cognitive decline in Alzheimer's disease (AD). Some of these include the genetic predisposition of the apolipoprotein E4 genotype, consuming a high-fat diet (HFD), and the female sex. Brain insulin receptor resistance and deficiency have also been shown to be associated with AD and cognitive impairment. Intranasal (INL) insulin enhances cognition in AD, but the response varies due to genotype, diet, and sex. We investigated here the combination of these risk factors in a humanized mouse model, expressing E3 or E4, following a HFD in males and females on cognitive performance and the brain distribution of insulin following INL delivery. The HFD had a negative effect on survival in male mice only, requiring sex to be collapsed. We found many genotype, diet, and genotype x diet effects in anxiety-related tasks. We further found beneficial effects of INL insulin in our memory tests, with the most important findings showing a beneficial effect of INL insulin in mice on a HFD. We found insulin distribution throughout the brain after INL delivery was largely unaffected by diet and genotype, indicating these susceptible groups can still receive adequate levels of insulin following INL delivery. Our findings support the involvement of brain insulin signaling in cognition and highlight continuing efforts investigating mechanisms resulting from treatment with INL insulin.


Subject(s)
Administration, Intranasal , Brain , Cognition , Diet, High-Fat , Insulin , Animals , Female , Humans , Male , Mice , Alzheimer Disease/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Brain/metabolism , Brain/drug effects , Cognition/drug effects , Diet, High-Fat/adverse effects , Disease Models, Animal , Insulin/metabolism , Mice, Transgenic
3.
Mult Scler Relat Disord ; 90: 105797, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39146895

ABSTRACT

BACKGROUND: Apolipoprotein E (ApoE) plays a major role in lipid homeostasis and myelination in the central nervous system. Although ApoE gene variants have been linked with cognitive impairment in the setting of Multiple sclerosis (MS), no association with disease susceptibility was found, while similar studies in pediatric-onset MS (POMS) are limited. OBJECTIVE: This study aims to explore the role of ApoE gene variants in the POMS susceptibility of a Hellenic cohort and any association with disease features. METHODS: 112 POMS, fulfilling the revised IPMSSG 2013 criteria, 391 adult-onset MS (AOMS) and 200 healthy controls (HCs), were enrolled. After DNA extraction, ApoE genotyping was performed by a polymerase chain reaction and sequence-specific-oligonucleotide technique. RESULTS: ApoE2/E3 genotype and ApoE2 allele were found to be significantly more frequent among POMS patients compared to HCs [(20.5% vs 11 %, OR [95 %]: 2.1 (1.1-4.0), p = 0.03)], and [(11% vs 5.3 %, OR [95 %]: 2.3 (1.2-4.1), p = 0.01)], respectively. Additionally, significantly lower frequencies of the ApoE3/E3 genotype and the ApoE3 allele were observed in POMS patients compared to HCs (59.8% vs 79 %, OR [95 %]:0.40 (0.24-0.65), p = 0.0005 and 79% vs 89 % 0.46, OR [95 %]: (0.30-0.73), p = 0.001)], respectively. CONCLUSIONS: The ApoE2 allele may represent a novel risk factor for POMS development.


Subject(s)
Apolipoproteins E , Genetic Predisposition to Disease , Multiple Sclerosis , Humans , Male , Female , Multiple Sclerosis/genetics , Adult , Apolipoproteins E/genetics , Adolescent , Child , Greece , Young Adult , Age of Onset , Cohort Studies , Apolipoprotein E2/genetics , Apolipoprotein E3/genetics
4.
J Med Chem ; 67(17): 15061-15079, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39191400

ABSTRACT

Therapeutics enhancing apolipoprotein (APOE) positive function are a priority, because APOE4 is the major genetic risk factor for Alzheimer's disease (AD). The function of APOE, the key constituent of lipoprotein particles that transport cholesterol and lipids in the brain, is dependent on lipidation by ABCA1, a cell-membrane cholesterol transporter. ABCA1 transcription is regulated by liver X receptors (LXR): agonists have been shown to increase ABCA1, often accompanied by unwanted lipogenesis and elevated triglycerides (TG). Therefore, nonlipogenic ABCA1-inducers (NLAI) are needed. Two rounds of optimization of an HTS hit, derived from a phenotypic screen, gave lead compound 39 that was validated and tested in E3/4FAD mice that express human APOE3/4 and five mutant APP and PSEN1 human transgenes. Treatment with 39 increased ABCA1 expression, enhanced APOE lipidation, and reversed multiple AD phenotypes, without increasing TG. This NLAI/LXR-agonist study is the first in a human APOE-expressing model with hallmark amyloid-ß pathology.


Subject(s)
ATP Binding Cassette Transporter 1 , Alzheimer Disease , Apolipoprotein E3 , Apolipoprotein E4 , Disease Models, Animal , Mice, Transgenic , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , Humans , Mice , Apolipoprotein E4/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Liver X Receptors/agonists , Liver X Receptors/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
5.
Behav Brain Res ; 471: 115123, 2024 08 05.
Article in English | MEDLINE | ID: mdl-38972485

ABSTRACT

Apolipoprotein-E4 (ApoE4) is an important genetic risk factor for Alzheimer's disease. The development of targeted-replacement human ApoE knock-in mice facilitates research into mechanisms by which ApoE4 affects the brain. We performed meta-analyses and meta-regression analyses to examine differences in cognitive performance between ApoE4 and ApoE3 mice. We included 61 studies in which at least one of the following tests was assessed: Morris Water Maze (MWM), novel object location (NL), novel object recognition (NO) and Fear Conditioning (FC) test. ApoE4 vs. ApoE3 mice performed significantly worse on the MWM (several outcomes, 0.17 ≤ g ≤ 0.60), NO (exploration, g=0.33; index, g=0.44) and FC (contextual, g=0.49). ApoE4 vs. ApoE3 differences were not systematically related to sex or age. We conclude that ApoE4 knock-in mice in a non-AD condition show some, but limited cognitive deficits, regardless of sex and age. These effects suggest an intrinsic vulnerability in ApoE4 mice that may become more pronounced under additional brain load, as seen in neurodegenerative diseases.


Subject(s)
Apolipoprotein E4 , Cognitive Dysfunction , Gene Knock-In Techniques , Animals , Apolipoprotein E4/genetics , Mice , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Humans , Mice, Transgenic , Disease Models, Animal , Apolipoprotein E3/genetics
6.
BMC Cardiovasc Disord ; 24(1): 353, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987708

ABSTRACT

OBJECTIVE: Dyslipidemia is one of the causes of coronary heart disease (CAD), and apolipoprotein E (APOE) gene polymorphism affects lipid levels. However, the relationship between APOE gene polymorphisms and premature CAD (PCAD, male CAD patients with ≤ 55 years old and female with ≤ 65 years old) risk had different results in different studies. The aim of this study was to assess this relationship and to further evaluate the relationship between APOE gene polymorphisms and PCAD risk in the Hakka population. METHODS: This study retrospectively analyzed 301 PCAD patients and 402 age matched controls without CAD. The APOE rs429358 and rs7412 polymorphisms were genotyped by polymerase chain reaction (PCR) -chip technique. The distribution of APOE genotypes and alleles between the case group and the control group was compared. The relationship between APOE genotypes and PCAD risk was obtained by logistic regression analysis. RESULTS: The frequency of the APOE ɛ3/ɛ4 genotype (18.9% vs. 10.2%, p = 0.001) and ε4 allele (11.1% vs. 7.0%, p = 0.007) was higher in the PCAD patients than that in controls, respectively. PCAD patients with ɛ2 allele had higher TG level than those with ɛ3 allele, and controls carried ɛ2 allele had higher HDL-C level and lower LDL-C level than those carried ɛ3 allele. Regression logistic analysis showed that BMI ≥ 24.0 kg/m2 (BMI ≥ 24.0 kg/m2 vs. BMI 18.5-23.9 kg/m2, OR: 1.763, 95% CI: 1.235-2.516, p = 0.002), history of smoking (Yes vs. No, OR: 5.098, 95% CI: 2.910-8.930, p < 0.001), ɛ3/ɛ4 genotype (ɛ3/ɛ4 vs. ɛ3/ɛ3, OR: 2.203, 95% CI: 1.363-3.559, p = 0.001), ε4 allele (ε4 vs. ε3, OR: 2.125, 95% CI: 1.333-3.389, p = 0.002), and TC level (OR: 1.397, 95% CI: 1.023-1.910, p = 0.036) were associated with PCAD. CONCLUSIONS: In summary, BMI ≥ 24.0 kg/m2, history of smoking, APOE ɛ3/ɛ4 genotype, and TC level were independent risk factors for PCAD. It means that young individuals who are overweight, have a history of smoking, and carried APOE ɛ3/ɛ4 genotype had increased risk of PCAD.


Subject(s)
Apolipoprotein E3 , Apolipoprotein E4 , Coronary Artery Disease , Gene Frequency , Genetic Predisposition to Disease , Humans , Male , Coronary Artery Disease/genetics , Female , Middle Aged , Retrospective Studies , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Risk Factors , Adult , Phenotype , Risk Assessment , Dyslipidemias/genetics , Dyslipidemias/blood , Dyslipidemias/diagnosis , Dyslipidemias/epidemiology , Polymorphism, Single Nucleotide , Aged , Case-Control Studies , Genotype , Apolipoproteins E
7.
Sci Rep ; 14(1): 15873, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38982272

ABSTRACT

Apolipoprotein E (APOE) is a major cholesterol carrier responsible for lipid transport and injury repair in the brain. The human APOE gene (h-APOE) has 3 naturally occurring alleles: ε3, the common allele; ε4, which increases Alzheimer's disease (AD) risk up to 15-fold; and ε2, the rare allele which protects against AD. Although APOE4 has negative effects on neurocognition in old age, its persistence in the population suggests a survival advantage. We investigated the relationship between APOE genotypes and fertility in EFAD mice, a transgenic mouse model expressing h-APOE. We show that APOE4 transgenic mice had the highest level of reproductive performance, followed by APOE3 and APOE2. Intriguingly, APOE3 pregnancies had more fetal resorptions and reduced fetal weights relative to APOE4 pregnancies. In conclusion, APOE genotypes impact fertility and pregnancy outcomes in female mice, in concordance with findings in human populations. These mouse models may help elucidate how h-APOE4 promotes reproductive fitness at the cost of AD in later life.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Disease Models, Animal , Fertility , Mice, Transgenic , Animals , Female , Humans , Mice , Pregnancy , Alleles , Alzheimer Disease/genetics , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Fertility/genetics , Genotype , Polymorphism, Genetic
8.
N Engl J Med ; 390(23): 2156-2164, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899694

ABSTRACT

BACKGROUND: Variants in APOE and PSEN1 (encoding apolipoprotein E and presenilin 1, respectively) alter the risk of Alzheimer's disease. We previously reported a delay of cognitive impairment in a person with autosomal dominant Alzheimer's disease caused by the PSEN1 E280A variant who also had two copies of the apolipoprotein E3 Christchurch variant (APOE3 Ch). Heterozygosity for the APOE3 Ch variant may influence the age at which the onset of cognitive impairment occurs. We assessed this hypothesis in a population in which the PSEN1 E280A variant is prevalent. METHODS: We analyzed data from 27 participants with one copy of the APOE3 Ch variant among 1077 carriers of the PSEN1 E280A variant in a kindred from Antioquia, Colombia, to estimate the age at the onset of cognitive impairment and dementia in this group as compared with persons without the APOE3 Ch variant. Two participants underwent brain imaging, and autopsy was performed in four participants. RESULTS: Among carriers of PSEN1 E280A who were heterozygous for the APOE3 Ch variant, the median age at the onset of cognitive impairment was 52 years (95% confidence interval [CI], 51 to 58), in contrast to a matched group of PSEN1 E280A carriers without the APOE3 Ch variant, among whom the median age at the onset was 47 years (95% CI, 47 to 49). In two participants with the APOE3 Ch and PSEN1 E280A variants who underwent brain imaging, 18F-fluorodeoxyglucose positron-emission tomographic (PET) imaging showed relatively preserved metabolic activity in areas typically involved in Alzheimer's disease. In one of these participants, who underwent 18F-flortaucipir PET imaging, tau findings were limited as compared with persons with PSEN1 E280A in whom cognitive impairment occurred at the typical age in this kindred. Four studies of autopsy material obtained from persons with the APOE3 Ch and PSEN1 E280A variants showed fewer vascular amyloid pathologic features than were seen in material obtained from persons who had the PSEN1 E280A variant but not the APOE3 Ch variant. CONCLUSIONS: Clinical data supported a delayed onset of cognitive impairment in persons who were heterozygous for the APOE3 Ch variant in a kindred with a high prevalence of autosomal dominant Alzheimer's disease. (Funded by Good Ventures and others.).


Subject(s)
Alzheimer Disease , Apolipoprotein E3 , Presenilin-1 , Adult , Aged , Female , Humans , Male , Middle Aged , Age of Onset , Alzheimer Disease/diagnosis , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E3/genetics , Brain/pathology , Brain/diagnostic imaging , Colombia , Family , Genes, Dominant , Heterozygote , Positron-Emission Tomography , Presenilin-1/genetics , Retrospective Studies
9.
Pharm Res ; 41(7): 1427-1441, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38937373

ABSTRACT

BACKGROUND: Individuals with Alzheimer's disease (AD) often require many medications; however, these medications are dosed using regimens recommended for individuals without AD. This is despite reduced abundance and function of P-glycoprotein (P-gp) at the blood-brain barrier (BBB) in AD, which can impact brain exposure of drugs. The fundamental mechanisms leading to reduced P-gp abundance in sporadic AD remain unknown; however, it is known that the apolipoprotein E (apoE) gene has the strongest genetic link to sporadic AD development, and apoE isoforms can differentially alter BBB function. The aim of this study was to assess if apoE affects P-gp abundance and function in an isoform-dependent manner using a human cerebral microvascular endothelial cell (hCMEC/D3) model. METHODS: This study assessed the impact of apoE isoforms on P-gp abundance (by western blot) and function (by rhodamine 123 (R123) uptake) in hCMEC/D3 cells. Cells were exposed to recombinant apoE3 and apoE4 at 2 - 10 µg/mL over 24 - 72 hours. hCMEC/D3 cells were also exposed for 72 hours to astrocyte-conditioned media (ACM) from astrocytes expressing humanised apoE isoforms. RESULTS: P-gp abundance in hCMEC/D3 cells was not altered by recombinant apoE4 relative to recombinant apoE3, nor did ACM containing human apoE isoforms alter P-gp abundance. R123 accumulation in hCMEC/D3 cells was also unchanged with recombinant apoE isoform treatments, suggesting no change to P-gp function, despite both abundance and function being altered by positive controls SR12813 (5 µM) and PSC 833 (5 µM), respectively. CONCLUSIONS: Different apoE isoforms have no direct influence on P-gp abundance or function within this model, and further in vivo studies would be required to address whether P-gp abundance or function are reduced in sporadic AD in an apoE isoform-specific manner.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Blood-Brain Barrier , Brain , Endothelial Cells , Protein Isoforms , Humans , Alzheimer Disease/metabolism , Apolipoprotein E3/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E4/genetics , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Astrocytes/metabolism , Astrocytes/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain/blood supply , Cell Line , Culture Media, Conditioned/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Microvessels/metabolism , Microvessels/cytology , Protein Isoforms/metabolism , Rhodamine 123/metabolism
10.
Open Biol ; 14(6): 230349, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862017

ABSTRACT

Coronavirus disease 2019 (COVID-19) was initially considered a primarily respiratory disease but is now known to affect other organs including the heart and brain. A major route by which COVID-19 impacts different organs is via the vascular system. We studied the impact of apolipoprotein E (APOE) genotype and inflammation on vascular infectivity by pseudo-typed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses in mouse and human cultured endothelial cells and pericytes. Possessing the APOE4 allele or having existing systemic inflammation is known to enhance the severity of COVID-19. Using targeted replacement human APOE3 and APOE4 mice and inflammation induced by bacterial lipopolysaccharide (LPS), we investigated infection by SARS-CoV-2. Here, we show that infectivity was higher in murine cerebrovascular pericytes compared to endothelial cells and higher in cultures expressing APOE4. Furthermore, increasing the inflammatory state of the cells by prior incubation with LPS increased infectivity into human and mouse pericytes and human endothelial cells. Our findings provide insights into the mechanisms underlying severe COVID-19 infection, highlighting how risk factors such as APOE4 genotype and prior inflammation may exacerbate disease severity by augmenting the virus's ability to infect vascular cells.


Subject(s)
COVID-19 , Endothelial Cells , Pericytes , SARS-CoV-2 , Pericytes/virology , Pericytes/metabolism , Pericytes/pathology , Humans , Animals , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , COVID-19/virology , COVID-19/pathology , Mice , Endothelial Cells/virology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Risk Factors , Lipopolysaccharides/pharmacology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Inflammation/virology , Inflammation/pathology
11.
Traffic ; 25(5): e12937, 2024 May.
Article in English | MEDLINE | ID: mdl-38777335

ABSTRACT

The polymorphic APOE gene is the greatest genetic determinant of sporadic Alzheimer's disease risk: the APOE4 allele increases risk, while the APOE2 allele is neuroprotective compared with the risk-neutral APOE3 allele. The neuronal endosomal system is inherently vulnerable during aging, and APOE4 exacerbates this vulnerability by driving an enlargement of early endosomes and reducing exosome release in the brain of humans and mice. We hypothesized that the protective effects of APOE2 are, in part, mediated through the endosomal pathway. Messenger RNA analyses showed that APOE2 leads to an enrichment of endosomal pathways in the brain when compared with both APOE3 and APOE4. Moreover, we show age-dependent alterations in the recruitment of key endosomal regulatory proteins to vesicle compartments when comparing APOE2 to APOE3. In contrast to the early endosome enlargement previously shown in Alzheimer's disease and APOE4 models, we detected similar morphology and abundance of early endosomes and retromer-associated vesicles within cortical neurons of aged APOE2 targeted-replacement mice compared with APOE3. Additionally, we observed increased brain extracellular levels of endosome-derived exosomes in APOE2 compared with APOE3 mice during aging, consistent with enhanced endosomal cargo clearance by exosomes to the extracellular space. Our findings thus demonstrate that APOE2 enhances an endosomal clearance pathway, which has been shown to be impaired by APOE4 and which may be protective due to APOE2 expression during brain aging.


Subject(s)
Aging , Apolipoprotein E2 , Brain , Endosomes , Exosomes , Animals , Humans , Mice , Aging/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Apolipoprotein E2/metabolism , Apolipoprotein E2/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E4/genetics , Brain/metabolism , Endosomes/metabolism , Exosomes/metabolism , Mice, Inbred C57BL , Neurons/metabolism
12.
J Neuroimmune Pharmacol ; 19(1): 22, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771543

ABSTRACT

SARS-CoV-2 spike proteins have been shown to cross the blood-brain barrier (BBB) in mice and affect the integrity of human BBB cell models. However, the effects of SARS-CoV-2 spike proteins in relation to sporadic, late onset, Alzheimer's disease (AD) risk have not been extensively investigated. Here we characterized the individual and combined effects of SARS-CoV-2 spike protein subunits S1 RBD, S1 and S2 on BBB cell types (induced brain endothelial-like cells (iBECs) and astrocytes (iAstrocytes)) generated from induced pluripotent stem cells (iPSCs) harboring low (APOE3 carrier) or high (APOE4 carrier) relative Alzheimer's risk. We found that treatment with spike proteins did not alter iBEC integrity, although they induced the expression of several inflammatory cytokines. iAstrocytes exhibited a robust inflammatory response to SARS-CoV-2 spike protein treatment, with differences found in the levels of cytokine secretion between spike protein-treated APOE3 and APOE4 iAstrocytes. Finally, we tested the effects of potentially anti-inflammatory drugs during SARS-CoV-2 spike protein exposure in iAstrocytes, and discovered different responses between spike protein treated APOE4 iAstrocytes and APOE3 iAstrocytes, specifically in relation to IL-6, IL-8 and CCL2 secretion. Overall, our results indicate that APOE3 and APOE4 iAstrocytes respond differently to anti-inflammatory drug treatment during SARS-CoV-2 spike protein exposure with potential implications to therapeutic responses.


Subject(s)
Apolipoprotein E3 , Apolipoprotein E4 , Astrocytes , Blood-Brain Barrier , Cytokines , Spike Glycoprotein, Coronavirus , Blood-Brain Barrier/metabolism , Humans , Cytokines/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Astrocytes/metabolism , Astrocytes/virology , Astrocytes/drug effects , Apolipoprotein E3/metabolism , Induced Pluripotent Stem Cells/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , SARS-CoV-2 , COVID-19/metabolism , COVID-19/immunology , Cells, Cultured
13.
Nat Med ; 30(5): 1284-1291, 2024 May.
Article in English | MEDLINE | ID: mdl-38710950

ABSTRACT

This study aimed to evaluate the impact of APOE4 homozygosity on Alzheimer's disease (AD) by examining its clinical, pathological and biomarker changes to see whether APOE4 homozygotes constitute a distinct, genetically determined form of AD. Data from the National Alzheimer's Coordinating Center and five large cohorts with AD biomarkers were analyzed. The analysis included 3,297 individuals for the pathological study and 10,039 for the clinical study. Findings revealed that almost all APOE4 homozygotes exhibited AD pathology and had significantly higher levels of AD biomarkers from age 55 compared to APOE3 homozygotes. By age 65, nearly all had abnormal amyloid levels in cerebrospinal fluid, and 75% had positive amyloid scans, with the prevalence of these markers increasing with age, indicating near-full penetrance of AD biology in APOE4 homozygotes. The age of symptom onset was earlier in APOE4 homozygotes at 65.1, with a narrower 95% prediction interval than APOE3 homozygotes. The predictability of symptom onset and the sequence of biomarker changes in APOE4 homozygotes mirrored those in autosomal dominant AD and Down syndrome. However, in the dementia stage, there were no differences in amyloid or tau positron emission tomography across haplotypes, despite earlier clinical and biomarker changes. The study concludes that APOE4 homozygotes represent a genetic form of AD, suggesting the need for individualized prevention strategies, clinical trials and treatments.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Biomarkers , Homozygote , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Age of Onset , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/cerebrospinal fluid , Amyloid/metabolism , Amyloid/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Biomarkers/cerebrospinal fluid , Cohort Studies , Positron-Emission Tomography , tau Proteins/genetics , tau Proteins/cerebrospinal fluid
15.
Front Endocrinol (Lausanne) ; 15: 1374825, 2024.
Article in English | MEDLINE | ID: mdl-38742194

ABSTRACT

Increasing evidence suggests that female individuals have a higher Alzheimer's disease (AD) risk associated with post-menopausal loss of circulating estradiol (E2). However, clinical data are conflicting on whether E2 lowers AD risk. One potential contributing factor is APOE. The greatest genetic risk factor for AD is APOE4, a factor that is pronounced in female individuals post-menopause. Clinical data suggests that APOE impacts the response of AD patients to E2 replacement therapy. However, whether APOE4 prevents, is neutral, or promotes any positive effects of E2 is unclear. Therefore, our goal was to determine whether APOE modulates the impact of E2 on behavior and AD pathology in vivo. To that end, mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß42 were ovariectomized at either 4 months (early) or 8 months (late) and treated with vehicle or E2 for 4 months. In E3FAD mice, we found that E2 mitigated the detrimental effect of ovariectomy on memory, with no effect on Aß in the early paradigm and only improved learning in the late paradigm. Although E2 lowered Aß in E4FAD mice in the early paradigm, there was no impact on learning or memory, possibly due to higher Aß pathology compared to E3FAD mice. In the late paradigm, there was no effect on learning/memory and Aß pathology in E4FAD mice. Collectively, these data support the idea that, in the presence of Aß pathology, APOE impacts the response to E2 supplementation post-menopause.


Subject(s)
Apolipoprotein E3 , Apolipoprotein E4 , Estradiol , Ovariectomy , Animals , Female , Humans , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Behavior, Animal/drug effects , Disease Models, Animal , Estradiol/pharmacology , Mice, Transgenic
16.
J Neurophysiol ; 132(1): 23-33, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38748407

ABSTRACT

The apolipoprotein E (APOE) gene has been studied due to its influence on Alzheimer's disease (AD) development and work in an APOE mouse model recently demonstrated impaired respiratory motor plasticity following spinal cord injury (SCI). Individuals with AD often copresent with obstructive sleep apnea (OSA) characterized by cessations in breathing during sleep. Despite the prominence of APOE genotype and sex as factors in AD progression, little is known about the impact of these variables on respiratory control. Ventilation is tightly regulated across many systems, with respiratory rhythm formation occurring in the brainstem but modulated in response to chemoreception. Alterations within these modulatory systems may result in disruptions of appropriate respiratory control and ultimately, disease. Using mice expressing two different humanized APOE alleles, we characterized how sex and the presence of APOE3 or APOE4 influences ventilation during baseline breathing (normoxia) and during respiratory challenges. We show that sex and APOE genotype influence breathing during hypoxic challenge, which may have clinical implications in the context of AD and OSA. In addition, female mice, while responding robustly to hypoxia, were unable to recover to baseline respiratory levels, emphasizing sex differences in disordered breathing.NEW & NOTEWORTHY This study is the first to use whole body plethysmography (WBP) to measure the impact of APOE alleles on breathing under normoxia and during adverse respiratory challenges in a targeted replacement Alzheimer's model. Both sex and genotype were shown to affect breathing under normoxia, hypoxic challenge, and hypoxic-hypercapnic challenge. This work has important implications regarding the impact of genetics on respiratory control as well as applications pertaining to conditions of disordered breathing including sleep apnea and neurotrauma.


Subject(s)
Hypoxia , Animals , Female , Male , Mice , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Genotype , Hypercapnia/physiopathology , Hypoxia/physiopathology , Mice, Inbred C57BL , Mice, Transgenic , Respiration , Sex Characteristics , Sex Factors
17.
JCI Insight ; 9(8)2024 04 22.
Article in English | MEDLINE | ID: mdl-38646937

ABSTRACT

Sepsis is a leading cause of mortality worldwide, and pneumonia is the most common cause of sepsis in humans. Low levels of high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of death from sepsis, and increasing levels of HDL-C by inhibition of cholesteryl ester transfer protein (CETP) decreases mortality from intraabdominal polymicrobial sepsis in APOE*3-Leiden.CETP mice. Here, we show that treatment with the CETP inhibitor (CETPi) anacetrapib reduced mortality from Streptococcus pneumoniae-induced sepsis in APOE*3-Leiden.CETP and APOA1.CETP mice. Mechanistically, CETP inhibition reduced the host proinflammatory response via attenuation of proinflammatory cytokine transcription and release. This effect was dependent on the presence of HDL, leading to attenuation of immune-mediated organ damage. In addition, CETP inhibition promoted monocyte activation in the blood prior to the onset of sepsis, resulting in accelerated macrophage recruitment to the lung and liver. In vitro experiments demonstrated that CETP inhibition significantly promoted the activation of proinflammatory signaling in peripheral blood mononuclear cells and THP1 cells in the absence of HDL; this may represent a mechanism responsible for improved bacterial clearance during sepsis. These findings provide evidence that CETP inhibition represents a potential approach to reduce mortality from pneumosepsis.


Subject(s)
Cholesterol Ester Transfer Proteins , Monocytes , Streptococcus pneumoniae , Animals , Female , Humans , Mice , Apolipoprotein E3/metabolism , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol, HDL/blood , Cholesterol, HDL/metabolism , Disease Models, Animal , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/mortality , Pneumonia, Pneumococcal/metabolism , Pneumonia, Pneumococcal/microbiology , Sepsis/immunology , Sepsis/mortality , Sepsis/microbiology , Sepsis/metabolism , Streptococcus pneumoniae/immunology , THP-1 Cells
18.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612537

ABSTRACT

Both the endothelial (eNOS) and the neuronal (nNOS) isoforms of constitutive Nitric Oxide Synthase have been implicated in vascular dysfunctions in Alzheimer's disease (AD). We aimed to explore the relationship between amyloid pathology and NO dynamics by comparing the cerebrospinal fluid (CSF) levels of nNOS and eNOS of 8 healthy controls (HC) and 27 patients with a clinical diagnosis of Alzheimer's disease and isolated CSF amyloid changes, stratified according to APOE ε genotype (APOE ε3 = 13, APOE ε4 = 14). Moreover, we explored the associations between NOS isoforms, CSF AD biomarkers, age, sex, cognitive decline, and blood-brain barrier permeability. In our cohort, both eNOS and nNOS levels were increased in APOE ε3 with respect to HC and APOE ε4. CSF eNOS inversely correlated with CSF Amyloid-ß42 selectively in carriers of APOE ε3; CSF nNOS was negatively associated with age and CSF p-tau only in the APOE ε4 subgroup. Increased eNOS could represent compensative vasodilation to face progressive Aß-induced vasoconstriction in APOE ε3, while nNOS could represent the activation of NO-mediated plasticity strategies in the same group. Our results confirm previous findings that the APOE genotype is linked with different vascular responses to AD pathology.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Apolipoprotein E3 , Apolipoprotein E4/genetics , Amyloidogenic Proteins , Genotype , Protein Isoforms
19.
Arterioscler Thromb Vasc Biol ; 44(6): 1346-1364, 2024 06.
Article in English | MEDLINE | ID: mdl-38660806

ABSTRACT

BACKGROUND: Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects. METHODS: We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit ß5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit ß1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr-/- and APOE*3-Leiden.CETP mice. RESULTS: ONX-0914 treatment significantly reduced atherosclerosis, reduced dendritic cell and macrophage levels and their activation, as well as the levels of antigen-experienced T cells during early plaque formation, and Th1 cells in advanced atherosclerosis in young and aged mice in various immune compartments. Additionally, ONX-0914 treatment led to a strong reduction in white adipose tissue mass and adipocyte progenitors, which coincided with neutrophil and macrophage accumulation in white adipose tissue. ONX-0914 reduced intestinal triglyceride uptake and gastric emptying, likely contributing to the reduction in white adipose tissue mass, as ONX-0914 did not increase energy expenditure or reduce total food intake. Concomitant with the reduction in white adipose tissue mass upon ONX-0914 treatment, we observed improvements in markers of metabolic syndrome, including lowered plasma triglyceride levels, insulin levels, and fasting blood glucose. CONCLUSIONS: We propose that immunoproteasomal inhibition reduces 3 major causes underlying cardiovascular disease, dyslipidemia, metabolic syndrome, and inflammation and is a new target in drug development for atherosclerosis treatment.


Subject(s)
Adipose Tissue, White , Atherosclerosis , Disease Models, Animal , Metabolic Syndrome , Mice, Inbred C57BL , Proteasome Endopeptidase Complex , Receptors, LDL , Animals , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Atherosclerosis/drug therapy , Atherosclerosis/immunology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Metabolic Syndrome/drug therapy , Metabolic Syndrome/immunology , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/pathology , Receptors, LDL/genetics , Receptors, LDL/deficiency , Proteasome Endopeptidase Complex/metabolism , Male , Proteasome Inhibitors/pharmacology , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Aortic Diseases/prevention & control , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/enzymology , Aortic Diseases/immunology , Aortic Diseases/metabolism , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Plaque, Atherosclerotic , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice, Knockout, ApoE , Mice , Energy Metabolism/drug effects , Oligopeptides
20.
J Neurosci ; 44(24)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38649269

ABSTRACT

Genetic variants in the apolipoprotein E (APOE) gene affect the onset and progression of Alzheimer's disease (AD). The APOE Christchurch (APOE Ch) variant has been identified as the most prominent candidate for preventing the onset and progression of AD. In this study, we generated isogenic APOE3Ch/3Ch human-induced pluripotent stem cells (iPSCs) from APOE3/3 healthy control female iPSCs and induced them into astrocytes. RNA expression analysis revealed the inherent resilience of APOE3Ch/3Ch astrocytes to induce a reactive state in response to inflammatory cytokines. Moreover, cytokine treatment changed astrocytic morphology with more complexity in APOE3/3 astrocytes, but not in APOE3Ch/3Ch astrocytes, indicating resilience of the rare variant to a reactive state. Interestingly, we observed robust morphological alterations containing more intricate processes when cocultured with iPSC-derived cortical neurons, in which APOE3Ch/3Ch astrocytes reduced complexity compared with APOE3/3 astrocytes. To assess the impacts of tau propagation effects, we next developed a sophisticated and sensitive assay utilizing cortical neurons derived from human iPSCs, previously generated from donors of both sexes. We showed that APOE3Ch/3Ch astrocytes effectively mitigated tau propagation within iPSC-derived neurons. This study provides important experimental evidence of the characteristic functions exhibited by APOE3Ch/3Ch astrocytes, thereby offering valuable insights for the advancement of novel clinical interventions in AD research.


Subject(s)
Astrocytes , Induced Pluripotent Stem Cells , tau Proteins , Astrocytes/metabolism , Humans , tau Proteins/metabolism , tau Proteins/genetics , Female , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoprotein E3/genetics , Neurons/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cells, Cultured , Coculture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL