Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44.335
Filter
1.
Int J Mol Med ; 54(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963054

ABSTRACT

PANoptosis, a complex form of proinflammatory programmed cell death, including apoptosis, pyroptosis and necroptosis, has been an emerging concept in recent years that has been widely reported in cancer, infectious diseases and neurological disorders. Cardiovascular diseases (CVDs) are an important global health problem, posing a serious threat to individuals' lives. An increasing body of research shows that inflammation has a pivotal role in CVDs, which provides an important theoretical basis for PANoptosis to promote the progression of CVDs. To date, only sporadic studies on PANoptosis in CVDs have been reported and its role in the field of CVDs has not been fully explored. Elucidating the various modes of cardiomyocyte death, the specific molecular mechanisms and the links among the various modes of death under various stressful stimuli is of notable clinical significance for a deeper understanding of the pathophysiology of CVDs. The present review summarizes the molecular mechanisms of apoptosis, pyroptosis, necroptosis and PANoptosis and their prospects in the field of CVDs.


Subject(s)
Cardiovascular Diseases , Necroptosis , Pyroptosis , Humans , Cardiovascular Diseases/pathology , Cardiovascular Diseases/metabolism , Animals , Apoptosis/physiology , Regulated Cell Death , Inflammation/pathology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism
2.
Anat Histol Embryol ; 53(4): e13082, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38944689

ABSTRACT

The spleen is the largest secondary lymphoid organ with significant roles in pathogen clearance. It is involved in several avian diseases. The cattle egret is a wild insectivorous bird of agricultural and socioeconomic importance. Data related to microstructural features of cattle egret spleen are lacking. The present study investigated the gross anatomical, histological and immunohistochemical characteristics of the cattle egret spleen. Proliferation (PCNA and PHH3), apoptosis (cleaved caspase 3, C.CASP3) and T-cell (CD3 and CD8) markers were assessed. Grossly, the spleen appeared brownish red, oval-shaped and located at the oesophago-proventricular junction. Histologically, the spleen was surrounded by a thin capsule sending a number of trabeculae which contained branches of the splenic vessels. The white pulp consisted of the periarteriolar lymphoid sheath and periellipsoidal lymphatic sheath (PELS). The red pulp was formed of sinusoids and cords. The penicillar capillaries, which represent the terminal segments of the splenic arterial tree were highly branched, wrapped by prominent ellipsoids and directly connected to the splenic sinusoids, suggesting a closed type of circulation. Immunohistochemically, proliferating cell nuclear antigen (PCNA)-expressing cells were distributed with high counts throughout the splenic parenchyma, being highest within the splenic cords and PELS. Both PHH3- and C.CASP3-expressing cells revealed a similar pattern to that of PCNA, although with fewer counts. Large numbers of T cells were observed throughout the splenic parenchyma, mainly within the cords, as revealed by CD3 and CD8 immunoreaction. The present study provides a clear insight into the precise structure of the spleen in cattle egrets and thus improves our understanding about birds' immunity.


Subject(s)
Apoptosis , Birds , Cell Proliferation , Proliferating Cell Nuclear Antigen , Spleen , T-Lymphocytes , Animals , Spleen/cytology , Apoptosis/physiology , Proliferating Cell Nuclear Antigen/metabolism , Birds/anatomy & histology , Immunohistochemistry/veterinary , CD3 Complex/metabolism , Biomarkers/metabolism , Caspase 3/metabolism
3.
Reprod Domest Anim ; 59(6): e14655, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924202

ABSTRACT

Understanding the normal physiology of the canine mammary gland (CMG) is crucial, as it provides a foundational reference for understanding canine mammary neoplasms. The relation between the Proliferation Index (PI) indicated by Ki-67 expression, along with the Apoptotic Index (AI) determined through Caspase-3 expression during the oestrous cycle, is inadequately documented in existing literature. This study seeks to offer insights into the interplay between PI and AI in the CMG across oestrous cycle phases. An extensive investigation was conducted on a diverse case series of bitches (n = 18). Oestrous cycle stages were determined through vaginal cytology, histological examination of the reproductive tract and serum progesterone and oestradiol concentrations. The entire mammary chain was histologically examined, and proliferation and apoptosis were assessed via double immunohistochemistry employing anti-Ki-67 and Caspase-3 antibodies. PI and AI were evaluated through a systematic random sampling approach, counting a minimum of 200 cells for each cell type. There was a significantly higher PI during early dioestrus in all mammary gland components, with a greater proportion of positive cells observed in epithelial cells compared to stromal cells. The highest PI was detected in epithelial cells within the end buds. Significant differences were found in Ki-67 labelling across the cranial mammary glands. A positive and strong correlation was noted between progesterone concentration and PI in epithelial cells. The AI remained consistently low throughout the oestrous cycle, with few differences observed across histological components. Caspase-3 labelling displayed the highest positivity in caudal mammary pairs. A negative and moderate correlation was identified between progesterone concentration and AI in interlobular mesenchymal cells. This study highlights the influence of endocrine regulation on cell proliferation indices in mammary tissue, emphasizing the need to consider these hormonal variations in toxicopathological studies involving canine mammary gland.


Subject(s)
Apoptosis , Caspase 3 , Cell Proliferation , Estrous Cycle , Ki-67 Antigen , Mammary Glands, Animal , Progesterone , Animals , Female , Ki-67 Antigen/metabolism , Dogs , Apoptosis/physiology , Mammary Glands, Animal/physiology , Mammary Glands, Animal/cytology , Caspase 3/metabolism , Estrous Cycle/physiology , Progesterone/blood , Progesterone/metabolism , Estradiol/blood , Estradiol/metabolism , Epithelial Cells
4.
J Endocrinol ; 262(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38842911

ABSTRACT

ß-Cell death contributes to ß-cell loss and insulin insufficiency in type 1 diabetes (T1D), and this ß-cell demise has been attributed to apoptosis and necrosis. Apoptosis has been viewed as the lone form of programmed ß-cell death, and evidence indicates that ß-cells also undergo necrosis, regarded as an unregulated or accidental form of cell demise. More recently, studies in non-islet cell types have identified and characterized novel forms of cell death that are biochemically and morphologically distinct from apoptosis and necrosis. Several of these mechanisms of cell death have been categorized as forms of regulated necrosis and linked to inflammation and disease pathogenesis. In this review, we revisit discoveries of ß-cell death in humans with diabetes and describe studies characterizing ß-cell apoptosis and necrosis. We explore literature on mechanisms of regulated necrosis including necroptosis, ferroptosis and pyroptosis, review emerging literature on the significance of these mechanisms in ß-cells, and discuss experimental approaches to differentiate between various mechanisms of ß-cell death. Our review of the literature leads us to conclude that more detailed experimental characterization of the mechanisms of ß-cell death is warranted, along with studies to better understand the impact of various forms of ß-cell demise on islet inflammation and ß-cell autoimmunity in pathophysiologically relevant models. Such studies will provide insight into the mechanisms of ß-cell loss in T1D and may shed light on new therapeutic approaches to protect ß-cells in this disease.


Subject(s)
Apoptosis , Cell Death , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Necrosis , Humans , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/physiology , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/immunology , Animals , Cell Death/physiology , Apoptosis/physiology , Necroptosis/physiology , Pyroptosis/physiology , Ferroptosis/physiology
5.
CNS Neurosci Ther ; 30(6): e14784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828669

ABSTRACT

INTRODUCTION: Programmed death-ligand 1 (PD-L1) expression is an immune evasion mechanism that has been demonstrated in many tumors and is commonly associated with a poor prognosis. Over the years, anti-PD-L1 agents have gained attention as novel anticancer therapeutics that induce durable tumor regression in numerous malignancies. They may be a new treatment choice for neurofibromatosis type 2 (NF2) patients. AIMS: The aims of this study were to detect the expression of PD-L1 in NF2-associated meningiomas, explore the effect of PD-L1 downregulation on tumor cell characteristics and T-cell functions, and investigate the possible pathways that regulate PD-L1 expression to further dissect the possible mechanism of immune suppression in NF2 tumors and to provide new treatment options for NF2 patients. RESULTS: PD-L1 is heterogeneously expressed in NF2-associated meningiomas. After PD-L1 knockdown in NF2-associated meningioma cells, tumor cell proliferation was significantly inhibited, and the apoptosis rate was elevated. When T cells were cocultured with siPD-L1-transfected NF2-associated meningioma cells, the expression of CD69 on both CD4+ and CD8+ T cells was partly reversed, and the capacity of CD8+ T cells to kill siPD-L1-transfected tumor cells was partly restored. Results also showed that the PI3K-AKT-mTOR pathway regulates PD-L1 expression, and the mTOR inhibitor rapamycin rapidly and persistently suppresses PD-L1 expression. In vivo experimental results suggested that anti-PD-L1 antibody may have a synergetic effect with the mTOR inhibitor in reducing tumor cell proliferation and that reduced PD-L1 expression could contribute to antitumor efficacy. CONCLUSIONS: Targeting PD-L1 could be helpful for restoring the function of tumor-infiltrating lymphocytes and inducing apoptosis to inhibit tumor proliferation in NF2-associated meningiomas. Dissecting the mechanisms of the PD-L1-driven tumorigenesis of NF2-associated meningioma will help to improve our understanding of the mechanisms underlying tumor progression and could facilitate further refinement of current therapies to improve the treatment of NF2 patients.


Subject(s)
B7-H1 Antigen , Cell Proliferation , Meningeal Neoplasms , Meningioma , Neurofibromatosis 2 , T-Lymphocytes , Meningioma/metabolism , Meningioma/immunology , Meningioma/pathology , Humans , B7-H1 Antigen/metabolism , Cell Proliferation/drug effects , Cell Proliferation/physiology , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/pathology , Meningeal Neoplasms/immunology , Animals , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects , Neurofibromatosis 2/metabolism , Mice , Male , Female , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Cell Line, Tumor , Middle Aged , Mice, Nude , Apoptosis/drug effects , Apoptosis/physiology
6.
Biol Res ; 57(1): 36, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822414

ABSTRACT

BACKGROUND: Helicase for meiosis 1 (HFM1), a putative DNA helicase expressed in germ-line cells, has been reported to be closely associated with premature ovarian insufficiency (POI). However, the underlying molecular mechanism has not been clearly elucidated. The aim of this study was to investigate the function of HFM1 in the first meiotic prophase of mouse oocytes. RESULTS: The results suggested that the deficiency of HFM1 resulting in increased apoptosis and depletion of oocytes in mice, while the oocytes were arrested in the pachytene stage of the first meiotic prophase. In addition, impaired DNA double-strand break repair and disrupted synapsis were observed in the absence of HFM1. Further investigation revealed that knockout of HFM1 promoted ubiquitination and degradation of FUS protein mediated by FBXW11. Additionally, the depletion of HFM1 altered the intranuclear localization of FUS and regulated meiotic- and oocyte development-related genes in oocytes by modulating the expression of BRCA1. CONCLUSIONS: These findings elaborated that the critical role of HFM1 in orchestrating the regulation of DNA double-strand break repair and synapsis to ensure meiosis procession and primordial follicle formation. This study provided insights into the pathogenesis of POI and highlighted the importance of HFM1 in maintaining proper meiotic function in mouse oocytes.


Subject(s)
Meiotic Prophase I , Oocytes , Ubiquitination , Animals , Female , Mice , Apoptosis/physiology , DNA Breaks, Double-Stranded , DNA Repair/physiology , Meiosis/physiology , Meiotic Prophase I/physiology , Mice, Knockout , Oocytes/metabolism , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics
7.
CNS Neurosci Ther ; 30(6): e14806, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887182

ABSTRACT

AIM: Glucose-dependent insulinotropic polypeptide (GIP) is a ligand of glucose-dependent insulinotropic polypeptide receptor (GIPR) that plays an important role in the digestive system. In recent years, GIP has been regarded as a hormone-like peptide to regulate the local metabolic environment. In this study, we investigated the antioxidant role of GIP on the neuron and explored the possible mechanism. METHODS: Cell counting Kit-8 (CCK-8) was used to measure cell survival. TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect apoptosis in vitro and in vivo. Reactive oxygen species (ROS) levels were probed with 2', 7'-Dichloro dihydrofluorescein diacetate (DCFH-DA), and glucose intake was detected with 2-NBDG. Immunofluorescence staining and western blot were used to evaluate the protein level in cells and tissues. Hematoxylin-eosin (HE) staining, immunofluorescence staining and tract-tracing were used to observe the morphology of the injured spinal cord. Basso-Beattie-Bresnahan (BBB) assay was used to evaluate functional recovery after spinal cord injury. RESULTS: GIP reduced the ROS level and protected cells from apoptosis in cultured neurons and injured spinal cord. GIP facilitated wound healing and functional recovery of the injured spinal cord. GIP significantly improved the glucose uptake of cultured neurons. Meanwhile, inhibition of glucose uptake significantly attenuated the antioxidant effect of GIP. GIP increased glucose transporter 3 (GLUT3) expression via up-regulating the level of hypoxia-inducible factor 1α (HIF-1α) in an Akt-dependent manner. CONCLUSION: GIP increases GLUT3 expression and promotes glucose intake in neurons, which exerts an antioxidant effect and protects neuronal cells from oxidative stress both in vitro and in vivo.


Subject(s)
Gastric Inhibitory Polypeptide , Glucose Transporter Type 3 , Glucose , Neurons , Oxidative Stress , Rats, Sprague-Dawley , Reactive Oxygen Species , Spinal Cord Injuries , Animals , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/metabolism , Glucose/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Neurons/metabolism , Neurons/drug effects , Rats , Reactive Oxygen Species/metabolism , Glucose Transporter Type 3/metabolism , Apoptosis/drug effects , Apoptosis/physiology , Male , Cells, Cultured , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
8.
Phys Rev Lett ; 132(21): 218402, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856284

ABSTRACT

Biological tissues transform between solid- and liquidlike states in many fundamental physiological events. Recent experimental observations further suggest that in two-dimensional epithelial tissues these solid-liquid transformations can happen via intermediate states akin to the intermediate hexatic phases observed in equilibrium two-dimensional melting. The hexatic phase is characterized by quasi-long-range (power-law) orientational order but no translational order, thus endowing some structure to an otherwise structureless fluid. While it has been shown that hexatic order in tissue models can be induced by motility and thermal fluctuations, the role of cell division and apoptosis (birth and death) has remained poorly understood, despite its fundamental biological role. Here we study the effect of cell division and apoptosis on global hexatic order within the framework of the self-propelled Voronoi model of tissue. Although cell division naively destroys order and active motility facilitates deformations, we show that their combined action drives a liquid-hexatic-liquid transformation as the motility increases. The hexatic phase is accessed by the delicate balance of dislocation defect generation from cell division and the active binding of disclination-antidisclination pairs from motility. We formulate a mean-field model to elucidate this competition between cell division and motility and the consequent development of hexatic order.


Subject(s)
Cell Division , Cell Movement , Models, Biological , Cell Movement/physiology , Cell Division/physiology , Apoptosis/physiology
9.
Biochem Pharmacol ; 225: 116334, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824967

ABSTRACT

Alcoholic liver injury (ALI) stands as a prevalent affliction within the spectrum of complex liver diseases. Prolonged and excessive alcohol consumption can pave the way for liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Recent findings have unveiled the protective role of proline serine-threonine phosphatase interacting protein 2 (PSTPIP2) in combating liver ailments. However, the role of PSTPIP2 in ALI remains mostly unknown. This study aimed to determine the expression profile of PSTPIP2 in ALI and to uncover the mechanism through which PSTPIP2 affects the survival and apoptosis of hepatocytes in ALI, using both ethyl alcohol (EtOH)-fed mice and an EtOH-induced AML-12 cell model. We observed a consistent decrease in PSTPIP2 expression both in vivo and in vitro. Functionally, we assessed the impact of PSTPIP2 overexpression on ALI by administering adeno-associated virus 9 (AAV9)-PSTPIP2 into mice. The results demonstrated that augmenting PSTPIP2 expression significantly shielded against liver parenchymal distortion and curbed caspase-dependent hepatocyte apoptosis in EtOH-induced ALI mice. Furthermore, enforcing PSTPIP2 expression reduced hepatocyte apoptosis in a stable PSTPIP2-overexpressing AML-12 cell line established through lentivirus-PSTPIP2 transfection in vitro. Mechanistically, this study also identified signal transducer and activator of transcription 3 (STAT3) as a direct signaling pathway regulated by PSTPIP2 in ALI. In conclusion, our findings provide compelling evidence that PSTPIP2 has a regulatory role in hepatocyte apoptosis via the STAT3 pathway in ALI, suggesting PSTPIP2 as a promising therapeutic target for ALI.


Subject(s)
Apoptosis , Mice, Inbred C57BL , STAT3 Transcription Factor , Animals , Apoptosis/physiology , Apoptosis/drug effects , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Mice , Male , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/prevention & control , Ethanol/toxicity , Ethanol/administration & dosage , Hepatocytes/metabolism , Hepatocytes/pathology , Cell Line , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
10.
Neurotox Res ; 42(4): 31, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935306

ABSTRACT

Endoplasmic reticulum (ER) stress and oxidative stress (OS) are often related states in pathological conditions including Parkinson's disease (PD). This study investigates the role of anti-oxidant protein paraoxonase 2 (PON2) in ER stress and OS in PD, along with its regulatory molecule. PD was induced in C57BL/6 mice using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treatment and in SH-SY5Y cells using 1-methyl-4-phenylpyridinium. PON2 was found to be poorly expressed in the substantia nigra pars compacta (SNc) of PD mice, and its overexpression improved motor coordination of mice. Through the evaluation of tyrosine hydroxylase, dopamine transporter, reactive oxygen species (ROS), and C/EBP homologous protein (CHOP) levels and neuronal loss in mice, as well as the examination of CHOP, glucose-regulated protein 94 (GRP94), GRP78, caspase-12, sarco/endoplasmic reticulum calcium ATPase 2, malondialdehyde, and superoxide dismutase levels in SH-SY5Y cells, we observed that PON2 overexpression mitigated ER stress, OS, and neuronal apoptosis both in vivo and in vitro. Forkhead box A1 (FOXA1) was identified as a transcription factor binding to the PON2 promoter to activate its transcription. Upregulation of FOXA1 similarly protected against neuronal loss by alleviating ER stress and OS, while the protective roles were abrogated by additional PON2 silencing. In conclusion, this study demonstrates that FOXA1-mediated transcription of PON2 alleviates ER stress and OS, ultimately reducing neuronal apoptosis in PD.


Subject(s)
Apoptosis , Aryldialkylphosphatase , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Hepatocyte Nuclear Factor 3-alpha , Mice, Inbred C57BL , Oxidative Stress , Animals , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum Stress/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Apoptosis/drug effects , Apoptosis/physiology , Aryldialkylphosphatase/metabolism , Aryldialkylphosphatase/genetics , Humans , Cell Line, Tumor , Male , Mice , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Neurons/metabolism , Neurons/drug effects
11.
BMC Musculoskelet Disord ; 25(1): 467, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879481

ABSTRACT

BACKGROUND: The present study evaluated whether the lack of histone deacetylase 4 (HDAC4) increases endoplasmic reticulum stress-induced chondrocyte apoptosis by releasing activating transcription factor 4 (ATF4) in human osteoarthritis (OA) cartilage degeneration. METHODS: Articular cartilage from the tibial plateau was obtained from patients with OA during total knee replacement. Cartilage extracted from severely damaged regions was classified as degraded cartilage, and cartilage extracted from a relatively smooth region was classified as preserved cartilage. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to detect chondrocyte apoptosis. HDAC4, ATF4, and C/EBP homologous protein (CHOP) expression levels were measured using immunohistochemistry staining and real-time quantitative PCR. Chondrocytes were transfected with HDAC4 or HDAC4 siRNA for 24 h and stimulated with 300 µM H2O2 for 12 h. The chondrocyte apoptosis was measured using flow cytometry. ATF4, CHOP, and caspase 12 expression levels were measured using real-time quantitative PCR and western blotting. Male Sprague-Dawley rats (n = 15) were randomly divided into three groups and transduced with different vectors: ACLT + Ad-GFP, ACLT + Ad-HDAC4-GFP, and sham + Ad-GFP. All rats received intra-articular injections 48 h after the operation and every three weeks thereafter. Cartilage damage was assessed using Safranin O staining and quantified using the Osteoarthritis Research Society International score. ATF4, CHOP, and collagen II expression were detected using immunohistochemistry, and chondrocyte apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. RESULTS: The chondrocyte apoptosis was higher in degraded cartilage than in preserved cartilage. HDAC4 expression was lower in degraded cartilage than in preserved cartilage. ATF4 and CHOP expression was increased in degraded cartilage. Upregulation of HDAC4 in chondrocytes decreased the expression of ATF4, while the expression of ATF4 was increased after downregulation of HDAC4. Upregulation of HDAC4 decreased the chondrocyte apoptosis under endoplasmic reticulum stress, and chondrocyte apoptosis was increased after downregulation of HDAC4. In a rat anterior cruciate ligament transection OA model, adenovirus-mediated transduction of HDAC4 was administered by intra-articular injection. We detected a stronger Safranin O staining with lower Osteoarthritis Research Society International scores, lower ATF4 and CHOP production, stronger collagen II expression, and lower chondrocyte apoptosis in rats treated with Ad-HDAC4. CONCLUSION: The lack of HDAC4 expression partially contributes to increased ATF4, CHOP, and endoplasmic reticulum stress-induced chondrocyte apoptosis in OA pathogenesis. HDAC4 attenuates cartilage damage by repressing ATF4-CHOP signaling-induced chondrocyte apoptosis in a rat model of OA.


Subject(s)
Activating Transcription Factor 4 , Apoptosis , Cartilage, Articular , Chondrocytes , Disease Models, Animal , Endoplasmic Reticulum Stress , Histone Deacetylases , Rats, Sprague-Dawley , Animals , Apoptosis/physiology , Apoptosis/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Male , Rats , Endoplasmic Reticulum Stress/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Humans , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/metabolism , Female , Middle Aged , Aged , Transcription Factor CHOP/metabolism , Cells, Cultured , Osteoarthritis/pathology , Osteoarthritis/metabolism , Repressor Proteins
12.
Front Endocrinol (Lausanne) ; 15: 1414447, 2024.
Article in English | MEDLINE | ID: mdl-38915897

ABSTRACT

Type 2 diabetes (T2D) is a polygenic metabolic disorder characterized by insulin resistance in peripheral tissues and impaired insulin secretion by the pancreas. While the decline in insulin production and secretion was previously attributed to apoptosis of insulin-producing ß-cells, recent studies indicate that ß-cell apoptosis rates are relatively low in diabetes. Instead, ß-cells primarily undergo dedifferentiation, a process where they lose their specialized identity and transition into non-functional endocrine progenitor-like cells, ultimately leading to ß-cell failure. The underlying mechanisms driving ß-cell dedifferentiation remain elusive due to the intricate interplay of genetic factors and cellular stress. Understanding these mechanisms holds the potential to inform innovative therapeutic approaches aimed at reversing ß-cell dedifferentiation in T2D. This review explores the proposed drivers of ß-cell dedifferentiation leading to ß-cell failure, and discusses current interventions capable of reversing this process, thus restoring ß-cell identity and function.


Subject(s)
Cell Dedifferentiation , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Insulin-Secreting Cells/cytology , Cell Dedifferentiation/physiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Animals , Cell Differentiation/physiology , Apoptosis/physiology , Insulin Secretion/physiology
13.
Brain Res ; 1839: 148999, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38761845

ABSTRACT

BACKGROUND: Microglia are damaged during cerebral ischemia-reperfusion (I/R). This study was performed to investigate the regulatory effect of tAR DNA-binding protein-43 (TDP-43) on microglia after cerebral I/R in vitro and in vivo. METHOD: The hypoxia/reoxygenation (H/R) treated microglia and rats with middle cerebral artery occlusion surgery were constructed respectively. The TDP-43 expression in brain tissues and microglia of each group was evaluated by qPCR and western blotting methods. Cell viability and cell apoptosis were combined to evaluate the degree of cell injury. As for animal experiments, neurological score and infarct volume were obtained to evaluate neurological injury. RESULTS: The levels of TDP-43 in the brain tissues of I/R group were higher than that in sham group. Both TDP-43 and Iba1, a typical microglia marker, were expressed in the brain tissues. TDP-43 was also elevated in microglia with H/R treatment. Inhibition of TDP-43 significantly down-regulated neurological deficit scores of rats after I/R surgery, and weakened the H/R treatment induced injury by promoting cell viability, inhibiting cell apoptosis, down-regulating IL-6 and iNOS levels, and up-regulating Arg-1 and IL-10 levels. Inactivation of cGAS pathway mediated by TDP-43 knockdown protects microglia from H/R treatment induced injury. CONCLUSION: The highly expressed TDP-43 level is associated with cerebral I/R, and inhibition of TDP-43 protects microglia from H/R induced injury through cGAS pathway in vitro and in vivo.


Subject(s)
Apoptosis , DNA-Binding Proteins , Microglia , Nucleotidyltransferases , Rats, Sprague-Dawley , Reperfusion Injury , Signal Transduction , Animals , Microglia/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Signal Transduction/physiology , Reperfusion Injury/metabolism , Rats , Male , Apoptosis/physiology , Nucleotidyltransferases/metabolism , Cell Survival/physiology , Infarction, Middle Cerebral Artery/metabolism , Brain Ischemia/metabolism , Brain/metabolism
14.
Brain Res ; 1838: 149011, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38763502

ABSTRACT

Spinal Cord Injury (SCI) is a debilitating disease associated with a significant economic burden owing to its high level of disability; however, current treatment options have only limited efficacy. Past research has shown that iron-dependent programmed cell death, also known as ferroptosis, plays a critical role in the pathogenesis of SCI. The sigma-1 receptor (Sig-1R) is widely distributed in the central nervous system, and has been implicated in the pathophysiology of several neurological and psychiatric disorders. Several in vivo and ex vivo studies have shown that Sig-1R activation exerts unique neuroprotective effects. However, the underlying mechanisms remain unclear. To date, no study has yet demonstrated the association between Sig-1R activation and ferroptosis in patients with SCI. However, the present study found that Sig-1R activation effectively promoted the recovery of motor function in mice after spinal cord injury, attenuated neuronal apoptosis, reduced the production of pro-inflammatory cytokines and iron accumulation, and inhibited ferroptosis in spinal cord tissues following SCI in mice. Ferroptosis and IRE1α were significantly upregulated after spinal cord injury, while sigma-1 receptor agonists were able to facilitate this result through the elimination of inositol-requiring enzyme-1 alpha (IRE1α)-mediated neuronal ferroptosis. Therefore, sigma-1 receptor activation could attenuate ferroptosis after SCI by reducing IRE1α and improving functional recovery after SCI, potentially representing a new therapeutic strategy for treating SCI.


Subject(s)
Ferroptosis , Mice, Inbred C57BL , Neurons , Protein Serine-Threonine Kinases , Receptors, sigma , Sigma-1 Receptor , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Animals , Receptors, sigma/metabolism , Receptors, sigma/agonists , Ferroptosis/physiology , Ferroptosis/drug effects , Mice , Protein Serine-Threonine Kinases/metabolism , Neurons/metabolism , Endoribonucleases/metabolism , Male , Recovery of Function/physiology , Recovery of Function/drug effects , Apoptosis/physiology , Apoptosis/drug effects , Spinal Cord/metabolism
15.
Brain Res ; 1839: 149007, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38763505

ABSTRACT

Alzheimer's disease (AD) is a common neurodegenerative disease. Previous studies have identified the critical role of astrocytes in the progression of AD. The focus of this study revolves around clarifying the regulatory mechanism of the STAT3/EZH2/BAI1 axis in astrocytes in AD. We successfully developed a rat model of AD, and measured the learning and cognitive ability of the rats by Morris water maze experiment. HE and Nissl's staining were used for histomorphological identification of the rat hippocampus. Meanwhile, immunofluorescence and immunohistochemistry were used to detect astrocyte activation and brain-specific angiogenesis inhibitor-1 (BAI1) expression in rat hippocampal tissue, respectively. The role of STAT3/EZH2/BAI1 regulating axis in astrocyte activation and neuronal cell apoptosis was verified by establishing the co-culture system of astrocytes and neuronal cells in vitro. Western Blot (WB) was used to detect the expression of associated proteins, and enzyme-linked immunosorbent assay (ELISA) was used to detect astrocyte neurotrophic factor secretion. Hochest/PI staining and flow cytometry were used to observe neuronal apoptosis. Compared with the sham group, AD rats showed significantly decreased cognitive and learning abilities, noticeable hippocampal tissue damage, and significantly low levels of BAI1 expression. In in vitro models, BAI1 was found to inhibit astrocyte activation and enhance the secretion of neurotrophins, resulting in decrease of neurone apoptosis. The regulation of BAI1 by the STAT3/EZH2 axis was shown to affect astrocyte activation and neuronal cell apoptosis. In conclusion, this study represents the pioneering discovery that regulated by the STAT3/EZH2 axis, BAI1 suppresses astrocyte activation, thus reducing neuronal apoptosis.


Subject(s)
Alzheimer Disease , Apoptosis , Astrocytes , Enhancer of Zeste Homolog 2 Protein , Hippocampus , Neurons , Rats, Sprague-Dawley , STAT3 Transcription Factor , Animals , Astrocytes/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Apoptosis/physiology , STAT3 Transcription Factor/metabolism , Rats , Neurons/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Enhancer of Zeste Homolog 2 Protein/metabolism , Male , Disease Models, Animal , Angiogenic Proteins/metabolism , Maze Learning/physiology , Coculture Techniques , Signal Transduction/physiology
16.
Neuroreport ; 35(10): 648-656, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38813901

ABSTRACT

Mitochondria play a crucial role in maintaining cellular energy supply and serve as a source of energy for repairing nerve damage following a stroke. Given that exercise has the potential to enhance energy metabolism, investigating the impact of exercise on mitochondrial function provides a plausible mechanism for stroke treatment. In our study, we established the middle cerebral artery occlusion (MCAO) model in Sprague-Dawley rats and implemented early exercise intervention. Neurological severity scores, beam-walking test score, and weight were used to evaluate neurological function. The volume of cerebral infarction was measured by MRI. Nerve cell apoptosis was detected by TUNEL staining. Mitochondrial morphology and structure were detected by mitochondrial electron microscopy. Mitochondrial function was assessed using membrane potential and ATP measurements. Western blotting was used to detect the protein expression of AMPK/PGC-1α/GLUT4. Through the above experiments, we found that early exercise improved neurological function in rats after MCAO, reduced cerebral infarction volume and neuronal apoptosis, promoted the recovery of mitochondrial morphology and function. We further examined the protein expression of AMPK/PGC-1α/GLUT4 signaling pathway and confirmed that early exercise was able to increase its expression. Therefore, we suggest that early exercise initiated the AMPK/PGC-1α/GLUT4 signaling pathway, restoring mitochondrial function and augmenting energy supply. This, in turn, effectively improved both nerve and body function in rats following ischemic stroke.


Subject(s)
AMP-Activated Protein Kinases , Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal , Rats, Sprague-Dawley , Signal Transduction , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction/physiology , Male , AMP-Activated Protein Kinases/metabolism , Mitochondria/metabolism , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/therapy , Brain Ischemia/metabolism , Rats , Disease Models, Animal , Apoptosis/physiology
17.
Int J Cardiol ; 408: 132158, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38744338

ABSTRACT

BACKGROUND: Cardiomyocyte apoptosis plays a vital role in myocardial ischemia-reperfusion (MI/R) injury; however, the role of beclin1 (BECN1) remains unclear. This study aimed at revealing the function of BECN1 during cardiomyocyte apoptosis after MI/R injury. METHODS: In vivo, TTC and Evan's blue double staining was applied to verify the gross morphological alteration in both wild type (WT) mice and BECN1 transgene mice (BECN1-TG), and TUNEL staining and western blot were adopted to evaluate the cardiomyocyte apoptosis. In vitro, a hypoxia/reoxygenation (H/R) model was established in H9c2 cells to simulate MI/R injury. Proteomics analysis was preformed to verify if apoptosis occurs in the H/R cellular model. And apoptosis factors, RIPK1, Caspase-1, Caspase-3, and cleaved Caspase-3, were investigated using western bolting. In addition, the mRNA level were verified using RT-PCR. To further investigate the protein interactions small interfering RNA and lentiviral transfection were used. To continue investigate the protein interactions, immunofluorescence and coimmunoprecipitation were applied. RESULTS: Morphologically, BECN1 significantly attenuated the apoptosis from TTC-Evan's staining, TUNEL, and cardiac tissue western blot. After H/R, a RIPK1-induced complex (complex II) containing RIPK1, Caspase-8, and FADD was formed. Thereafter, cleaved Caspase-3 was activated, and myocyte apoptosis occurred. However, BECN1 decreased the expression of RIPK1, Caspase-8, and FADD. Nevertheless, BECN1 overexpression increased RIPK1 ubiquitination before apoptosis by inhibiting OTUD1. CONCLUSIONS: BECN1 regulates FADD/RIPK1/Caspase-8 complex formation via RIPK1 ubiquitination by downregulating OTUD1 in C-Caspase-3-induced myocyte apoptosis after MI/R injury. Therefore, BECN1 can function as a cardioprotective candidate.


Subject(s)
Apoptosis , Beclin-1 , Caspase 8 , Down-Regulation , Fas-Associated Death Domain Protein , Myocardial Reperfusion Injury , Myocytes, Cardiac , Receptor-Interacting Protein Serine-Threonine Kinases , Ubiquitination , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Fas-Associated Death Domain Protein/metabolism , Apoptosis/physiology , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Caspase 8/metabolism , Beclin-1/metabolism , Ubiquitination/physiology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Down-Regulation/physiology , Male , Mice, Transgenic , Mice, Inbred C57BL , Cells, Cultured
18.
Clinics (Sao Paulo) ; 79: 100372, 2024.
Article in English | MEDLINE | ID: mdl-38733688

ABSTRACT

OBJECTIVE: This study aims to analyze the relationship between the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) and Epilepsy (EP), as well as its mechanism of action. METHODS: Thirty Wistar rats were divided into a control group (without treatment), a model group (EP modeling), and an inhibition group (EP modeling + intervention by Keap1/Nrf2 signaling pathway inhibitor ATRA) and subject to Morris water maze experiment. Then, the expression of Oxidative Stress (OS) markers, ferroptosis-associated proteins and Keap1/Nrf2 pathway in rat hippocampus was measured. In addition, rat hippocampal neuronal cell HT22 was purchased and treated accordingly based on the results of grouping, and cell proliferation and apoptosis in the three groups were determined. RESULTS: Compared with rats in the model group, those in the inhibition group showed shorter escape latency and an increased number of platform crossings (p < 0.05). Significant OS and neuron ferroptosis, increased apoptosis rate, elevated Keap1 expression, and decreased Nrf2 expression were observed in the model group compared to the control group (p < 0.05). The inhibition group exhibited notably improved OS and ferroptosis, as well as enhanced neuronal viability (p < 0.05). CONCLUSION: Inhibition of the Keap1/Nrf2 pathway can reverse the OS and neuron viability in EP rats.


Subject(s)
Epilepsy , Ferroptosis , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Neurons , Oxidative Stress , Rats, Wistar , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/physiology , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress/physiology , Signal Transduction/physiology , Ferroptosis/physiology , Ferroptosis/drug effects , Neurons/metabolism , Epilepsy/metabolism , Epilepsy/physiopathology , Male , Hippocampus/metabolism , Apoptosis/physiology , Rats , Disease Progression , Disease Models, Animal
19.
Clinics (Sao Paulo) ; 79: 100368, 2024.
Article in English | MEDLINE | ID: mdl-38703717

ABSTRACT

OBJECTIVE: The purpose of this study is to develop an animal model of Chronic Intermittent Hypoxia (CIH) and investigate the role of the TRPC5 channel in cardiac damage in OSAHS rats. METHODS: Twelve male Sprague Dawley rats were randomly divided into the CIH group and the Normoxic Control (NC) group. Changes in structure, function, and pathology of heart tissue were observed through echocardiography, transmission electron microscopy, HE-staining, and TUNEL staining. RESULTS: The Interventricular Septum thickness at diastole (IVSd) and End-Diastolic Volume (EDV) of rats in the CIH group significantly increased, whereas the LV ejection fraction and LV fraction shortening significantly decreased. TEM showed that the myofilaments in the CIH group were loosely arranged, the sarcomere length varied, the cell matrix dissolved, the mitochondrial cristae were partly flocculent, the mitochondrial outer membrane dissolved and disappeared, and some mitochondria were swollen and vacuolated. The histopathological examination showed that the cardiomyocytes in the CIH group were swollen with granular degeneration, some of the myocardial fibers were broken and disorganized, and most of the nuclei were vacuolar and hypochromic. CONCLUSION: CIH promoted oxidative stress, the influx of Ca2+, and the activation of the CaN/NFATc signaling pathway, which led to pathological changes in the morphology and ultrastructure of cardiomyocytes, the increase of myocardial apoptosis, and the decrease of myocardial contractility. These changes may be associated with the upregulation of TRPC5.


Subject(s)
Disease Models, Animal , Hypoxia , TRPC Cation Channels , Animals , Male , Rats , Apoptosis/physiology , Chronic Disease , Echocardiography , Hypoxia/physiopathology , Hypoxia/metabolism , In Situ Nick-End Labeling , Microscopy, Electron, Transmission , Myocardium/metabolism , Myocardium/pathology , Myocardium/ultrastructure , Myocytes, Cardiac/ultrastructure , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/physiology , Random Allocation , Rats, Sprague-Dawley , TRPC Cation Channels/metabolism
20.
Psychoneuroendocrinology ; 166: 107065, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38718616

ABSTRACT

Sleep deprivation and insulin resistance (IR) are two risk factors for Alzheimer's disease. As the population of people with IR increases and sleep restriction (SR) due to staying up late becomes the "new normal", it is necessary to investigate the effects and molecular pathogenesis of chronic SR on cognitive function in insulin resistance. In this study, 4-week-old mice were fed a high-fat diet (HFD) for 8 weeks to establish IR model, and then the mice were subjected to SR for 21 days, and related indicators were assessed, including cognitive capacity, apoptosis, oxidative stress, glial cell activation, inflammation, blood-brain barrier (BBB) permeability and adiponectin levels, for exploring the potential regulatory mechanisms. Compared with control group, IR mice showed impaired cognitive capacity, meanwhile, SR not only promoted Bax/Bcl2-induced hippocampal neuronal cell apoptosis and Nrf2/HO1- induced oxidative stress, but also increased microglia activation and inflammatory factor levels and BBB permeability, thus aggravating the cognitive impairment in IR mice. Consequently, changing bad living habits and ensuring sufficient sleep are important intervention strategies to moderate the aggravation of IR-induced cognitive impairment.


Subject(s)
Blood-Brain Barrier , Brain , Cognitive Dysfunction , Diet, High-Fat , Inflammation , Insulin Resistance , Oxidative Stress , Sleep Deprivation , Animals , Oxidative Stress/physiology , Sleep Deprivation/metabolism , Sleep Deprivation/complications , Sleep Deprivation/physiopathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Insulin Resistance/physiology , Mice , Blood-Brain Barrier/metabolism , Inflammation/metabolism , Male , Diet, High-Fat/adverse effects , Brain/metabolism , Apoptosis/physiology , Disease Models, Animal , Hippocampus/metabolism , Microglia/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...