Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.322
Filter
1.
Sci Adv ; 10(33): eado3919, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39141742

ABSTRACT

Postoperative rehemorrhage following intracerebral hemorrhage surgery is intricately associated with a high mortality rate, yet there is now no effective clinical treatment. In this study, we developed a hemoglobin (Hb)-responsive in situ implantable DNA hydrogel comprising Hb aptamers cross-linked with two complementary chains and encapsulating deferoxamine mesylate (DFO). Functionally, the hydrogel generates signals upon postoperative rehemorrhage by capturing Hb, demonstrating a distinctive "self-diagnosis" capability. In addition, the ongoing capture of Hb mediates the gradual disintegration of the hydrogel, enabling the on-demand release of DFO without compromising physiological iron-dependent functions. This process achieves self-treatment by inhibiting the ferroptosis of neurocytes. In a collagenase and autologous blood injection model-induced mimic postoperative rehemorrhage model, the hydrogel exhibited a 5.58-fold increase in iron absorption efficiency, reducing hematoma size significantly (from 8.674 to 4.768 cubic millimeters). This innovative Hb-responsive DNA hydrogel not only offers a therapeutic intervention for postoperative rehemorrhage but also provides self-diagnosis feedback, holding notable promise for enhancing clinical outcomes.


Subject(s)
Cerebral Hemorrhage , Hemoglobins , Hydrogels , Cerebral Hemorrhage/diagnosis , Cerebral Hemorrhage/drug therapy , Hydrogels/chemistry , Hemoglobins/metabolism , Animals , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Deferoxamine/chemistry , DNA/metabolism , Humans , Male , Rats , Disease Models, Animal , Ferroptosis/drug effects , Iron/metabolism , Postoperative Hemorrhage/etiology , Postoperative Hemorrhage/diagnosis , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/chemistry
2.
ACS Sens ; 9(8): 4295-4304, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39143674

ABSTRACT

Plasmonic Au-Ag nanostars are excellent surface-enhanced Raman scattering (SERS) probes due to bimetallic coupling and the tip effect. However, the existing preparation methods of AuAg nanostars cannot achieve controlled growth of the Ag layer on the branches of nanostars and so cannot display their SERS to the maximum extent, thus limiting its sensitivity in biosensing. Herein, a novel strategy "PEI (polyethylenimine)-guided Ag deposition method" is proposed for synthesizing AuAg core-shell nanostars (AuAg@Ag NS) with a tunable distribution of the Ag layer from the core to the tip, which offers an avenue for investigating the correlation between SERS efficiency and the extent of spread of the Ag layer. It is found that AuAg@Ag NS with a Ag layer coated the whole branch has the strongest SERS performance because the coupling between the tips and Ag layer is maximized. Meanwhile, as a completely closed core-shell structure, AuAg@Ag NS can confine and anchor 4-ATP inside the Ag layer to avoid an unstable SERS signal. By connecting the aptamer, a reliable internal standard nanoprobe with a SERS enhancement factor (EF) up to 1.86 × 108 is prepared. Okada acid is detected through competitive adsorption of this SERS probes, and the detection limit is 36.6 pM. The results gain fundamental insights into tailoring the nanoparticle morphologies and preparation of internal standard nanoprobes and also provide a promising avenue for marine toxin detection in food safety.


Subject(s)
Gold , Metal Nanoparticles , Okadaic Acid , Shellfish , Silver , Spectrum Analysis, Raman , Silver/chemistry , Spectrum Analysis, Raman/methods , Gold/chemistry , Okadaic Acid/analysis , Shellfish/analysis , Metal Nanoparticles/chemistry , Animals , Polyethyleneimine/chemistry , Limit of Detection , Aptamers, Nucleotide/chemistry , Food Contamination/analysis
3.
ACS Nano ; 18(33): 22431-22443, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39103298

ABSTRACT

Osteoclastic inhibition using antiresorptive bisphosphonates and osteogenic promotion using antisclerostin agents represent two distinct osteoporosis treatments in clinical practice, each individual treatment suffers from unsatisfactory therapeutic efficacy due to its indirect intervention in osteoclasis and promotion of osteogenesis simultaneously. Although this issue is anticipated to be resolved by drug synergism, a tempting carrier-free dual-medication nanoassembly remains elusive. Herein, we prepare such a nanoassembly made of antiresorptive alendronate (ALN) crystal and antisclerostin polyaptamer (Apt) via a nucleic acid-driven crystallization method. This nanoparticle can protect Apt from rapid nuclease degradation, avoid the high cytotoxicity of free ALN, and effectively concentrate in the cancellous bone by virtue of the bone-binding ability of DNA and ALN. More importantly, the acid microenvironment of cancellous bone triggers the disassociation of nanoparticles for sustained drug release, from which ALN inhibits the osteoclast-mediated bone resorption while Apt promotes osteogenic differentiation. Our work represents a pioneering demonstration of nucleic acid-driven crystallization of a bisphosphonate into a tempting carrier-free dual-medication nanoassembly. This inaugural advancement augments the antiosteoporosis efficacy through direct inhibition of osteoclasis and promotion of osteogenesis simultaneously and establishes a paradigm for profound understanding of the underlying synergistic antiosteoporosis mechanism of antiresorptive and antisclerostin components. It is envisioned that this study provides a highly generalizable strategy applicable to the tailoring of a diverse array of DNA-inorganic nanocomposites for targeted regulation of intricate pathological niches.


Subject(s)
Alendronate , Crystallization , Osteoclasts , Osteogenesis , Osteoporosis , Alendronate/chemistry , Alendronate/pharmacology , Osteogenesis/drug effects , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoporosis/drug therapy , Animals , Mice , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/chemistry , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , RAW 264.7 Cells , Humans , Drug Synergism
4.
Anal Chem ; 96(33): 13512-13521, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39110961

ABSTRACT

Timely and efficient analysis of the fluorinated per- and polyfluoroalkyl substances (PFAS) in an atmospheric environment is critical to environmental pollution traceability, early warnings, and governance. Here, a portable, reliable, and intelligent digital monitoring device for onsite real-time dynamic analysis of atmospheric perfluorooctanoic acid (PFOA) is proposed. The sensing mechanism is attributed to the oxidase-like activity of PtCoNPs@g-C3N4 that is reversely regulated by the surface modification of a PFOA-recognizable DNA aptamer, engineering a PFOA-activated oxidase-like activity of nanozyme (Apt-PtCoNPs@g-C3N4) to combine the nonfluorescence o-phenylenediamine (OPD) as the dual-modality response system. The present PFOA interacts with its DNA aptamer and dissociates from the surface of Apt-PtCoNPs@g-C3N4, restoring the oxidase-like activity of PtCoNPs@g-C3N4 to oxidize OPD into yellow fluorescence 2,3-diphenylaniline (DAP), thereby observing a PFOA-triggered colorimetric as well as fluorescence dual-modality change. Then, a hydrogel kit-programmed Apt-PtCoNPs@g-C3N4 + OPD system is used as the sensitive element to incorporate into this homemade portable device, automatically gathering and processing the PFOA-triggered hydrogel colorimetric and fluorescence image gray values by our self-weaving software, ultimately realizing the onsite real-time dynamic analysis of atmospheric PFOA surrounding a fluorochemical production plant. This work provides a direction and theoretical foundation for designing portable onsite screening devices that cater to other atmospheric contaminants detection requirements.


Subject(s)
Aptamers, Nucleotide , Caprylates , Fluorocarbons , Aptamers, Nucleotide/chemistry , Fluorocarbons/chemistry , Fluorocarbons/analysis , Caprylates/analysis , Caprylates/chemistry , Oxidoreductases/metabolism , Biosensing Techniques/methods , Air Pollutants/analysis , Environmental Monitoring/methods , Limit of Detection
5.
ACS Nano ; 18(33): 22194-22207, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39116033

ABSTRACT

Monotherapy, especially the use of antibodies targeting vascular endothelial growth factor (VEGF), has shown limitations in treating choroidal neovascularization (CNV) since reactive oxygen species (ROS) also exacerbate CNV formation. Herein, we developed a combination therapy based on a DNA origami platform targeting multiple components of ocular neovascularization. Our study demonstrated that ocular neovascularization was markedly suppressed by intravitreal injection of a rectangular DNA origami sheet modified with VEGF aptamers (Ap) conjugated to an anti-VEGF antibody (aV) via matrix metalloproteinase (MMP)-cleavable peptide linkers in a mouse model of CNV. Typically, the DNA origami-based therapeutic platform selectively accumulates in neovascularization lesions owing to the dual-targeting ability of the aV and Ap, followed by the cleavage of the peptide linker by MMPs to release the antibody. Together, the released antibody and Ap inhibited VEGF activity. Moreover, the residual bare DNA origami could effectively scavenge ROS, reducing oxidative stress at CNV sites and thus maximizing the synergistic effects of inhibiting neovascularization.


Subject(s)
Choroidal Neovascularization , DNA , Vascular Endothelial Growth Factor A , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Animals , Mice , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/chemistry , DNA/chemistry , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/chemistry , Antibodies/chemistry
6.
Anal Chim Acta ; 1320: 343004, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39142771

ABSTRACT

BACKGROUND: Aptamers are screened via the systematic evolution of ligands by exponential enrichment (SELEX) and are widely used in molecular diagnostics and targeted therapies. The development of efficient and convenient SELEX technology has facilitated rapid access to high-performance aptamers, thereby advancing the aptamer industry. Graphene oxide (GO) serves as an immobilization matrix for libraries in GO-SELEX, making it suitable for screening aptamers against diverse targets. RESULTS: This review summarizes the detailed steps involved in GO-SELEX, including monitoring methods, various sublibrary acquisition methods, and practical applications from its inception to the present day. In addition, the potential of GO-SELEX in the development of broad-spectrum aptamers is explored, and its current limitations for future development are emphasized. This review effectively promotes the application of the GO-SELEX technique by providing valuable insights and assisting researchers interested in conducting related studies. SIGNIFICANCE AND NOVELTY: To date, no review on the topic of GO-SELEX has been published, making it challenging for researchers to initiate studies in this area. We believe that this review will broaden the SELEX options available to researchers, ensuring that they can meet the growing demand for molecular probes in the scientific domain.


Subject(s)
Aptamers, Nucleotide , Graphite , Molecular Probes , SELEX Aptamer Technique , Graphite/chemistry , SELEX Aptamer Technique/methods , Aptamers, Nucleotide/chemistry , Molecular Probes/chemistry , Humans
7.
ACS Appl Bio Mater ; 7(8): 5740-5753, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39110486

ABSTRACT

The sericulture industry suffers severe crop losses due to various silkworm diseases, necessitating the development of further technologies for rapid pathogen detection. Here, we report an all-in-one portable biosensor that combines conjugated gold nanoparticles (Au NPs) with an aptamer-based lateral flow assay (LFA) platform for the real-time analysis of Mammaliicoccus sp. and Pseudomonas sp. Our platform enables sample-to-answer naked eye detection within 5 min without any cross-reactivity with other representatives of the silkworm pathogenic bacterial group. This assay was based on the sandwich-type format using a bacteria-specific primary aptamer (Apt1) conjugated with 23 nm ± 1.27 nm Au NPs as a signal probe and another bacteria-specific secondary aptamer (Apt2)-coated nitrocellulose membrane as a capture probe. The hybridization between the signal probe and the capture probe in the presence of bacteria develops a red band in the test line, whose intensity is directly proportional to the bacterial concentration. Under the optimal experimental conditions, the visual limit of detection of the strip for Mammaliicoccus sp. and Pseudomonas sp. was 1.5 × 104 CFU/mL and 1.5 × 103 CFU/mL, respectively. Additionally, the performance of the LFA device was validated by using a colorimetric assay, and the results from the colorimetric assay are consistent with those obtained from the LFA. Our findings indicate that the developed point-of-care diagnostic device has significant potential for providing a cost-effective, scalable alternative for the rapid detection of silkworm pathogens.


Subject(s)
Aptamers, Nucleotide , Bombyx , Gold , Metal Nanoparticles , Particle Size , Bombyx/microbiology , Gold/chemistry , Animals , Metal Nanoparticles/chemistry , Aptamers, Nucleotide/chemistry , Pseudomonas/isolation & purification , Materials Testing , Biocompatible Materials/chemistry , Drug Resistance, Multiple, Bacterial , Biosensing Techniques , Point-of-Care Systems
8.
Mikrochim Acta ; 191(9): 510, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103665

ABSTRACT

Cocaine is one of the most abused illicit drugs, and its abuse damages the central nervous system and can even lead directly to death. Therefore, the development of simple, rapid and highly sensitive detection methods is crucial for the prevention and control of drug abuse, traffic accidents and crime. In this work, an electrochemical aptamer-based (EAB) sensor based on the low-temperature enhancement effect was developed for the direct determination of cocaine in bio-samples. The signal gain of the sensor at 10 °C was greatly improved compared to room temperature, owing to the improved affinity between the aptamer and the target. Additionally, the electroactive area of the gold electrode used to fabricate the EAB sensor was increased 20 times by a simple electrochemical roughening method. The porous electrode possesses more efficient electron transfer and better antifouling properties after roughening. These improvements enabled the sensor to achieve rapid detection of cocaine in complex bio-samples. The low detection limits (LOD) of cocaine in undiluted urine, 50% serum and 50% saliva were 70 nM, 30 nM and 10 nM, respectively, which are below the concentration threshold in drugged driving screening. The aptasensor was simple to construct and reusable, which offers potential for drugged driving screening in the real world.


Subject(s)
Aptamers, Nucleotide , Cocaine , Electrochemical Techniques , Gold , Limit of Detection , Substance Abuse Detection , Cocaine/urine , Cocaine/analysis , Cocaine/blood , Aptamers, Nucleotide/chemistry , Humans , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Gold/chemistry , Substance Abuse Detection/methods , Biosensing Techniques/methods , Saliva/chemistry , Electrodes , Automobile Driving , Cold Temperature
9.
Nat Commun ; 15(1): 6751, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117705

ABSTRACT

Despite the well-established significance of transcription factors (TFs) in pathogenesis, their utilization as pharmacological targets has been limited by the inherent challenges in modulating their protein interactions. The lack of defined small-molecule binding pockets and the nuclear localization of TFs do not favor the use of traditional tools. Aptamers possess large molecular weights, expansive blocking surfaces and efficient cellular internalization, making them compelling tools for modulating TF interactions. Here, we report a structure-guided design strategy called Blocker-SELEX to develop inhibitory aptamers (iAptamers) that selectively block TF interactions. Our approach leads to the discovery of iAptamers that cooperatively disrupt SCAF4/SCAF8-RNAP2 interactions, dysregulating RNAP2-dependent gene expression, which impairs cell proliferation. This approach is further applied to develop iAptamers blocking WDR5-MYC interactions. Overall, our study highlights the potential of iAptamers in disrupting pathogenic TF interactions, implicating their potential utility in studying the biological functions of TF interactions and in nucleic acids drug discovery.


Subject(s)
Aptamers, Nucleotide , SELEX Aptamer Technique , Transcription Factors , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Humans , Transcription Factors/metabolism , Protein Binding , Cell Proliferation/drug effects , RNA Polymerase II/metabolism , HEK293 Cells , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/antagonists & inhibitors
10.
Cancer Med ; 13(15): e70079, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118454

ABSTRACT

BACKGROUND: Cancer remains a formidable global health challenge, currently affecting nearly 20 million individuals worldwide. Due to the absence of universally effective treatments, ongoing research explores diverse strategies to combat this disease. Recent efforts have concentrated on developing combined drug regimens and targeted therapeutic approaches. OBJECTIVE: This study aimed to investigate the anticancer efficacy of a conjugated drug system, consisting of doxorubicin and cisplatin (Dox-Cis), encapsulated within niosomes and modified with MUC-1 aptamers to enhance biocompatibility and target specific cancer cells. METHODS: The chemical structure of the Dox-Cis conjugate was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-TOF/MS). The zeta potential and morphological parameters of the niosomal vesicles were determined through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). In vitro assessments of cell viability and apoptosis were conducted on MUC-1 positive HeLa cells and MUC-1 negative U87 cells. RESULTS: The findings confirmed the successful conjugation of Dox and Cis within the niosomes. The Nio/Dox-Cis/MUC-1 formulation demonstrated enhanced efficacy compared to the individual drugs and their unencapsulated combination in both cell lines. Notably, the Nio/Dox-Cis/MUC-1 formulation exhibited greater effectiveness on HeLa cells (38.503 ± 1.407) than on U87 cells (46.653 ± 1.297). CONCLUSION: The study underscores the potential of the Dox-Cis conjugate as a promising strategy for cancer treatment, particularly through platforms that facilitate targeted drug delivery to cancer cells. This targeted approach could lead to more effective and personalized cancer therapies.


Subject(s)
Aptamers, Nucleotide , Cell Survival , Cisplatin , Doxorubicin , Liposomes , Mucin-1 , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Mucin-1/metabolism , Mucin-1/chemistry , Liposomes/chemistry , Cisplatin/pharmacology , Cisplatin/chemistry , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Cell Survival/drug effects , Apoptosis/drug effects , Cell Line, Tumor , HeLa Cells , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Compounding/methods
11.
Anal Chim Acta ; 1319: 342982, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39122269

ABSTRACT

BACKGROUND: The importance of multi-target simultaneous detection lies in its ability to significantly boost detection efficiency, making it invaluable for rapid and cost-effective testing. Photoelectrochemical (PEC) sensors have emerged as promising candidates for detecting harmful substances and biomarkers, attributable to their unparalleled sensitivity, minimal background signal, cost-effectiveness, equipment simplicity, and outstanding repeatability. However, designing an effective multi-target detection strategy remains a challenging task in the PEC sensing field. Consequently, there is a pressing need to address the development of PEC sensors capable of simultaneously detecting multiple targets. RESULTS: CdIn2S4/V-MoS2 heterojunctions were successfully prepared via a hydrothermal method. These heterojunctions exhibited a high photocurrent intensity, representing a 1.53-fold enhancement compared to CdIn2S4 alone. Next, we designed a multi-channel aptasensing chip using ITO as the substrate. Three working electrodes were created via laser etching and subsequently modified with CdIn2S4/V-MoS2 heterojunctions. Thiolated aptamers were then self-assembled onto the CdIn2S4/V-MoS2 heterojunctions via covalent bonds, serving as recognition tool. By empolying the CdIn2S4/V-MoS2 heterojunctions as the sensing platform and aptamers as recognition tool, we successfully developed a disposable aptasensing chip for the simultaneous PEC detection of three typical mycotoxins (aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN)). This aptasensing chip exhibited wide detection range for AFB1 (0.05-50 ng/mL), OTA (0.05-500 ng/mL), and ZEN (0.1-250 ng/mL). Furthermore, it demonstrated ultra-low detection limits of 0.017 ng/mL for AFB1, 0.016 ng/mL for OTA, and 0.033 ng/mL for ZEN. SIGNIFICANCE AND NOVELTY: The aptasensing chip stands out for its cost-effectiveness, simplicity of fabrication, and multi-channel capabilities. The versatility and practicality enable it to serve as a powerful platform for designing multi-channel PEC aptasensors. With its ability to detect multiple targets with high sensitivity and specificity, the aptasensing chip holds immense potential for applications across diverse fields, such as environmental monitoring, clinical diagnostics, and food safety monitoring, where multi-target detection is crucial.


Subject(s)
Aptamers, Nucleotide , Disulfides , Electrochemical Techniques , Molybdenum , Semiconductors , Molybdenum/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Disulfides/chemistry , Limit of Detection , Nanostructures/chemistry , Photochemical Processes , Mycotoxins/analysis , Biosensing Techniques , Cadmium Compounds/chemistry , Ochratoxins/analysis
12.
Mikrochim Acta ; 191(9): 522, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112842

ABSTRACT

An ultrasensitive photothermal assay was designed for point-of-care testing (POCT) of tumor markers based on a filter membrane. Firstly, Cu2-xSe was successfully encapsulated in liposome spheres with biotin on the surface and connected to carcinoembryonic antigen (CEA) aptamer with 3'end modified biotin by streptavidin. Secondly, the CEA antibody was successfully modified on the surface of the nitrocellulose membrane through simple incubation. Finally, the assay process was completed using a disposable syringe, and the temperature was recorded using a handheld infrared temperature detector. In the range 0-50 ng mL-1, the temperature change of the nitrocellulose membrane has a strong linear relationship with CEA concentration, and the detection limit is 0.097 ng mL-1. It is worth noting that the entire testing process can be easily performed in 10 min, much shorter than traditional clinical methods. In addition, this method was successfully applied to the quantitative determination of CEA levels in human serum samples with a recovery of 96.2-103.3%. This rapid assay can be performed by "one suction and one push" through a disposable syringe, which is simple to operate, and the excellent sensitivity reveals the great potential of the proposed strategy in the POCT of tumor biomarkers.


Subject(s)
Aptamers, Nucleotide , Biomarkers, Tumor , Carcinoembryonic Antigen , Copper , Limit of Detection , Humans , Carcinoembryonic Antigen/blood , Copper/chemistry , Aptamers, Nucleotide/chemistry , Biomarkers, Tumor/blood , Liposomes/chemistry , Biosensing Techniques/methods , Point-of-Care Systems , Temperature , Biotin/chemistry , Point-of-Care Testing , Collodion/chemistry
13.
Molecules ; 29(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39124998

ABSTRACT

The early monitoring and inactivation of bacteria are of crucial importance in preventing the further spread of foodborne pathogens. Staphylococcus aureus (S. aureus), a prototypical foodborne pathogen, is widely present in the natural environment and has the capability to trigger a range of diseases at low concentrations. In this work, we designed Fe3O4@SiO2-Au core-shell-satellite nanocomposites (NCs) modified with aptamer for efficient capture, high-sensitivity surface-enhanced Raman scattering (SERS) detection, and photothermal therapy (PTT) against S. aureus. Fe3O4@SiO2-Au NCs with tunable Au nanocrystal nanogaps were prepared. By combining the finite-difference time-domain (FDTD) method and experimental results, we studied the electric field distribution of Fe3O4@SiO2-Au under different Au nanogaps and ultimately obtained the optimal SERS substrate FSA-60. The modification of aptamer on the surfaces of FSA-60 could be used for the specific capture and selective detection of S. aureus, achieving a detection limit of as low as 50 cfu/mL. Furthermore, Apt-FSA-60 possessed excellent photothermal properties, demonstrating the strong photothermal killing ability against S. aureus. Therefore, Apt-FSA-60 is a promising high-sensitivity SERS substrate and efficient photothermal agent and is expected to be widely applied and promoted in future disease prevention and treatment.


Subject(s)
Aptamers, Nucleotide , Gold , Nanocomposites , Silicon Dioxide , Spectrum Analysis, Raman , Staphylococcus aureus , Staphylococcus aureus/drug effects , Silicon Dioxide/chemistry , Nanocomposites/chemistry , Spectrum Analysis, Raman/methods , Gold/chemistry , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Photothermal Therapy/methods
14.
Mikrochim Acta ; 191(8): 500, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39088046

ABSTRACT

Detecting lipopolysaccharide (LPS) using electrochemical methods is significant because of their exceptional sensitivity, simplicity, and user-friendliness. Two-dimensional metal-organic framework (2D-MOF) that merges the benefits of MOF and 2D nanostructure has exhibited remarkable performance in constructing electrochemical sensors, notably surpassing traditional 3D-MOFs. In this study, Cu[tetrakis(4-carboxylphenyl)porphyrin] (Cu-TCPP) and Cu(tetrahydroxyquinone) (Cu-THQ) 2D nanosheets were synthesized and applied on a glassy carbon electrode (GCE). The 2D-MOF nanosheets, which serve as supporting layers, exhibit improved electron transfer and electronic conductivity characteristics. Subsequently, the modified electrode was subjected to electrodeposition with Au nanostructures, resulting in the formation of Au/Cu-TCPP/GCE and Au/Cu-THQ/GCE. Notably, the Au/Cu-THQ/GCE demonstrated superior electrochemical activity because of the 2D morphology, redox ligand, dense Cu sites, and improved deposition of flower-like Au nanostructure based on Cu-THQ. The electron transfer specific surface area was increased by the improved deposition of Au nanostructures, which facilitates enriched binding of LPS aptamer and significantly improved the detection performance of Apt/Au/Cu-THQ/GCE electrochemical aptasensor. The limit of detection for LPS reached 0.15 fg/mL with a linear range of 1 fg/mL - 100 pg/mL. The proposed aptasensor demonstrated the ability to detect LPS in serum samples with satisfactory accuracy, indicating significant potential for clinical diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Copper , Electrochemical Techniques , Gold , Limit of Detection , Lipopolysaccharides , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Gold/chemistry , Copper/chemistry , Electrochemical Techniques/methods , Lipopolysaccharides/analysis , Lipopolysaccharides/blood , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Electrodes , Nanostructures/chemistry , Porphyrins/chemistry , Humans
15.
Anal Chem ; 96(32): 13299-13307, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39090799

ABSTRACT

Exosomes have received considerable attention as potent reference markers for the diagnosis of various neoplasms due to their close and direct relationship with the proliferation, adhesion, and migration of tumor. The ultrasensitive detection of cancer-derived low-abundance exosomes is imperative, but still a great challenge. Herein, we report an electrochemiluminescence (ECL) biosensor based on the DNA-bio-bar-code and hybridization chain reaction (HCR)-mediated dual signal amplification for the ultrasensitive detection of cancer-derived exosomes. In this system, two types of aptamers were modified on the magnetic nanoprobe (MNPs) and gold nanoparticles (AuNPs) with numerous bio-bar-code DNA, respectively, which formed "sandwich" structures in the presence of specific target exosomes. The "sandwich" structures were separated under magnetic field, and the numerous bio-bar-code DNA were released by dissolving AuNPs. The released bio-bar-code DNA triggered the HCR procedure to produce a good deal of long DNA duplex structure for embedding in hemin, which generated strong ECL signal in the presence of coreactors for ultrasensitive detection of exosomes. Under the optimal conditions, it exhibited a good linearly of exosomes ranging from 10 to 104 exosomes particle µL-1 with limit of detection down to 5.01 exosome particle µL-1. Furthermore, the high ratio of ECL signal and minor change of ECL intensity indicated the good specificity, stability, and repeatability of this ECL biosensor. Given the good performance for exosome analysis, this ultrasensitive ECL biosensor has a promising application in the clinical diagnosis of early cancers.


Subject(s)
Biosensing Techniques , DNA , Electrochemical Techniques , Exosomes , Gold , Luminescent Measurements , Metal Nanoparticles , Nucleic Acid Hybridization , Biosensing Techniques/methods , Exosomes/chemistry , Humans , Gold/chemistry , DNA/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Aptamers, Nucleotide/chemistry
16.
Mikrochim Acta ; 191(8): 504, 2024 08 03.
Article in English | MEDLINE | ID: mdl-39096325

ABSTRACT

A novel colorimetric aptasensor assay based on the excellent magnetic responsiveness and oxidase-like activity of Fe3O4@MIL-100(Fe) was developed. Fe3O4@MIL-100(Fe) absorbed with aptamer and blocked by BSA served as capture probe for selective isolation and enrichment of Listeria monocytogenes one of the most common and dangerous foodborne pathogenic bacteria. The aptamer absorbed on Fe3O4@MIL-100(Fe) was further used as signal probe that specifically binds with target bacteria conjugation of capture probe for colorimetric detection of Listeria monocytogenes, taking advantages of its oxidase-like activity. The linear range of the detection of Listeria monocytogenes was from 102 to 107 CFU mL-1, with the limit of detection as low as 14 CFU mL-1. The approach also showed good feasibility for detection of Listeria monocytogenes in milk and meat samples. The spiked recoveries were in the range 81-114% with relative standard deviations ranging from 1.28 to 5.19%. Thus, this work provides an efficient, convenient, and practical tool for selective isolation and colorimetric detection of Listeria monocytogenes in food.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Colorimetry , Food Microbiology , Limit of Detection , Listeria monocytogenes , Milk , Listeria monocytogenes/isolation & purification , Colorimetry/methods , Aptamers, Nucleotide/chemistry , Milk/microbiology , Milk/chemistry , Biosensing Techniques/methods , Animals , Food Contamination/analysis , Oxidoreductases/chemistry , Meat/microbiology , Magnetite Nanoparticles/chemistry
17.
Biomacromolecules ; 25(8): 4991-5007, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39087761

ABSTRACT

The GPS-Nanoconveyor (MA-NV@DOX-Cas13a) is a targeted nanoplatform designed for the imaging and gene/chemotherapy synergistic treatment of melanoma. It utilizes rolling circle amplification (RCA) products as a scaffold to construct a DNA "Nanoconveyor" (NV), which incorporates a multivalent aptamer (MA) as a "GPS", encapsulates doxorubicin (DOX) in the transporter, and equips it with CRISPR/Cas13a ribonucleoproteins (Cas13a RNP). Carrying MA enhances the ability to recognize the overexpressed receptor nucleolin on B16 cells, enabling targeted imaging and precise delivery of MA-NV@DOX-Cas13a through receptor-mediated endocytosis. The activation of signal transducer and activator of transcription 3 (STAT3) in cancer cells triggers cis-cleavage of CRISPR/Cas13a, initiating its trans-cleavage function. Additionally, deoxyribonuclease I (DNase I) degrades MA-NV, releasing DOX for intracellular imaging and as a chemotherapeutic agent. Experiments demonstrate the superior capabilities of this versatile nanoplatform for cellular imaging and co-treatment while highlighting the advantages of these nanodrug delivery systems in mitigating DOX side effects.


Subject(s)
CRISPR-Cas Systems , Doxorubicin , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Animals , Mice , Humans , Aptamers, Nucleotide/chemistry , Nucleic Acid Amplification Techniques/methods , Cell Line, Tumor , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry
18.
Anal Methods ; 16(33): 5665-5675, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39113561

ABSTRACT

In this study, an ultrasensitive detection platform for tobramycin (TOB) was developed, featuring a "sandwich" structure guided by AgNCs@PDANSs and Thi-AuNCs@ZnONSs. To address the issue of large background current peak signals in tagless sensors, Thi-AuNCs@ZnONSs composites were synthesized as signal tags. Zinc oxide nanosheets (ZnONSs) served as the loading agent, and AuNCs with the electroactive molecule Thi acted as carriers. Furthermore, AgNPs@PDANSs nanocomposites, possessing excellent electrical conductivity and large specific surface areas, were prepared as substrate materials for the modified electrodes. A "sandwich" structure strategy was also introduced to enhance the accuracy of the electrochemical aptasensor. This strategy, utilizing a dual sequence for target labeling and capture, yielded higher sensitivity and simplified the sensor construction compared to methods employing a single sequence. Under optimal conditions, the detection limit for TOB was established at 1.41 pM, with a detection range of 0.05-5000 nM. The aptasensor was effectively applied in the detection of TOB in tap and lake water, demonstrating outstanding reproducibility, selectivity, and stability. These results may serve as a reference for environmental TOB detection.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Metal Nanoparticles , Silver , Tobramycin , Water Pollutants, Chemical , Tobramycin/analysis , Tobramycin/chemistry , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Silver/chemistry , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/analysis , Biosensing Techniques/methods , Limit of Detection , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Reproducibility of Results , Zinc Oxide/chemistry , Lakes/analysis , Lakes/chemistry
19.
PLoS One ; 19(8): e0307678, 2024.
Article in English | MEDLINE | ID: mdl-39190656

ABSTRACT

An approach for the agnostic identification and validation of aptamers for the prediction of a medical state from plasma analysis is presented in application to a key risk factor for Alzheimer's disease. brain amyloid deposition. This method involved the use of a newly designed aptamer library with sixteen random nucleotides interspersed with fixed sequences called a Neomer library. The Neomer library approach enables the direct application of the same starting library on multiple plasma samples, without the requirement for pre-enrichment associated with the traditional approach. Eight aptamers were identified as a result of the selection process and screened across 390 plasma samples by qPCR assay. Results were analysed using multiple machine learning algorithms from the Scikit-learn package along with clinical variables including cognitive status, age and sex to create predictive models. An Extra Trees Classifier model provided the highest predictive power. The Neomer approach resulted in a sensitivity of 0.88. specificity of 0.76. and AUC of 0.79. The only clinical variables that were included in the model were age and sex. We conclude that the Neomer approach represents a clear improvement for the agnostic identification of aptamers (Aptamarkers) that bind to unknown biomarkers of a medical state.


Subject(s)
Alzheimer Disease , Aptamers, Nucleotide , Brain , SELEX Aptamer Technique , Humans , Aptamers, Nucleotide/chemistry , Female , Male , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , SELEX Aptamer Technique/methods , Brain/metabolism , Aged , Biomarkers/blood , Machine Learning , Middle Aged , Aged, 80 and over , Reproducibility of Results , Amyloid/metabolism
20.
Comput Biol Med ; 180: 108994, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39121680

ABSTRACT

Oxidized low-density lipoprotein (oxLDL) induces the formation of atherosclerotic plaques. Apolipoprotein B100 (apoB100) is a crucial protein component in low-density lipoprotein (LDL), which includes oxLDL. The oxidation of amino acids and subsequent alterations in their structure generate oxLDL, which is a significant biomarker for the initial phases of coronary artery disease. This study employed molecular docking and molecular dynamics utilizing the MM/GBSA method to identify aptamers with a strong affinity for oxidized apoB100. Molecular docking and molecular dynamics were performed on two sequences of the aptamer candidates (aptamer no.11 (AP11: 5'-CTTCGATGTAGTTTTTGTATGGGGTGCCCTGGTTCCTGCA-3') and aptamer no.26 (AP26: 5'-GCGAACTCGCGAATCCAGAACGGGCTCGGTCCCGGGTCGA-3')), yielding respective binding free energies of -149.08 kcal/mol and -139.86 kcal/mol. Interaction modeling of the simulation revealed a strong hydrogen bond between the AP11-oxidized apoB100 complexes. In an aptamer-based gold nanoparticle (AuNP) aggregation assay, AP11 exhibits a color shift from red to purple with the highest absorbance ratio, and shows strong binding affinity to oxLDL, correlating with the simulation model results. AP11 demonstrated the potential for application as a novel recognition element in diagnostic methodologies and may also contribute to future advancements in preventive therapies for coronary artery disease.


Subject(s)
Apolipoprotein B-100 , Aptamers, Nucleotide , Lipoproteins, LDL , Molecular Docking Simulation , Molecular Dynamics Simulation , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Apolipoprotein B-100/chemistry , Apolipoprotein B-100/metabolism , Humans , Gold/chemistry , Metal Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL