Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.063
Filter
1.
Biomolecules ; 14(5)2024 May 04.
Article in English | MEDLINE | ID: mdl-38785962

ABSTRACT

Here, we describe GS-9, a novel water-soluble fatty acid-based formulation comprising L-lysine and arachidonic acid, that we have shown to induce ferroptosis. GS-9 forms vesicle-like structures in solution and mediates lipid peroxidation, as evidenced by increased C11-BODIPY fluorescence and an accumulation of toxic malondialdehyde, a downstream product of lipid peroxidation. Ferroptosis inhibitors counteracted GS-9-induced cell death, whereas caspase 3 and 7 or MLKL knock-out cell lines are resistant to GS-9-induced cell death, eliminating other cell death processes such as apoptosis and necroptosis as the mechanism of action of GS-9. We also demonstrate that through their role of sequestering fatty acids, lipid droplets play a protective role against GS-9-induced ferroptosis, as inhibition of lipid droplet biogenesis enhanced GS-9 cytotoxicity. In addition, Fatty Acid Transport Protein 2 was implicated in GS-9 uptake. Overall, this study identifies and characterises the mechanism of GS-9 as a ferroptosis inducer. This formulation of arachidonic acid offers a novel tool for investigating and manipulating ferroptosis in various cellular and anti-cancer contexts.


Subject(s)
Arachidonic Acid , Ferroptosis , Ferroptosis/drug effects , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Humans , Lipid Peroxidation/drug effects , Cell Line, Tumor , Water/chemistry , Solubility , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/genetics , Lipid Droplets/metabolism , Lipid Droplets/drug effects
2.
Platelets ; 35(1): 2336093, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38602464

ABSTRACT

Platelet aggregation is a complicated process mediated by different signaling pathways. As the process is highly complex and apparently redundant, the relationships between these pathways are not yet fully known. The aim of this project was to study the interconnections among seven different aggregation pathways in a group of 53 generally healthy volunteers aged 20 to 66 years. Platelet aggregation was induced with thrombin receptor activating peptide 6 (TRAP), arachidonic acid (AA), platelet activating factor 16 (PAF), ADP, collagen, thromboxane A2 analogue U46619 or ristocetin (platelet agglutination) ex vivo in fasting blood samples according to standardized timetable protocol. Additionally, some samples were pre-treated with known clinically used antiplatelet drugs (vorapaxar, ticagrelor or acetylsalicylic acid (ASA)). Significant correlations among all used inducers were detected (Pearson correlation coefficients (rP): 0.3 to 0.85). Of all the triggers, AA showed to be the best predictor of the response to other inducers with rP ranging from 0.66 to 0.85. Interestingly, the antiplatelet response to ticagrelor strongly predicted the response to unrelated drug vorapaxar (rP = 0.71). Our results indicate that a response to one inducer can predict the response for other triggers or even to an antiplatelet drug. These data are useful for future testing but should be also confirmed in patients.


What is the context?• Platelet activation is a complicated process with multiple signaling cascades involved.• A total of seven common platelet triggers (ADP, collagen, TRAP-6, PAF, arachidonic acid/AA/, ristocetin and U46619) were tested.• The process is dependent on many factors including sex, age, concomitant disease(s), pharmacotherapy.What is new?• There were significant correlations between all tested aggregatory cascades.• AA has the highest rate of response predictability in our heterogeneous generally healthy volunteer group.• There was no correlation between impedance aggregometry in whole blood and turbidimetric measurement with platelet-rich plasma.What is the impact?• The effect of antiplatelet drugs can be assessed from the reaction to different trigger(s) at least in this group of healthy patients.• Future studies must test these relationships in patients with different diseases.


Subject(s)
Lactones , Platelet Aggregation Inhibitors , Platelet Aggregation , Pyridines , Humans , Healthy Volunteers , Ticagrelor , Platelet Aggregation Inhibitors/pharmacology , Arachidonic Acid/pharmacology
3.
J Biol Chem ; 300(4): 107168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490434

ABSTRACT

Lipids have been previously implicated in the lifecycle of neuroinvasive viruses. However, the role of lipids in programmed cell death and the relationship between programmed cell death and lipid droplets (LDs) in neuroinvasive virus infection remains unclear. Here, we found that the infection of neuroinvasive virus, such as rabies virus and encephalomyocarditis virus could enhance the LD formation in N2a cells, and decreasing LDs production by targeting diacylglycerol acyltransferase could suppress viral replication. The lipidomics analysis revealed that arachidonic acid (AA) was significantly increased after reducing LD formation by restricting diacylglycerol acyltransferase, and AA was further demonstrated to induce ferroptosis to inhibit neuroinvasive virus replication. Moreover, lipid peroxidation and viral replication inhibition could be significantly alleviated by a ferroptosis inhibitor, ferrostatin-1, indicating that AA affected neuroinvasive virus replication mainly through inducing ferroptosis. Furthermore, AA was demonstrated to activate the acyl-CoA synthetase long-chain family member 4-lysophosphatidylcholine acyltransferase 3-cytochrome P450 oxidoreductase axis to induce ferroptosis. Our findings highlight novel cross-talks among viral infection, LDs, and ferroptosis for the first time, providing a potential target for antiviral drug development.


Subject(s)
Arachidonic Acid , Ferroptosis , Lipid Droplets , Virus Replication , Ferroptosis/drug effects , Lipid Droplets/metabolism , Lipid Droplets/drug effects , Animals , Virus Replication/drug effects , Mice , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Encephalomyocarditis virus/drug effects , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Lipid Peroxidation/drug effects , Coenzyme A Ligases/metabolism , Cell Line, Tumor , Humans
4.
Nutrients ; 16(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474834

ABSTRACT

Over the past three decades, studies have shown that consuming polyunsaturated fatty acids (PUFAs) can enhance animal and human health and welfare through biological, biochemical, pathological, and pharmacological impacts. Furthermore, omega-6 plays key roles in the cardiopulmonary system, including promoting airway relaxation and inhibiting atherosclerosis and hypertension. However, findings from investigations of the effects of omega-6 fatty acids on molecular and cellular activity and discussions on their influence on biomarkers are still unclear. Therefore, the present study aimed to evaluate omega-6 fatty acids, the arachidonic acid (AA), and linoleic acid (LA) effects on C2C12 proliferation, myogenesis morphology, and relative myogenic biomarker expression through the Wnt pathway. C2C12 cells were cultured with and without 25, 50, 100, and 150 µM of LA and AA and then subjected to CCK8, Giemsa staining, RT qPCR, Western blotting, and RNA Sequencing. The CCK8 Assay results showed that 25, 50, 100, and 150 µM LA significantly decreased the viability after 72 h for 25, 50, 100, and 150 µM concentrations. Also, AA supplementation decreased cell viability after 24 h for 150 µM, 48 h for 150 µM, and 72 h for 50, 100, and 150 µM concentrations. Moreover, the LA and AA inhibitory effects noticed through Gimesa staining were morphological changes during myoblast differentiation. Both LA and AA showed inhibiting IGF1, Cola1, Col6a2, Col6a1, Itga10, Itga11, SFRP2, DAAM2, and NKD2 effects; however, the depressing effect was higher for AA compared to LA. The previous results were confirmed through Western blotting, which showed that 50 µM LA and AA significantly reduced DAAM2 and SFRP2 protein levels compared to the control. Regarding RNA sequencing results, LA and AA increased the number of differentially expressed (DE) Mt-rRNA and snoRNA; however, the numbers of lncRNA detected decreased compared to the control. Our findings demonstrate that high and moderate LA and AA concentrations reduce primary myoblast proliferation and differentiation. Also, they highlight novel biomarkers and regulatory factors to improve our understanding of how the nutrition of fatty acids can control and modulate the myogenesis and differentiation process through different biomarker families.


Subject(s)
Fatty Acids, Omega-6 , Linoleic Acid , Animals , Humans , Linoleic Acid/pharmacology , Arachidonic Acid/pharmacology , Biomarkers , Sequence Analysis, RNA , Calcium-Binding Proteins , Adaptor Proteins, Signal Transducing
5.
Drug Alcohol Depend ; 257: 111139, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38430788

ABSTRACT

BACKGROUND: The recreational drug ±3,4-methylenedioxymethamphetamine (MDMA; also known as "ecstasy") has unusual subjective prosocial and empathogenic effects, and has exhibited potential as an adjunct to psychotherapy in recent years. However, there has been some concern regarding possible neuropsychiatric symptoms, such as cognitive impairment and dependence, emerging after abstinence. Therefore, this study aimed to evaluate the mechanism underlying cognitive impairment during MDMA withdrawal. To achieve this, we focused on the arachidonic acid cascade, which is related to addiction to some abusive drugs. METHODS: A novel object recognition task was used to investigate cognitive function in mice. Furthermore, we quantified prostaglandin E2 during MDMA withdrawal. RESULTS: The recognition index significantly decreased during withdrawal after repeated administration of MDMA (10mg/kg, i.p., once daily for 7 days), but not following co-administration of diclofenac (10mg/kg, i.p.), a cyclooxygenase inhibitor. On day 1, following repeated MDMA treatment, prostaglandin E2 content significantly increased in the hippocampus but not in the prefrontal cortex and striatum. CONCLUSIONS: Our findings indicate that activation of the arachidonic acid cascade at least in the hippocampus is likely involved in the development of recognition memory impairment during MDMA withdrawal. Therefore, co-use of cyclooxygenase inhibitors with MDMA may reduce concerns regarding MDMA-induced impairment of recognition memory.


Subject(s)
N-Methyl-3,4-methylenedioxyamphetamine , Mice , Animals , N-Methyl-3,4-methylenedioxyamphetamine/adverse effects , Arachidonic Acid/pharmacology , Cognition , Hippocampus , Prostaglandins/pharmacology
6.
J Cell Mol Med ; 28(4): e18139, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38334198

ABSTRACT

Platelets assume a pivotal role in the cardiovascular diseases (CVDs). Thus, targeting platelet activation is imperative for mitigating CVDs. Ginkgetin (GK), from Ginkgo biloba L, renowned for its anticancer and neuroprotective properties, remains unexplored concerning its impact on platelet activation, particularly in humans. In this investigation, we delved into the intricate mechanisms through which GK influences human platelets. At low concentrations (0.5-1 µM), GK exhibited robust inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Intriguingly, thrombin and U46619 remained impervious to GK's influence. GK's modulatory effect extended to ATP release, P-selectin expression, intracellular calcium ([Ca2+ ]i) levels and thromboxane A2 formation. It significantly curtailed the activation of various signaling cascades, encompassing phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß and mitogen-activated protein kinases. GK's antiplatelet effect was not reversed by SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor), and GK had no effect on the phosphorylation of vasodilator-stimulated phosphoproteinSer157 or Ser239 . Moreover, neither cyclic AMP nor cyclic GMP levels were significantly increased after GK treatment. In mouse studies, GK notably extended occlusion time in mesenteric vessels, while sparing bleeding time. In conclusion, GK's profound impact on platelet activation, achieved through inhibiting PLCγ2-PKC cascade, culminates in the suppression of downstream signaling and, ultimately, the inhibition of platelet aggregation. These findings underscore the promising therapeutic potential of GK in the CVDs.


Subject(s)
Biflavonoids , Nucleotides, Cyclic , Phospholipases , Humans , Animals , Mice , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/pharmacology , Phospholipase C gamma/metabolism , Arachidonic Acid/pharmacology , Arachidonic Acid/metabolism , Phospholipases/metabolism , Phospholipases/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Platelet Aggregation Inhibitors/pharmacology , Platelet Activation , Blood Platelets/metabolism , Platelet Aggregation , Protein Kinase C/metabolism , Phosphorylation , Collagen/metabolism
7.
J Surg Res ; 296: 643-653, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359679

ABSTRACT

INTRODUCTION: Desmopressin (DDAVP) has been utilized clinically in patients taking aspirin (ASA) to improve drug-induced platelet dysfunction. Misoprostol and carboprost, prostaglandin analogs commonly used for postpartum hemorrhage, may also induce platelet aggregation. The aim of this study was to determine the effects of DDAVP, misoprostol, and carboprost administration on platelet aggregability following traumatic brain injury (TBI) in mice treated with ASA. METHODS: Male C57BL/6 mice were randomized into seven groups (n = 5 each): untouched, ASA only, Saline/TBI, ASA/TBI, ASA/TBI/DDAVP 0.4 µg/kg, ASA/TBI/misoprostol 1 mg/kg, and ASA/TBI/carboprost 100 µg/kg. TBI was induced via a weight drop model 4-h after ASA (50 mg/kg) gavage. Mice were given an intraperitoneal injection of DDAVP, misoprostol, or carboprost 10 minutes after TBI. In vivo testing was completed utilizing tail vein bleed. Mice were sacrificed 30-min posttreatment and blood was collected via cardiac puncture. Whole blood was analyzed via Multiplate impedance aggregometry, rotational thromboelastometry, and TEG6s. RESULTS: Mice receiving misoprostol after ASA/TBI demonstrated decreased tail vein bleeding times compared to ASA only treated mice. However, mice treated with misoprostol following ASA and TBI demonstrated decreased platelet aggregability compared to untouched mice and TBI only mice within the arachidonic acid agonist pathway. By contrast, DDAVP and carboprost did not significantly change platelet aggregability via adenosine diphosphate or arachidonic acid following ASA and TBI. However, DDAVP did decrease the platelet contribution to clot via rotational thromboelastometry. CONCLUSIONS: Reversal of medication-induced platelet inhibition has become increasingly controversial after TBI. Based on these results, DDAVP, misoprostol, nor carboprost consistently improve platelet aggregability following TBI in those also treated with ASA.


Subject(s)
Brain Injuries, Traumatic , Carboprost , Misoprostol , Humans , Female , Male , Mice , Animals , Aspirin/pharmacology , Aspirin/therapeutic use , Deamino Arginine Vasopressin/pharmacology , Deamino Arginine Vasopressin/therapeutic use , Carboprost/pharmacology , Misoprostol/pharmacology , Misoprostol/therapeutic use , Arachidonic Acid/pharmacology , Mice, Inbred C57BL , Platelet Aggregation/physiology , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy
8.
J Ovarian Res ; 17(1): 43, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374173

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a gynecological endocrine disease and could be considered a metabolic disease because it is often accompanied by obesity and insulin resistance. Brown adipose tissue (BAT) transplantation has been shown to be effective in treating PCOS rats. RESULTS: The study demonstrated that BAT successfully recovered the reproductive and metabolic phenotype of PCOS rats. The disorder estrous cycle, abnormal hyperglycemia and the expression of liver factors were improved. Differentially expressed metabolites were analyzed, among them, arachidonic acid may play a role in inhibiting cell proliferation, enhancing oxidative stress reaction, promoting estrogen expression, and reducing progesterone level in KGN cells. CONCLUSION: Our findings suggest that BAT transplantation may be a therapeutic strategy for PCOS by changing the expression of some cytokines and metabolites. Differentially expressed metabolites might be crucially important for the pathogenesis of PCOS.


Subject(s)
Polycystic Ovary Syndrome , Humans , Female , Rats , Animals , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Polycystic Ovary Syndrome/metabolism , Granulosa Cells/metabolism , Liver/metabolism , Obesity/metabolism
9.
Cardiovasc Diabetol ; 23(1): 58, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336692

ABSTRACT

AIM: Patients with diabetes mellitus have poor prognosis after myocardial ischemic injury. However, the mechanism is unclear and there are no related therapies. We aimed to identify regulators of diabetic myocardial ischemic injury. METHODS AND RESULTS: Mass spectrometry-based, non-targeted metabolomic approach was used to profile coronary sinus blood from diabetic and non-diabetic Bama-mini pigs at 0.5-h post coronary artery ligation. Six metabolites had a |log2 (Fold Change)|> 1.3. Among them, the most changed is arachidonic acid (AA), levels of which were 32 times lower in diabetic pigs than in non-diabetic pigs. The AA-derived products, PGI2 and 6-keto-PGF1α, were also significantly reduced. AA treatment of cultured cardiomyocytes protected against cell death by 30% at 48 h of high glucose and oxygen deprivation, which coincided with increased mitophagic activity (as indicated by increased LC3II/LC3I, decreased p62 and increased parkin & PINK1), improved mitochondrial renewal (upregulation of Drp1 and FIS1), reduced ROS generation and increased ATP production. These cardioprotective effects were abolished by PINK1(a crucial mitophagy protein) knockdown or the autophagy inhibitor 3-Methyladenine. The protective effect of AA was also inhibited by indomethacin and Cay10441, a prostacyclin receptor antagonist. Furthermore, diabetic Sprague Dawley rats were subjected to coronary ligation for 40 min and AA treatment (10 mg/day per animal gavaged) decreased myocardial infarct size, cell apoptosis index, inflammatory cytokines and improved heart function. Scanning electron microscopy showed more intact mitochondria in the border zone of infarcted myocardium in AA treated rats. Lastly, diabetic patients after myocardial infarction had lower plasma levels of AA and 6-keto-PGF1α and reduced cardiac ejection fraction, compared with non-diabetic patients after myocardial infarction. Plasma AA level was inversely correlated with fasting blood glucose. CONCLUSIONS: AA protects against diabetic ischemic myocardial damage by promoting mitochondrial autophagy and renewal, which is related to AA derived PGI2 signaling. AA may represent a new strategy to treat diabetic myocardial ischemic injury.


Subject(s)
Diabetes Mellitus , Myocardial Infarction , Humans , Rats , Animals , Swine , Rats, Sprague-Dawley , Arachidonic Acid/pharmacology , Swine, Miniature/metabolism , Myocardial Infarction/metabolism , Protein Kinases/metabolism , Apoptosis
10.
Int Immunopharmacol ; 127: 111340, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38091831

ABSTRACT

BACKGROUND: Arachidonic acid (AA) is considered to link nutrient metabolism, to inflammation and immunity, suggesting it may have a role in autoimmune diseases. Our previous study suggests that DPP-4 inhibitors (DPP-4i) might regulate AA - relative signaling in type 1 diabetes. AIMS: To examine the effect of AA on autoimmune diabetes and its cross-talk with DPP-4i in The Non-Obese Diabetic (NOD) mice. METHODS: The NOD mice were divided randomly and equally into three groups: AA group, AA plus DPP-4i group and control group. The incidence of diabetes, blood glucose, insulitis and cytokine profiles were monitored. At the end of the experiment, pancreatic tissues were stained by H&E. Serum cytokine profiles were examined using a Mesco Scale Discovery multiplexed-assay kit. RESULTS: Even though AA or AA plus DPP-4i treatment has no effect on incidence of diabetes and weight, AA treatment reduces blood glucose, preserves islet morphology and alleviates inflammatory cell infiltration into pancreatic islets in NOD mice, accompanying with increased serum levels of IL-10, IL-1 ß, IL-6, IL-5, KC/GRO and TNF-α and decreased serum levels of IL-2. CONCLUSION: We observed that AA treatment alleviates autoimmune diabetes in NOD mice by reducing hyperglycemia, alleviating insulitis and improving cytokine profiles. DPP-4i might alleviate the effect of AA by cross-talk. We provide evidence of AA treatment to alleviate type 1 diabetes in NOD mice, which may provide a novel therapeutic option for type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Dipeptidyl-Peptidase IV Inhibitors , Islets of Langerhans , Mice , Animals , Mice, Inbred NOD , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Blood Glucose/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology
11.
J Thromb Thrombolysis ; 57(1): 21-28, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38066385

ABSTRACT

Despite decades of investigations, the optimal assessment of the "therapeutic response" to early after loading dose of acetylsalicylic acid (ASA) remains unclear. Limited information is available on the relation between pharmacodynamic (PD) and pharmacokinetic (PK) measurements assessed immediately after ASA administration. Serial PD and PK analyses were performed immediately after a single 162 or 650 mg dose of chewed and swallowed ASA in ten healthy adults. ASA response was defined as > 95% inhibition of serum thromboxane (Tx)B2, < 550 aspirin reaction units (ARU) by VerifyNow Aspirin (VN) test, and ≤ 20% arachidonic acid (AA)-induced platelet aggregation (PA). Correlation analyses between PK and PD measurements and receiver operating characteristic (ROC) curve analyses were performed. ASA response measured by VN test and AA-induced PA was achieved within 30 min of ASA administration. A correlation was observed between ARU and AA-induced maximum PA (r = 0.69, p < 0.001), serum TxB2 (r = 0.74 and p < 0.001), and serum TxB2 inhibition (r = 0.79, p < 0.001). In ROC curve analyses, ≤ 558 ARU and ≤ 7% AA-induced PA were associated with > 95% inhibition of TxB2. 686 ng/ml plasma ASA cut-off point was associated with > 95% inhibition of serum TxB2, ≤ 7% 1 mM AA-induced PA, and ≤ 585 ARU. A modest ~ 50% inhibition of TxB2 inhibition was associated with marked inhibition of 1 mM AA-induced platelet aggregation by LTA. Our analyses demonstrated important relationships between pharmacodynamic, and pharmacokinetic parameters measured immediately following oral ASA and cutoff values for ARU and AA-induced PA that is associated with > 95% inhibition of serum TxB2.


Subject(s)
Aspirin , Platelet Aggregation Inhibitors , Adult , Humans , Aspirin/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Thromboxane B2 , Platelet Aggregation , Thromboxanes , Arachidonic Acid/pharmacology , Blood Platelets
12.
Cancer Sci ; 115(2): 477-489, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081591

ABSTRACT

Inhibition of cholesterol de novo synthesis (DNS) by statins has controversial effects on the treatment of hepatocellular carcinoma (HCC). High fatty acid conditions have been reported to limit the effect of statins on metabolism diseases. Whether high fatty acid conditions interfere with the effect of statins on HCC remains unclear. Here, we reported that inhibiting cholesterol DNS with atorvastatin promoted the oncogenic capabilities of diethylnitrosamine (DEN) in mice fed high fatty acid diets (HFD). The combined analysis of metabolomics and transcriptomics revealed that arachidonic acid (AA) metabolism was the most significant changed pathway between mice with and without atorvastatin treatment. In vitro, in the presence of AA precursor linoleic acid (LA), atorvastatin promoted the proliferation and migration ability of HCC cell lines. However, in the absence of LA, these phenomena disappeared. TCGA and tissue microarray examination revealed that prostaglandin e synthase 2 (PTGES2), a key enzyme in AA metabolism, was associated with the poor outcome of HCC patients. Overexpression of PTGES2 promoted the proliferation and migration of HCC cell lines, and knockdown of PTGES2 inhibited the proliferation and migration of cells. Additionally, atorvastatin upregulated PTGES2 expression by enhancing Sterol-regulatory element binding protein 2 (SREBP2)-mediated transcription. Knockdown of PTGES2 reversed the proliferation and migration ability enhanced by atorvastatin. Overall, our study reveals that a high fatty acid background is one of the possible conditions limiting the application of statins in HCC, under which statins promote the progression of HCC by enhancing SREBP2-mediated PTGES2 transcription.


Subject(s)
Carcinoma, Hepatocellular , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Fatty Acids/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Arachidonic Acid/pharmacology , Prostaglandin-E Synthases/genetics , Atorvastatin/pharmacology , Cell Line, Tumor , Cholesterol , Cell Proliferation
13.
Cell Death Dis ; 14(11): 760, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37993451

ABSTRACT

Lipid metabolism is the key to ferroptosis susceptibility. However, little is known about the underlying mechanisms in osteosarcoma cells. Functional restriction of bromodomain-containing protein 4 (BRD4) reduced the susceptibility to erastin-induced ferroptosis of osteosarcoma cells both in vitro and in vivo. Mechanically, BRD4 controls the splicing efficiency of the RNA precursor (pre-mACSL3) of ACSL3 (ACSL3) by recruiting serinerich/threonine protein kinase 2 (SRPK2) to assemble the splicing catalytic platform. Moreover, the AMP-binding domain of ACSL3 significantly influences arachidonic acid synthesis and thus determines the susceptibility to erastin-induced ferroptosis. Overall, we found a BRD4-mediated pre-mACSL3 splicing influences erastin-induced ferroptosis by affecting arachidonic acid synthesis in osteosarcoma cells. Data in this study fills some of the gap in understanding the post-transcriptional regulatory mechanisms of ACSL3 and provides new insights into the mechanisms of lipid metabolism regulation and its effect on susceptibility to ferroptosis in osteosarcoma cells.


Subject(s)
Ferroptosis , Osteosarcoma , Humans , Protein Serine-Threonine Kinases/metabolism , Ferroptosis/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , Nuclear Proteins/metabolism , Protein Kinases/metabolism , Transcription Factors/metabolism , Arachidonic Acid/pharmacology , RNA-Binding Proteins , Osteosarcoma/genetics , Serine-Arginine Splicing Factors , Cell Cycle Proteins/metabolism
14.
Curr Drug Metab ; 24(10): 709-722, 2023.
Article in English | MEDLINE | ID: mdl-37936469

ABSTRACT

INTRODUCTION: Crocin is one of the main components of Crocus sativus L. and can alleviate oxidative stress and inflammation in diabetic nephropathy (DN). However, the specific mechanism by which crocin treats DN still needs to be further elucidated. METHOD: In the present study, a mouse model of DN was first established to investigate the therapeutic effect of crocin on DN mice. Subsequently, non-targeted metabolomics techniques were used to analyze the mechanisms of action of crocin in the treatment of DN. The effects of crocin on CYP4A11/PPARγ and TGF-ß/Smad pathway were also investigated. RESULT: Results showed that crocin exhibited significant therapeutic and anti-inflammatory, and anti-oxidative effects on DN mice. In addition, the non-targeted metabolomics results indicated that crocin treatment affected several metabolites in kidney. These metabolites were mainly associated with biotin metabolism, riboflavin metabolism, and arachidonic acid metabolism. Furthermore, crocin treatment upregulated the decreased levels of CYP4A11 and phosphorylated PPARγ, and reduced the increased levels of TGF-ß1 and phosphorylated Smad2/3 in the kidneys of DN mice. CONCLUSION: In conclusion, our study validated the considerable therapeutic, anti-inflammatory, and antioxidative impacts of crocin on DN mice. The mechanism of crocin treatment may be related to the regulation of biotin riboflavin and arachidonic acid metabolism, the activation of CYP4A11/PPARγ pathway, and the inhibition of TGF-ß/Smad pathway in the kidney.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/therapeutic use , PPAR gamma/pharmacology , PPAR gamma/therapeutic use , Arachidonic Acid/pharmacology , Arachidonic Acid/therapeutic use , Biotin/metabolism , Biotin/pharmacology , Biotin/therapeutic use , Signal Transduction , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Riboflavin/metabolism , Riboflavin/pharmacology , Riboflavin/therapeutic use , Diabetes Mellitus/drug therapy
15.
Biosci Biotechnol Biochem ; 88(1): 44-52, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37838472

ABSTRACT

Capsaicin induces the reversible opening of tight junctions (TJs) and enhances the delivery of hydrophilic macromolecules through a paracellular route. We previously revealed that TRPA1 is involved in the capsaicin-induced Ca2+ influx and TJ permeability increase, although there are no reports that capsaicin directly activates TRPA1. In this study, we investigated the upstream factors of TRPA1 using RNA-seq analysis, and found that the cyclooxygenase 2 (COX2) gene was upregulated by capsaicin. Cyclooxygenase 2 converts arachidonic acid (AA), a metabolite by phospholipase A2 (PLA2), to prostaglandins. Prostaglandin E2 (PGE2) production was stimulated by capsaicin, and capsaicin-induced Ca2+ influx was effectively inhibited by PLA2 and COX2 inhibitors. The AA-induced TJ permeability increase was inhibited by a TRPA1 antagonist, but the capsaicin- and AA-induced TJ permeability increases were hardly inhibited by a COX2 inhibitor. These results suggest that capsaicin-induced PLA2 activation and AA production are the important steps for the TJ permeability increase.


Subject(s)
Calcium , Capsaicin , Arachidonic Acid/pharmacology , Arachidonic Acid/metabolism , Capsaicin/pharmacology , Cyclooxygenase 2/genetics , Calcium/metabolism , Phospholipases A2
16.
Free Radic Biol Med ; 208: 630-642, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37703935

ABSTRACT

Recent studies have highlighted the positive effects of Kaempferol (KP), including its anti-inflammatory and antioxidant properties. However, its impact on oxidative damage induced by heavy metals and pro-inflammatory mediators, such as arachidonic acid (AA), has not yet been identified. Our objective was to specifically evaluate liver damage due to AA + iron-induced oxidative stress, both in vitro and in vivo. In HepG2 cells, KP activated the AMP-activated protein kinase (AMPK), suggesting a hepatoprotective effect through AMPK inhibition, as assessed by immunoblot and FACS analysis (EC50 = 10 µM). KP also stimulated autophagy, a degradation process that eliminates aged, damaged, and unnecessary components, via mTOR inhibition and ULK1 phosphorylation. This activation was further validated by the upregulation of autophagy-related genes (ATG5) and Beclin-1, along with the conversion of LC3BI to LC3BII. Ferroptosis, a non-apoptotic type of cell death characterized by oxidative stress from the production of reactive oxygen species (ROS) and excessive iron accumulation, was linked to the activation of autophagy, as confirmed through the protein expression of deferoxamine (DFO) and ferrostatin-1 (Fer-1), the representative ferroptosis inhibitors (positive controls). In mice, oral administration of KP demonstrated protective effects against CCl4-induced hepatotoxicity. In conclusion, KP provides hepatoprotective effects against oxidative stress induced by AA + iron treatment in vitro and CCl4 treatment in vivo.


Subject(s)
AMP-Activated Protein Kinases , Ferroptosis , Mice , Animals , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Kaempferols/pharmacology , Oxidative Stress , Reactive Oxygen Species/metabolism , Arachidonic Acid/pharmacology , Autophagy , Iron
17.
Nutrients ; 15(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37571253

ABSTRACT

Linoleic acid (LA) is an essential omega-6 polyunsaturated fatty acid (PUFA) derived from the diet. Sebocytes, whose primary role is to moisturise the skin, process free fatty acids (FFAs) to produce the lipid-rich sebum. Importantly, like other sebum components such as palmitic acid (PA), LA and its derivative arachidonic acid (AA) are known to modulate sebocyte functions. Given the different roles of PA, LA and AA in skin biology, the aim of this study was to assess the specificity of sebocytes for LA and to dissect the different roles of LA and AA in regulating sebocyte functions. Using RNA sequencing, we confirmed that gene expression changes in LA-treated sebocytes were largely distinct from those induced by PA. LA, but not AA, regulated the expression of genes related to cholesterol biosynthesis, androgen and nuclear receptor signalling, keratinisation, lipid homeostasis and differentiation. In contrast, a set of mostly down-regulated genes involved in lipid metabolism and immune functions overlapped in LA- and AA-treated sebocytes. Lipidomic analyses revealed that the changes in the lipid profile of LA-treated sebocytes were more pronounced than those of AA-treated sebocytes, suggesting that LA may serve not only as a precursor of AA but also as a potent regulator of sebaceous lipogenesis, which may not only influence the gene expression profile but also have further specific biological relevance. In conclusion, we have shown that sebocytes are able to respond selectively to different lipid stimuli and that LA-induced effects can be both AA-dependent and independent. Our findings allow for the consideration of LA application in the therapy of sebaceous gland-associated inflammatory skin diseases such as acne, where lipid modulation and selective targeting of AA metabolism are potential treatment options.


Subject(s)
Linoleic Acid , Palmitic Acid , Palmitic Acid/pharmacology , Palmitic Acid/metabolism , Arachidonic Acid/pharmacology , Arachidonic Acid/metabolism , Linoleic Acid/pharmacology , Linoleic Acid/metabolism , Sebaceous Glands/metabolism , Sebum , Lipogenesis
18.
Reprod Toxicol ; 120: 108438, 2023 09.
Article in English | MEDLINE | ID: mdl-37454977

ABSTRACT

Arachidonic acid (AA), an ω-6 polyunsaturated fatty acid involved in signalling pathways that drive cell fate decisions, has an enhancing role in the immunomodulatory effect on mesenchymal stem cells and the vasculogenesis of embryonic stem cells. 3D embryoid bodies (EBs) from pluripotent stem cells (PSCs) have been used as in vitro models for embryotoxicity for various compounds/drugs. Valproic acid (VA), a common anti-epileptic drug, is known to be embryotoxic and cause malformations in embryos. As early embryogenesis depends on AA, we investigated the embryo protective effects of AA against the embryotoxic drug VA in this study. The effects of AA on the proliferation and cell cycle parameters of PSCs were studied. In particular, the potential of AA to abrogate VA-induced embryotoxicity in vitro was evaluated using ROS detection and antioxidant assays. In response to AA, we observed modulation in cell proliferation of induced pluripotent stem cells (iPSCs) and pluripotent NTERA-2 embryonal carcinoma (EC) cells. The present study substantiates the cytoprotective effects of AA against VA. These results imply that AA plays a critical role in the proliferation and differentiation of iPSCs and EC cells and protects the EBs from cytotoxic damage, thereby ensuring normal embryogenesis. Thus, the bioactive lipid AA may be explored for supplementation to benefit pregnant women treated with long-term anti-epileptic drugs to prevent in-utero fetal growth malformations.


Subject(s)
Embryoid Bodies , Pluripotent Stem Cells , Humans , Female , Pregnancy , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Embryonic Stem Cells , Cell Differentiation
19.
Nutrients ; 15(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37447152

ABSTRACT

Arachidonic acid (ARA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), which are long-chain polyunsaturated fatty acids (LCPUFAs), as well as lutein (L) and zeaxanthin (Z), can potentially improve brain function. However, the effect of a combination of these components (LCPUFAs + LZ) on memory function in healthy older individuals remains unclear. This study aimed to determine if LCPUFAs + LZ-supplemented food could improve memory function. Exploratory and confirmatory trials (Trials 1 and 2, respectively) were conducted in healthy older Japanese individuals with memory complaints. We conducted randomized, double-blind, placebo-controlled, parallel-group trials. Participants were randomly allocated to two groups: placebo or LCPUFAs + LZ. LCPUFAs + LZ participants were provided with supplements containing ARA, DHA, EPA, L, and Z for 24 weeks in Trial 1 and 12 weeks in Trial 2. Memory functions were evaluated using Cognitrax before and after each trial. Combined analyses were performed for subgroups of participants with cognitive decline in Trials 1 and 2. The results showed that supplementation with LCPUFAs + LZ did not significantly affect memory function in healthy, non-demented, older individuals with memory complaints whereas it improved memory function in healthy, non-demented, older individuals with cognitive decline.


Subject(s)
Fatty Acids, Omega-3 , Memory, Episodic , Humans , Aged , Lutein/pharmacology , Zeaxanthins/pharmacology , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Dietary Supplements , Fatty Acids , Arachidonic Acid/pharmacology , Double-Blind Method
20.
Reprod Fertil Dev ; 35(12): 614-621, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37430407

ABSTRACT

CONTEXT: Arachidonic acid (AA) is the precursor of prostaglandins, which may play autocrine roles during early embryo development. AIMS: To test the developmental effects of addition of AA to pre- and post-hatching culture media on in vitro -produced bovine embryos. METHODS: Pre-hatching effects of AA were tested by culturing bovine zygotes in synthetic oviductal fluid (SOF) supplemented with 100 or 333µM AA. Post-hatching effects of AA were tested by culturing Day 7 blastocysts in N2B27 supplemented with 5, 10, 20 or 100µM AA up to Day 12. KEY RESULTS: Pre-hatching development to blastocyst was completely abrogated at 333µM AA, whereas blastocyst rates and cell numbers were not altered at 100µM AA. Impaired post-hatching development was observed at 100µM AA, whereas no effect on survival rates was noted at 5, 10 and 20µM AA. However, a significant reduction in Day 12 embryo size was observed at 10 and 20µM AA. Hypoblast migration, epiblast survival and formation of embryonic-disc-like structures were unaffected at 5-10µM AA. AA exposure downregulated the genes PTGIS , PPARG , LDHA and SCD in Day 12 embryos. CONCLUSIONS: Pre-hatching embryos are mostly irresponsive to AA, whereas AA was observed to have negative effects during early post-hatching development. IMPLICATIONS: AA does not improve in vitro bovine embryo development and is not required up to early post-hatching stages.


Subject(s)
Blastocyst , Fertilization in Vitro , Animals , Cattle , Arachidonic Acid/pharmacology , Fertilization in Vitro/veterinary , Embryo, Mammalian , Embryonic Development , Embryo Culture Techniques/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...