Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 311
Filter
1.
Thromb Res ; 241: 109117, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39151291

ABSTRACT

INTRODUCTION: Hereditary Hemorrhagic Telangiectasia (HHT) is charactered by telangiectasia and arteriovenous malformations (AVMs). Recurrent visceral and mucocutaneous bleeding is frequently reported among HHT patients, while data on the prevalence of thrombosis remains limited. This study aims to describe the clinical manifestations and molecular biological characteristics of HHT patients. METHODS: We conducted a retrospective study at Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine. A total of 24 HHT patients, observed between January 2019 and December 2023, were included. We recorded the biological, clinical, and therapeutic events, with particular attention to bleeding and thrombotic events. Gene mutation analysis and blood constituent measurements were performed. RESULTS: The prevalence of bleeding among all HHT patients was 100 %, while thrombotic events were noted in 41.70 % of cases. Hepatic arteriovenous malformations (HAVMs) were identified in six patients, pulmonary arteriovenous malformations (PAVMs) in five patients, and cerebral arteriovenous malformations (CAVMs) in one patient. For patients with thrombosis, the discontinuation rates were 23.08 % for antiplatelet therapy and 33.33 % for anticoagulant therapy due to the increased risk of bleeding. Genetic mutations related to HHT were present in 16 patients, with ACVRL1 (activin A receptor-like type 1) mutations being the most frequent at 41.67 %, followed by ENG (endoglin) mutations at 20.83 %, and GDF2 (growth differentiation factor 2) mutations at 4.17 %. The incidence of PAVMs was 75.00 % in HHT1 patients with ENG mutations and 20 % in HHT2 patients with ACVRL1 mutations, while HAVMs occurred in 0 % and 40.00 % of these groups, respectively. Patients were divided into non-AVMs and AVMs groups. Compared to normal controls, von Willebrand factor (vWF) activity was significantly increased in all HHT patients (149.10 % vs. 90.65 %, P < 0.001). In the non-AVMs group, the median level of stromal cell-derived factor-1 (SDF-1) was significantly elevated (124.31 pg/mL vs. 2413.57 pg/mL, P < 0.05), while vWF antigen levels were markedly higher in the AVMs group (165.30 % vs. 130.60 %, P = 0.021). Further grouping of HHT patients based on bleeding and thrombosis phenotypes revealed that those with thrombosis had significantly higher median percentages of schistocytes (3.50 % vs. 0 %, P = 0.002), ferritin concentrations (318.50 µg/L vs. 115.50 µg/L, P = 0.001), and lactate dehydrogenase (LDH) levels (437 U/L vs. 105 U/L, P < 0.001). There were no significant differences in the activity of vWF, protein C (PC), protein S (PS), and factor VIII (FVIII) between the two groups. CONCLUSION: This study highlighted the complex relationship between arteriovenous malformations and genetic mutations in HHT patients. A comprehensive assessment of bleeding and thrombosis risks should be conducted for each HHT patient, additionally, further clinical studies are needed to explore the risk factors for thrombosis and anticoagulant-related bleeding in HHT.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/complications , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/epidemiology , Male , Female , Retrospective Studies , Middle Aged , Adult , Mutation , Aged , Young Adult , Thrombosis/genetics , Thrombosis/etiology , Arteriovenous Malformations/genetics , Arteriovenous Malformations/complications , Adolescent
2.
N Engl J Med ; 391(4): 334-342, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39018528

ABSTRACT

KRAS gain-of-function mutations are frequently observed in sporadic arteriovenous malformations. The mechanisms underlying the progression of such KRAS-driven malformations are still incompletely understood, and no treatments for the condition are approved. Here, we show the effectiveness of sotorasib, a specific KRAS G12C inhibitor, in reducing the volume of vascular malformations and improving survival in two mouse models carrying a mosaic Kras G12C mutation. We then administered sotorasib to two adult patients with severe KRAS G12C-related arteriovenous malformations. Both patients had rapid reductions in symptoms and arteriovenous malformation size. Targeting KRAS G12C appears to be a promising therapeutic approach for patients with KRAS G12C-related vascular malformations. (Funded by the European Research Council and others.).


Subject(s)
Arteriovenous Malformations , Proto-Oncogene Proteins p21(ras) , Animals , Female , Humans , Male , Mice , Middle Aged , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/diagnostic imaging , Arteriovenous Malformations/drug therapy , Arteriovenous Malformations/genetics , Disease Models, Animal , Gain of Function Mutation , Mutation , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Pyridines/therapeutic use , Pyrimidines , Cardiovascular Agents/therapeutic use , Young Adult
3.
Hereditas ; 161(1): 24, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080810

ABSTRACT

SOLAMEN syndrome is a rare, recently recognized congenital syndrome that is characterized by progressive and hypertrophic diseases involving multiple systems, including segmental overgrowth, lipomatosis, arteriovenous malformation (AVM) and epidermal nevus. According to literatures, SOLAMEN syndrome is caused by heterozygous PTEN mutation. Phenotypic overlap complicates the clinical identification of diseases associated with PTEN heterozygous mutations, making the diagnosis of SOLAMEN more challenging. In addition, SOLAMEN often presents with segmental tissue overgrowth and vascular malformations, increasing the possibility of misdiagnosis as klipple-trenaunay syndrome or Parks-Weber syndrome. Here, we present a case of a child presenting with macrocephaly, patchy lymphatic malformation on the right chest, marked subcutaneous varicosities and capillaries involving the whole body, overgrowth of the left lower limb, a liner epidermal nevus on the middle of the right lower limb, and a large AVM on the right cranial thoracic entrance. Based on the typical phenotypes, the child was diagnosed as SOLAMEN syndrome. detailed clinical, imaging and genetic diagnoses of SOLAMEN syndrome was rendered. Next-generation sequencing (NGS) data revealed that except for a germline PTEN mutation, a PDGFRB variant was also identified. A subsequent echocardiographic examination detected potential cardiac defects. We suggested that given the progressive nature of AVM and the potential severity of cardiac damage, regular echocardiographic evaluation, imaging follow-up and appropriate interventional therapy for AVM are recommended.


Subject(s)
PTEN Phosphohydrolase , Child , Humans , Male , Arteriovenous Malformations/genetics , Arteriovenous Malformations/diagnosis , Lipoma , Lipomatosis/genetics , Lipomatosis/diagnosis , Musculoskeletal Abnormalities , Mutation , Nevus/genetics , Nevus/diagnosis , Phenotype , PTEN Phosphohydrolase/genetics , Vascular Malformations
4.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062925

ABSTRACT

Telangiectases and arteriovenous malformations (AVMs) are the characteristic lesions of Hereditary Hemorrhagic Telangiectasia (HHT). Somatic second-hit loss-of-function variations in the HHT causative genes, ENG and ACVRL1, have been described in dermal telangiectasias. It is unclear if somatic second-hit mutations also cause the formation of AVMs and nasal telangiectasias in HHT. To investigate the genetic mechanism of AVM formation in HHT, we evaluated multiple affected tissues from fourteen individuals. DNA was extracted from fresh/frozen tissue of 15 nasal telangiectasia, 4 dermal telangiectasia, and 9 normal control tissue biopsies, from nine unrelated individuals with HHT. DNA from six formalin-fixed paraffin-embedded (FFPE) AVM tissues (brain, lung, liver, and gallbladder) from five individuals was evaluated. A 736 vascular malformation and cancer gene next-generation sequencing (NGS) panel was used to evaluate these tissues down to 1% somatic mosaicism. Somatic second-hit mutations were identified in three in four AVM biopsies (75%) or half of the FFPE (50%) samples, including the loss of heterozygosity in ENG in one brain AVM sample, in which the germline mutation occurred in a different allele than a nearby somatic mutation (both are loss-of-function mutations). Eight of nine (88.9%) patients in whom telangiectasia tissues were evaluated had a somatic mutation ranging from 0.68 to 1.96% in the same gene with the germline mutation. Six of fifteen (40%) nasal and two of four (50%) dermal telangiectasia had a detectable somatic second hit. Additional low-level somatic mutations in other genes were identified in several telangiectasias. This is the first report that nasal telangiectasias and solid organ AVMs in HHT are caused by very-low-level somatic biallelic second-hit mutations.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/complications , Telangiectasia, Hereditary Hemorrhagic/pathology , Female , Male , Middle Aged , Arteriovenous Malformations/genetics , Arteriovenous Malformations/pathology , Adult , Endoglin/genetics , Aged , Mutation , Activin Receptors, Type II/genetics , Telangiectasis/genetics , Telangiectasis/pathology , High-Throughput Nucleotide Sequencing
5.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892351

ABSTRACT

Pulmonary arteriovenous malformations (PAVMs) are vascular anomalies resulting in abnormal connections between pulmonary arteries and veins. In 80% of cases, PAVMs are present from birth, but clinical manifestations are rarely seen in childhood. These congenital malformations are typically associated with Hereditary Hemorrhagic Telangiectasia (HHT), a rare disease that affects 1 in 5000/8000 individuals. HHT disease is frequently caused by mutations in genes involved in the TGF-ß pathway. However, approximately 15% of patients do not have a genetic diagnosis and, among the genetically diagnosed, more than 33% do not meet the Curaçao criteria. This makes clinical diagnosis even more challenging in the pediatric age group. Here, we introduce an 8-year-old patient bearing a severe phenotype of multiple diffuse PAVMs caused by an unknown mutation which ended in lung transplantation. Phenotypically, the case under study follows a molecular pattern which is HHT-like. Therefore, molecular- biological and cellular-functional analyses have been performed in primary endothelial cells (ECs) isolated from the explanted lung. The findings revealed a loss of functionality in lung endothelial tissue and a stimulation of endothelial-to-mesenchymal transition. Understanding the molecular basis of this transition could potentially offer new therapeutic strategies to delay lung transplantation in severe cases.


Subject(s)
Endothelial Cells , Pulmonary Artery , Pulmonary Veins , Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Child , Pulmonary Artery/abnormalities , Pulmonary Artery/pathology , Pulmonary Veins/abnormalities , Pulmonary Veins/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Male , Mutation , Arteriovenous Malformations/genetics , Arteriovenous Malformations/pathology , Arteriovenous Malformations/metabolism , Epithelial-Mesenchymal Transition/genetics , Lung Transplantation , Arteriovenous Fistula/pathology , Arteriovenous Fistula/genetics , Lung/pathology , Lung/blood supply , Female
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732107

ABSTRACT

Arteriovenous malformations (AVMs) are congenital vascular anomalies with a poor prognosis. AVMs are considered intractable diseases, as there is no established approach for early diagnosis and treatment. Therefore, this study aimed to provide new evidence by analyzing microRNAs (miRNAs) associated with AVM. We present fundamental evidence for the early diagnosis and treatment of AVM by analyzing miRNAs in the endothelial cells of AVMs. This study performed sequencing and validation of miRNAs in endothelial cells from normal and AVM tissues. Five upregulated and two downregulated miRNAs were subsequently analyzed under hypoxia and vascular endothelial growth factor (VEGF) treatment by one-way analysis of variance (ANOVA). Under hypoxic conditions, miR-135b-5p was significantly upregulated in the AVM compared to that under normal conditions, corresponding to increased endothelial activity (p-value = 0.0238). VEGF treatment showed no significant increase in miR-135b-5p under normal conditions, however, a surge in AVM was observed. Under both hypoxia and VEGF treatment, comparison indicated a downregulation of miR-135b-5p in AVM. Therefore, miR-135b-5p was assumed to affect the pathophysiological process of AVM and might play a vital role as a potential biomarker of AVMs for application related to diagnosis and treatment.


Subject(s)
Arteriovenous Malformations , Biomarkers , Endothelial Cells , MicroRNAs , Vascular Endothelial Growth Factor A , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Arteriovenous Malformations/genetics , Arteriovenous Malformations/metabolism , Arteriovenous Malformations/pathology , Arteriovenous Malformations/diagnosis , Endothelial Cells/metabolism , Endothelial Cells/pathology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Male , Female , Adult , Cell Hypoxia/genetics
7.
Cardiovasc Res ; 120(7): 782-795, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38502919

ABSTRACT

AIMS: BMP9 is a high affinity ligand of ALK1 and endoglin receptors that are mutated in the rare genetic vascular disorder hereditary hemorrhagic telangiectasia (HHT). We have previously shown that loss of Bmp9 in the 129/Ola genetic background leads to spontaneous liver fibrosis via capillarization of liver sinusoidal endothelial cells (LSEC) and kidney lesions. We aimed to decipher the molecular mechanisms downstream of BMP9 to better characterize its role in vascular homeostasis in different organs. METHODS AND RESULTS: For this, we performed an RNA-seq analysis on LSEC from adult WT and Bmp9-KO mice and identified over 2000 differentially expressed genes. Gene ontology analysis showed that Bmp9 deletion led to a decrease in BMP and Notch signalling, but also LSEC capillary identity while increasing their cell cycle. The gene ontology term 'glomerulus development' was also negatively enriched in Bmp9-KO mice vs. WT supporting a role for BMP9 in kidney vascularization. Through different imaging approaches (electron microscopy, immunostainings), we found that loss of Bmp9 led to vascular enlargement of the glomeruli capillaries associated with alteration of podocytes. Importantly, we also showed for the first time that the loss of Bmp9 led to spontaneous arteriovenous malformations (AVMs) in the liver, gastrointestinal tract, and uterus. CONCLUSION: Altogether, these results demonstrate that BMP9 plays an important role in vascular quiescence both locally in the liver by regulating endothelial capillary differentiation markers and cell cycle but also at distance in many organs via its presence in the circulation. It also reveals that loss of Bmp9 is sufficient to induce spontaneous AVMs, supporting a key role for BMP9 in the pathogenesis of HHT.


Subject(s)
Arteriovenous Malformations , Endothelial Cells , Growth Differentiation Factor 2 , Mice, Knockout , Signal Transduction , Animals , Growth Differentiation Factor 2/metabolism , Growth Differentiation Factor 2/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Arteriovenous Malformations/metabolism , Arteriovenous Malformations/genetics , Arteriovenous Malformations/pathology , Disease Models, Animal , Mice, 129 Strain , Liver/metabolism , Liver/pathology , Liver/blood supply , Phenotype , RNA-Seq , Receptors, Notch/metabolism , Receptors, Notch/genetics , Male
8.
Angiogenesis ; 27(1): 91-103, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37733132

ABSTRACT

Extracranial arteriovenous malformations (AVMs) are regarded as rare diseases and are prone to complications such as pain, bleeding, relentless growth, and high volume of shunted blood. Due to the high vascular pressure endothelial cells of AVMs are exposed to mechanical stress. To control symptoms and lesion growth pharmacological treatment strategies are urgently needed in addition to surgery and interventional radiology. AVM cells were isolated from three patients and exposed to cyclic mechanical stretching for 24 h. Thalidomide and bevacizumab, both VEGF inhibitors, were tested for their ability to prevent the formation of circular networks and proliferation of CD31+ endothelial AVM cells. Furthermore, the effect of thalidomide and bevacizumab on stretched endothelial AVM cells was evaluated. In response to mechanical stress, VEGF gene and protein expression increased in patient AVM endothelial cells. Thalidomide and bevacizumab reduced endothelial AVM cell proliferation. Bevacizumab inhibited circular network formation of endothelial AVM cells and lowered VEGF gene and protein expression, even though the cells were exposed to mechanical stress. With promising in vitro results, bevacizumab was used to treat three patients with unresectable AVMs or to prevent regrowth after incomplete resection. Bevacizumab controlled bleeding, pulsation, and pain over the follow up of eight months with no patient-reported side effects. Overall, mechanical stress increases VEGF expression in the microenvironment of AVM cells. The monoclonal VEGF antibody bevacizumab alleviates this effect, prevents circular network formation and proliferation of AVM endothelial cells in vitro. The clinical application of bevacizumab in AVM treatment demonstrates effective symptom control with no side effects.


Subject(s)
Arteriovenous Malformations , Endothelial Cells , Humans , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Bevacizumab/metabolism , Thalidomide/metabolism , Arteriovenous Malformations/genetics , Pain/metabolism
9.
Brain ; 147(4): 1571-1586, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37787182

ABSTRACT

Arteriovenous malformations (AVMs) are fast-flow vascular malformations and refer to important causes of intracerebral haemorrhage in young adults. Getting deep insight into the genetic pathogenesis of AVMs is necessary. Herein, we identified two vital missense variants of G protein-coupled receptor (GPCR) associated sorting protein 1 (GPRASP1) in AVM patients for the first time and congruously determined to be loss-of-function variants in endothelial cells. GPRASP1 loss-of-function caused endothelial dysfunction in vitro and in vivo. Endothelial Gprasp1 knockout mice suffered a high probability of cerebral haemorrhage, AVMs and exhibited vascular anomalies in multiple organs. GPR4 was identified to be an effective GPCR binding with GPRASP1 to develop endothelial disorders. GPRASP1 deletion activated GPR4/cAMP/MAPK signalling to disturb endothelial functions, thus contributing to vascular anomalies. Mechanistically, GPRASP1 promoted GPR4 degradation. GPRASP1 enabled GPR4 K63-linked ubiquitination, enhancing the binding of GPR4 and RABGEF1 to activate RAB5 for conversions from endocytic vesicles to endosomes, and subsequently increasing the interactions of GPR4 and ESCRT members to package GPR4 into multivesicular bodies or late endosomes for lysosome degradation. Notably, the GPR4 antagonist NE 52-QQ57 and JNK inhibitor SP600125 effectively rescued the vascular phenotype caused by endothelial Gprasp1 deletion. Our findings provided novel insights into the roles of GPRASP1 in AVMs and hinted at new therapeutic strategies.


Subject(s)
Arteriovenous Malformations , Intracranial Arteriovenous Malformations , Animals , Humans , Mice , Arteriovenous Malformations/genetics , Endothelial Cells/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Intracranial Arteriovenous Malformations/genetics , Intracranial Arteriovenous Malformations/metabolism , Mice, Knockout , Receptors, G-Protein-Coupled
10.
Pediatr Dermatol ; 41(2): 292-295, 2024.
Article in English | MEDLINE | ID: mdl-37800459

ABSTRACT

High-flow vascular malformations have been associated with multiple syndromes including capillary malformation-arteriovenous malformation (CM-AVM) syndrome, hereditary hemorrhagic telangiectasia syndrome, and less commonly, phosphatase and tensin homolog hamartoma tumor syndrome (PHTS). We present a series of three patients with clinically challenging complex AVMs who were found to have underlying PHTS. In all patients, diagnosis was delayed, and the presence of the AVM prompted sampling and genetic testing for PHTS in the absence of other clinical features of the condition. This series highlights the importance of screening for PHTS in the setting of high-flow vascular malformations.


Subject(s)
Arteriovenous Malformations , Capillaries/abnormalities , Hamartoma Syndrome, Multiple , Port-Wine Stain , Telangiectasia, Hereditary Hemorrhagic , Vascular Malformations , Humans , Hamartoma Syndrome, Multiple/complications , Hamartoma Syndrome, Multiple/diagnosis , Hamartoma Syndrome, Multiple/genetics , Arteriovenous Malformations/complications , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics , Doxorubicin , PTEN Phosphohydrolase/genetics
11.
Pediatr Dermatol ; 41(2): 344-345, 2024.
Article in English | MEDLINE | ID: mdl-38092051

ABSTRACT

Capillary malformation-arteriovenous malformation is a rare autosomal dominant disorder associated with EPHB4 loss-of-function mutations. We report the unique presentation of a 6-year-old girl with multiple capillary malformations in a unilateral segmental distribution affecting the right hemiface, right upper chest, and right arm associated with overgrowth. Targeted next-generation sequencing on a tissue sample revealed a novel heterozygotic variant in the EPHB4 gene (NM_004444.5 (EPHB4): c.715T>A, p.[Cys239Ser]). This case highlights a distinct presentation of CM-AVM type 2 and showcases a new variant in EPHB4 not previously reported in the literature.


Subject(s)
Arteriovenous Malformations , Capillaries/abnormalities , Port-Wine Stain , Female , Humans , Child , p120 GTPase Activating Protein/genetics , Port-Wine Stain/genetics , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics , Mutation
12.
Eur J Med Res ; 28(1): 449, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864259

ABSTRACT

BACKGROUND: Episodic growth due to microvascular proliferations (MVP) has been reported in congenital arteriovenous malformations (AVM), which are normally quiescent lesions composed of mature malformed vessels. Since AVM also may worsen under conditions of hormonal dysregulation, we hypothesized that hormonal influences may stimulate this process of vasoproliferative growth through potential interactions with hormone receptors (HR). METHODS: 13 Cases of AVM tissue with histologically documented vasoproliferative growth were analyzed quantitatively for the presence and tissue localization of estrogen receptor (ER), progesterone receptor (PGR), growth hormone receptor (GHR) and follicle-stimulating hormone receptor (FSHR) in relation to resident cells of interest (endothelial cells (EC), smooth muscle cells (SMC) and mast cells (MC)) by applying multiplex immunohistochemistry (IHC) staining. Expression patterns in lesions with MVP and mature vessels were quantified and compared. Available fresh frozen tissues of 3 AVM samples were used to confirm the presence of HR using Reverse-Transcriptase quantitative Polymerase Chain Reaction (RT-qPCR). RESULTS: All four HR studied were expressed in all cases within EC and SMC in areas of MVP and mature vessels, but not in normal skin tissue. ER, GHR, and FSHR showed more expression in EC of MVP and in SMC of mature vessels. RT-qPCR confirmed presence of all 4 HR in both areas. CONCLUSION: Expression of ER, PGR, GHR, and FSHR in vasoproliferative areas of congenital AVM could explain onset of sudden symptomatic growth, as has observed in a subpopulation of patients. These findings may have implications for eventual anti-hormonal targeted therapy in the lesions involved.


Subject(s)
Arteriovenous Malformations , Vascular Malformations , Humans , Endothelial Cells/metabolism , Arteriovenous Malformations/genetics , Arteriovenous Malformations/metabolism , Arteriovenous Malformations/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Hormones/metabolism
13.
Development ; 150(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37708300

ABSTRACT

Arteriovenous malformations (AVMs) develop where abnormal endothelial signalling allows direct connections between arteries and veins. Mutations in RASA1, a Ras GTPase activating protein, lead to AVMs in humans and, as we show, in zebrafish rasa1 mutants. rasa1 mutants develop cavernous AVMs that subsume part of the dorsal aorta and multiple veins in the caudal venous plexus (CVP) - a venous vascular bed. The AVMs progressively enlarge and fill with slow-flowing blood. We show that the AVM results in both higher minimum and maximum flow velocities, resulting in increased pulsatility in the aorta and decreased pulsatility in the vein. These hemodynamic changes correlate with reduced expression of the flow-responsive transcription factor klf2a. Remodelling of the CVP is impaired with an excess of intraluminal pillars, which is a sign of incomplete intussusceptive angiogenesis. Mechanistically, we show that the AVM arises from ectopic activation of MEK/ERK in the vein of rasa1 mutants, and that cell size is also increased in the vein. Blocking MEK/ERK signalling prevents AVM initiation in mutants. Alterations in venous MEK/ERK therefore drive the initiation of rasa1 AVMs.


Subject(s)
Arteriovenous Malformations , Zebrafish , Humans , Animals , Arteriovenous Malformations/genetics , Veins , GTPase-Activating Proteins , Mitogen-Activated Protein Kinase Kinases , p120 GTPase Activating Protein/genetics
14.
Angiogenesis ; 26(Suppl 1): 27-37, 2023 08.
Article in English | MEDLINE | ID: mdl-37695357

ABSTRACT

Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant vascular disorder characterized by small, dilated clustered vessels (telangiectasias) and by larger visceral arteriovenous malformations (AVMs), which directly connect the feeding arteries with the draining veins. These lesions are fragile, prone to rupture, and lead to recurrent epistaxis and/or internal hemorrhage among other complications. Germline heterozygous loss-of-function (LOF) mutations in Bone Morphogenic Protein 9 (BMP9) and BMP10 signaling pathway genes (endoglin-ENG, activin like kinase 1 ACVRL1 aka ALK1, and SMAD4) cause different subtypes of HHT (HHT1, HHT2 and HHT-juvenile polyposis (JP)) and have a worldwide combined incidence of about 1:5000. Expert clinicians and international scientists gathered in Cascais, Portugal from September 29th to October 2nd, 2022 to present the latest scientific research in the HHT field and novel treatment strategies for people living with HHT. During the largest HHT scientific conference yet, participants included 293 in person and 46 virtually. An impressive 209 abstracts were accepted to the meeting and 59 were selected for oral presentations. The remaining 150 abstracts were presented during judged poster sessions. This review article summarizes the basic and clinical abstracts selected as oral presentations with their new observations and discoveries as well as surrounding discussion and debate. Two discussion-based workshops were also held during the conference, each focusing on mechanisms and clinical perspectives in either AVM formation and progression or current and future therapies for HHT. Our hope is that this paper will represent the current progress and the remaining unanswered questions surrounding HHT, in order to serve as an update for those within the field and an invitation to those scientists and clinicians as yet outside of the field of HHT.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Activin Receptors, Type II/genetics , Arteriovenous Malformations/genetics , Arteriovenous Malformations/pathology , Bone Morphogenetic Proteins/genetics , Mutation , Signal Transduction , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/therapy
15.
Pediatr Dermatol ; 40(6): 1028-1034, 2023.
Article in English | MEDLINE | ID: mdl-37767822

ABSTRACT

BACKGROUND: Capillary malformation-arteriovenous malformation (CM-AVM) is characterized by multifocal fast-flow capillary malformations, sometimes with arteriovenous malformations/fistulas, skeletal/soft tissue overgrowth, telangiectasias, or Bier spots. Lymphatic abnormalities are infrequently reported. We describe seven patients with CM-AVM and lymphatic anomalies. METHODS: Following IRB approval, we identified patients with CM-AVM and lymphatic anomalies seen at the Vascular Anomalies Center at Boston Children's Hospital from 2003 to 2023. We retrospectively reviewed records for clinical, genetic, laboratory, and imaging findings. RESULTS: We found seven patients with CM-AVM and lymphatic abnormalities. Five patients were diagnosed prenatally: four with pleural effusions (including one suspected chylothorax) and one with ascites. Pleural effusions resolved after neonatal drainage in three patients and fetal thoracentesis in the fourth; however, fluid rapidly reaccumulated in this fetus causing hydrops. Ascites resolved after neonatal paracentesis, recurred at 2 months, and spontaneously resolved at 5 years; magnetic resonance lymphangiography for recurrence at age 19 years suggested a central conducting lymphatic anomaly (CCLA), and at age 20 years a right spermatic cord/scrotal lymphatic malformation (LM) was detected. Chylous pericardial effusion presented in a sixth patient at 2 months and disappeared after pericardiocentesis. A seventh patient was diagnosed with a left lower extremity LM at 16 months. Six patients underwent genetic testing, and all had RASA1 mutation. RASA1 variant was novel in three patients (c.1495delinsCTACC, c.434_451delinsA, c.2648del), previously reported in two (c.2603+1G>A, c.475_476del), and unavailable in another. Median follow-up age was 5.8 years (4 months-20 years). CONCLUSION: CM-AVM may be associated with lymphatic anomalies, including pericardial/pleural effusions, ascites, CCLA, and LM.


Subject(s)
Arteriovenous Fistula , Arteriovenous Malformations , Lymphatic Abnormalities , Pleural Effusion , Male , Child , Infant, Newborn , Female , Humans , Young Adult , Adult , Child, Preschool , Retrospective Studies , Ascites/pathology , p120 GTPase Activating Protein/genetics , Capillaries/abnormalities , Arteriovenous Malformations/genetics , Pleural Effusion/pathology , Lymphatic Abnormalities/diagnosis , Lymphatic Abnormalities/genetics , Lymphatic Abnormalities/pathology , Hydrops Fetalis
16.
J Pediatr ; 263: 113665, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37572862

ABSTRACT

OBJECTIVE: To assess the utility of the Curaçao criteria by age over time in children with hereditary hemorrhagic telangiectasia (HHT). STUDY DESIGN: This was a single-center, retrospective analysis of patients attending the HHT clinic at the Hospital for Sick Children (Toronto, Canada) between 2000 and 2019. The evaluation of the Curaçao criteria was completed during initial and follow-up visits. Screening for pulmonary and brain arteriovenous malformations was completed at 5 yearly intervals. RESULTS: A total of 116 patients with genetic confirmation of HHT were included in the analysis. At initial screening at a median (IQR) age of 8.4 (2.8, 12.9) years, 41% met criteria for a definite clinical diagnosis (≥3 criteria). In children <6 years at presentation, only 23% fulfilled at least 3 criteria initially. In longitudinal follow-up, 63% reached a definite clinical diagnosis, with a median (IQR) follow-up duration of 5.2 (3.2, 7.9) years (P = .005). Specifically, more patients met the epistaxis and telangiectasia criteria at last visit compared with initial (79% vs 60%; P = .006; 47% vs 30%; P = .02) but not for the arteriovenous malformation criterion (59% vs 57%; P = .65). CONCLUSIONS: In the pediatric population, most patients do not meet definite clinical criteria of HHT at initial presentation. Although the number of diagnostic criteria met increased over time, mainly due to new onset of epistaxis and telangiectasia, accuracy remained low during follow-up visits. Relying solely on clinical criteria may lead to underdiagnosis of HHT in children.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Humans , Child , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Retrospective Studies , Curacao , Epistaxis/etiology , Mutation , Endoglin/genetics , Activin Receptors, Type II/genetics , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics
17.
Sci Rep ; 13(1): 11074, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422456

ABSTRACT

Somatic activating MAP2K1 mutations in endothelial cells (ECs) cause extracranial arteriovenous malformation (AVM). We previously reported the generation of a mouse line allowing inducible expression of constitutively active MAP2K1 (p.K57N) from the Rosa locus (R26GT-Map2k1-GFP/+) and showed, using Tg-Cdh5CreER, that EC expression of mutant MAP2K1 is sufficient for the development of vascular malformations in the brain, ear, and intestines. To gain further insight into the mechanism by which mutant MAP2K1 drives AVM development, we induced MAP2K1 (p.K57N) expression in ECs of postnatal-day-1 pups (P1) and investigated the changes in gene expression in P9 brain ECs by RNA-seq. We found that over-expression of MAP2K1 altered the transcript abundance of > 1600 genes. Several genes had > 20-fold changes between MAP2K1 expressing and wild-type ECs; the highest were Col15a1 (39-fold) and Itgb3 (24-fold). Increased expression of COL15A1 in R26GT-Map2k1-GFP/+; Tg-Cdh5CreER+/- brain ECs was validated by immunostaining. Ontology showed that differentially expressed genes were involved in processes important for vasculogenesis (e.g., cell migration, adhesion, extracellular matrix organization, tube formation, angiogenesis). Understanding how these genes and pathways contribute to AVM formation will help identify targets for therapeutic intervention.


Subject(s)
Arteriovenous Malformations , Vascular Malformations , Animals , Mice , Arteriovenous Malformations/genetics , Endothelial Cells/metabolism , Mutation , Vascular Malformations/metabolism , MAP Kinase Kinase 1/genetics
18.
J Clin Invest ; 133(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37490341

ABSTRACT

Vascular networks form, remodel, and mature under the influence of both fluid shear stress (FSS) and soluble factors. Physiological FSS promotes and maintains vascular stability via synergy with bone morphogenic proteins 9 and 10 (BMP9 and BMP10). Conversely, mutation of the BMP receptors activin-like kinase 1 (ALK1), endoglin (ENG), or the downstream effector, SMAD family member 4 (SMAD4) leads to hereditary hemorrhagic telangiectasia (HHT), characterized by fragile and leaky arterial-venous malformations (AVMs). How endothelial cells (ECs) integrate FSS and BMP signals in vascular development and homeostasis and how mutations give rise to vascular malformations is not well understood. Here, we aimed to elucidate the mechanism of synergy between FSS and SMAD signaling in vascular stability and how disruption of this synergy leads to AVMs. We found that loss of Smad4 increased the sensitivity of ECs to flow by lowering the FSS set point, with resulting AVMs exhibiting features of excessive flow-mediated morphological responses. Mechanistically, loss of SMAD4 disinhibits flow-mediated KLF4-TIE2-PI3K/Akt signaling, leading to cell cycle progression-mediated loss of arterial identity due to KLF4-mediated repression of cyclin dependent Kinase (CDK) inhibitors CDKN2A and CDKN2B. Thus, AVMs caused by Smad4 deletion are characterized by chronic high flow remodeling with excessive EC proliferation and loss of arterial identity as triggering events.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Mice , Animals , Arteriovenous Malformations/genetics , Arteriovenous Malformations/metabolism , Endothelial Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Knockout , Telangiectasia, Hereditary Hemorrhagic/genetics , Bone Morphogenetic Proteins/genetics
19.
Chest ; 163(5): e201-e205, 2023 05.
Article in English | MEDLINE | ID: mdl-37164583

ABSTRACT

Pulmonary arteriovenous malformations (PAVMs) are rare and most often identified in patients with hereditary hemorrhagic telangiectasia (HHT). We describe a patient with severe hypoxemia and orthodeoxia with imaging findings consistent with PAVMs. Resected lung pathologic findings confirmed the presence of numerous microscopic vascular abnormalities within the right lower lobe that was consistent with diffuse pulmonary arteriovenous shunts. Family history was negative for HHT but was positive for pulmonary arterial hypertension (PAH) in two second-degree relatives. A vascular malformation gene panel was negative for genes that commonly are associated with HHT but identified a pathogenic variant in the gene encoding bone morphogenetic protein receptor-2 (BMPR2 p.Cys123∗). Pathogenic variants in BMPR2 are a well-known cause of hereditary PAH; there have been several reports to date of patients with PAVMs and PAH. However, this is the first patient to be reported with a pathogenic variant in BMPR2 to have PAVMs in isolation.


Subject(s)
Arteriovenous Fistula , Arteriovenous Malformations , Pulmonary Arterial Hypertension , Pulmonary Veins , Telangiectasia, Hereditary Hemorrhagic , Humans , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics , Arteriovenous Malformations/surgery , Telangiectasia, Hereditary Hemorrhagic/complications , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Lung , Arteriovenous Fistula/complications , Pulmonary Veins/surgery , Pulmonary Veins/abnormalities , Pulmonary Artery/abnormalities , Familial Primary Pulmonary Hypertension/complications , Pulmonary Arterial Hypertension/complications
20.
Stroke ; 54(6): 1593-1605, 2023 06.
Article in English | MEDLINE | ID: mdl-37051908

ABSTRACT

BACKGROUND: Brain arteriovenous malformations (bAVM) are characterized by enlarged blood vessels, which direct blood through arteriovenous shunts, bypassing the artery-capillary-vein network and disrupting blood flow. Clinically, bAVM treatments are invasive and not routinely applicable. There is critical need to understand mechanisms of bAVM pathologies and develop pharmacological therapies. METHODS: We used an in vivo mouse model of Rbpj-mediated bAVM, which develops pathologies in the early postnatal period and an siRNA in vitro system to knockdown RBPJ in human brain microvascular endothelial cells (ECs). To understand molecular events regulated by endothelial Rbpj, we conducted RNA-Seq and chromatin immunoprecipitation-Seq analyses from isolated brain ECs. RESULTS: Rbpj-deficient (mutant) brain ECs acquired abnormally rounded shape (with no change to cell area), altered basement membrane dynamics, and increased endothelial cell density along arteriovenous shunts, compared to controls, suggesting impaired remodeling of neonatal brain vasculature. Consistent with impaired endothelial cell dynamics, we found increased Cdc42 (cell division cycle 42) activity in isolated mutant ECs, suggesting that Rbpj regulates small GTPase (guanosine triphosphate hydrolase)-mediated cellular functions in brain ECs. siRNA-treated, RBPJ-deficient human brain ECs displayed increased Cdc42 activity, disrupted cell polarity and focal adhesion properties, and impaired migration in vitro. RNA-Seq analysis from isolated brain ECs identified differentially expressed genes in mutants, including Apelin, which encodes a ligand for G protein-coupled receptor signaling known to influence small GTPase activity. Chromatin immunoprecipitation-Seq analysis revealed chromatin loci occupied by Rbpj in brain ECs that corresponded to G-protein and Apelin signaling molecules. In vivo administration of a competitive peptide antagonist against the Apelin receptor (Aplnr/Apj) attenuated Cdc42 activity and restored endothelial cell morphology and arteriovenous connection diameter in Rbpj-mutant brain vessels. CONCLUSIONS: Our data suggest that endothelial Rbpj promotes rearrangement of brain ECs during cerebrovascular remodeling, through Apelin/Apj-mediated small GTPase activity, and prevents bAVM. By inhibiting Apelin/Apj signaling in vivo, we demonstrated pharmacological prevention of Rbpj-mediated bAVM.


Subject(s)
Arteriovenous Malformations , Monomeric GTP-Binding Proteins , Animals , Humans , Infant, Newborn , Mice , Apelin/metabolism , Arteriovenous Malformations/genetics , Brain/metabolism , Cell Cycle , Endothelial Cells/metabolism , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Monomeric GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , RNA, Small Interfering/metabolism , Vascular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL