Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.227
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38999999

ABSTRACT

This study investigates the clustering patterns of human ß-secretase 1 (BACE-1) inhibitors using complex network methodologies based on various distance functions, including Euclidean, Tanimoto, Hamming, and Levenshtein distances. Molecular descriptor vectors such as molecular mass, Merck Molecular Force Field (MMFF) energy, Crippen partition coefficient (ClogP), Crippen molar refractivity (MR), eccentricity, Kappa indices, Synthetic Accessibility Score, Topological Polar Surface Area (TPSA), and 2D/3D autocorrelation entropies are employed to capture the diverse properties of these inhibitors. The Euclidean distance network demonstrates the most reliable clustering results, with strong agreement metrics and minimal information loss, indicating its robustness in capturing essential structural and physicochemical properties. Tanimoto and Hamming distance networks yield valuable clustering outcomes, albeit with moderate performance, while the Levenshtein distance network shows significant discrepancies. The analysis of eigenvector centrality across different networks identifies key inhibitors acting as hubs, which are likely critical in biochemical pathways. Community detection results highlight distinct clustering patterns, with well-defined communities providing insights into the functional and structural groupings of BACE-1 inhibitors. The study also conducts non-parametric tests, revealing significant differences in molecular descriptors, validating the clustering methodology. Despite its limitations, including reliance on specific descriptors and computational complexity, this study offers a comprehensive framework for understanding molecular interactions and guiding therapeutic interventions. Future research could integrate additional descriptors, advanced machine learning techniques, and dynamic network analysis to enhance clustering accuracy and applicability.


Subject(s)
Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/chemistry , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Humans , Cluster Analysis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Models, Molecular , Structure-Activity Relationship , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology
2.
J Comput Chem ; 45(23): 2024-2033, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38725239

ABSTRACT

In binding free energy calculations, simulations must sample all relevant conformations of the system in order to obtain unbiased results. For instance, different ligands can bind to different metastable states of a protein, and if these protein conformational changes are not sampled in relative binding free energy calculations, the contribution of these states to binding is not accounted for and thus calculated binding free energies are inaccurate. In this work, we investigate the impact of different beta-sectretase 1 (BACE1) protein conformations obtained from x-ray crystallography on the binding of BACE1 inhibitors. We highlight how these conformational changes are not adequately sampled in typical molecular dynamics simulations. Furthermore, we show that insufficient sampling of relevant conformations induces substantial error in relative binding free energy calculations, as judged by a variation in calculated relative binding free energies up to 2 kcal/mol depending on the starting protein conformation. These results emphasize the importance of protein conformational sampling and pose this BACE1 system as a challenge case for further method development in the area of enhanced protein conformational sampling, either in combination with binding calculations or as an endpoint correction.


Subject(s)
Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Thermodynamics , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Humans , Crystallography, X-Ray , Ligands
3.
Chem Biol Interact ; 395: 111006, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38636792

ABSTRACT

Members of the Signal Peptide-Peptidase (SPP) and Signal Peptide-Peptidase-like (SPPL) family are intramembrane aspartyl-proteases like their well-studied homologs, the presenilins, which comprise the catalytically active subunit within the γ-secretase complex. The lack of in vitro cleavage assays for SPPL proteases limited their biochemical characterization as well as substrate identification and validation. So far, SPPL proteases have been analyzed exclusively in intact cells or membranes, restricting mechanistic analysis to co-expression of enzyme and substrate variants colocalizing in the same subcellular compartments. We describe the details of developing an in vitro cleavage assay for SPPL2b and its model substrate TNFα and analyzed the influence of phospholipids, detergent supplements, and cholesterol on the SPPL2b in vitro activity. SPPL2b in vitro activity resembles mechanistic principles that have been observed in a cellular context, such as cleavage sites and consecutive turnover of the TNFα transmembrane domain. The novel in vitro cleavage assay is functional with separately isolated protease and substrate and amenable to a high throughput plate-based readout overcoming previous limitations and providing the basis for studying enzyme kinetics, catalytic activity, substrate recognition, and the characteristics of small molecule inhibitors. As a proof of concept, we present the first biochemical in vitro characterization of the SPPL2a and SPPL2b specific small molecule inhibitor SPL-707.


Subject(s)
Aspartic Acid Endopeptidases , Tumor Necrosis Factor-alpha , Tumor Necrosis Factor-alpha/metabolism , Humans , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/chemistry , Substrate Specificity , Proteolysis , Kinetics , Cholesterol/metabolism
4.
Arch Pharm (Weinheim) ; 357(6): e2400061, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631672

ABSTRACT

Fragment-based screening has become indispensable in drug discovery. Yet, the weak binding affinities of these small molecules still represent a challenge for the reliable detection of fragment hits. The extent of this issue was illustrated in the literature for the aspartic protease endothiapepsin: When seven biochemical and biophysical in vitro screening methods were applied to screen a library of 361 fragments, very poor overlap was observed between the hit fragments identified by the individual approaches, resulting in high levels of false positive and/or false negative results depending on the mutually compared methods. Here, the reported in vitro findings are juxtaposed with the results from in silico docking and scoring approaches. The docking programs GOLD and Glide were considered with the scoring functions ASP, ChemScore, ChemPLP, GoldScore, DSXCSD, and GlideScore. First, the ranking power and scoring power were assessed for the named scoring functions. Second, the capability of reproducing the crystallized fragment binding modes was tested in a structure-based redocking approach. The redocking success notably depended on the ligand efficiency of the considered fragments. Third, a blinded virtual screening approach was employed to evaluate whether in silico screening can compete with in vitro methods in the enrichment of fragment databases.


Subject(s)
Aspartic Acid Endopeptidases , Molecular Docking Simulation , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/chemistry , Ligands , Drug Discovery , Structure-Activity Relationship , Protein Binding , Computer Simulation , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
5.
Oxid Med Cell Longev ; 2024: 6654606, 2024.
Article in English | MEDLINE | ID: mdl-38425997

ABSTRACT

Background: Neurological disorders like Alzheimer's disease (AD) and Parkinson's disease (PD) manifest through gradually deteriorating cognitive functions. An encouraging strategy for addressing these disorders involves the inhibition of precursor-cleaving enzyme 1 (BACE1). Objectives: In the current research, a virtual screening technique was employed to identify potential BACE1 inhibitors among selected herbal isolates. Methods: This study evaluated 79 flavonoids, anthraquinones (AQs), and cinnamic acid derivatives for their potential blood-brain barrier (BBB) permeability. Using the AutoDock 4.0 tool, molecular docking analysis was conducted to determine the binding affinity of BBB permeable compounds to the BACE1 active site. Molecular dynamics (MD) simulations were performed to assess the stability of the docked poses of the most potent inhibitors. The interactions between the most effective plant-based inhibitors and the residues within the BACE1 catalytic site were examined before and after MD simulations. Results: Ponciretin, danthron, chrysophanol, and N-p-coumaroyltyramine were among the highest-ranking BACE1 inhibitors, with inhibition constant values calculated in the nanomolar range. Furthermore, during 10 ns simulations, the docked poses of these ligands were observed to be stable. Conclusion: The findings propose that ponciretin, danthron, chrysophanol, and N-p-coumaroyltyramine might serve as potential choices for the treatment of AD and PD, laying the groundwork for the creation of innovative BACE1 inhibitors.


Subject(s)
Alzheimer Disease , Anthraquinones , Coumaric Acids , Parkinson Disease , Humans , Alzheimer Disease/metabolism , Molecular Docking Simulation , Parkinson Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism
6.
Chem Pharm Bull (Tokyo) ; 72(3): 309-310, 2024.
Article in English | MEDLINE | ID: mdl-38479891

ABSTRACT

The inhibition mode of a retro-inverso (RI) inhibitor containing a hydroxyethylamine dipeptide isostere against the human T-cell leukemia virus type-1 (HTLV-1) protease was examined. Enzymatic evaluation of the RI-modified inhibitor containing a D-allo-Ile residue revealed that HTLV-1 was competitively inhibited. IC50 values of the RI-modified inhibitor and pepstatin A, a standard inhibitor of aspartic proteases, were nearly equivalent.


Subject(s)
Aspartic Acid Endopeptidases , Human T-lymphotropic virus 1 , Humans , Amino Acid Sequence , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Human T-lymphotropic virus 1/metabolism , Dipeptides , Protease Inhibitors/pharmacology
7.
Comput Biol Chem ; 110: 108048, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471353

ABSTRACT

The rise of drug resistance in Plasmodium falciparum, rendering current treatments ineffective, has hindered efforts to eliminate malaria. To address this issue, the study employed a combination of Systems Biology approach and a structure-based pharmacophore method to identify a target against P. falciparum. Through text mining, 448 genes were extracted, and it was discovered that plasmepsins, found in the Plasmodium genus, play a crucial role in the parasite's survival. The metabolic pathways of these proteins were determined using the PlasmoDB genomic database and recreated using CellDesigner 4.4.2. To identify a potent target, Plasmepsin V (PF13_0133) was selected and examined for protein-protein interactions (PPIs) using the STRING Database. Topological analysis and global-based methods identified PF13_0133 as having the highest centrality. Moreover, the static protein knockout PPIs demonstrated the essentiality of PF13_0133 in the modeled network. Due to the unavailability of the protein's crystal structure, it was modeled and subjected to a molecular dynamics simulation study. The structure-based pharmacophore modeling utilized the modeled PF13_0133 (PfPMV), generating 10 pharmacophore hypotheses with a library of active and inactive compounds against PfPMV. Through virtual screening, two potential candidates, hesperidin and rutin, were identified as potential drugs which may be repurposed as potential anti-malarial agents.


Subject(s)
Antimalarials , Molecular Dynamics Simulation , Plasmodium falciparum , Plasmodium falciparum/drug effects , Antimalarials/pharmacology , Antimalarials/chemistry , Drug Repositioning , Molecular Structure , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/chemistry
8.
Arch Pharm (Weinheim) ; 357(5): e2300612, 2024 May.
Article in English | MEDLINE | ID: mdl-38319801

ABSTRACT

Fragment-based drug discovery (FBDD) aims to discover a set of small binding fragments that may be subsequently linked together. Therefore, in-depth knowledge of the individual fragments' structural and energetic binding properties is essential. In addition to experimental techniques, the direct simulation of fragment binding by molecular dynamics (MD) simulations became popular to characterize fragment binding. However, former studies showed that long simulation times and high computational demands per fragment are needed, which limits applicability in FBDD. Here, we performed short, unbiased MD simulations of direct fragment binding to endothiapepsin, a well-characterized model system of pepsin-like aspartic proteases. To evaluate the strengths and limitations of short MD simulations for the structural and energetic characterization of fragment binding, we predicted the fragments' absolute free energies and binding poses based on the direct simulations of fragment binding and compared the predictions to experimental data. The predicted absolute free energies are in fair agreement with the experiment. Combining the MD data with binding mode predictions from molecular docking approaches helped to correctly identify the most promising fragments for further chemical optimization. Importantly, all computations and predictions were done within 5 days, suggesting that MD simulations may become a viable tool in FBDD projects.


Subject(s)
Aspartic Acid Endopeptidases , Molecular Docking Simulation , Molecular Dynamics Simulation , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Protein Binding , Drug Discovery , Binding Sites , Thermodynamics
9.
FEBS J ; 290(23): 5456-5474, 2023 12.
Article in English | MEDLINE | ID: mdl-37786993

ABSTRACT

More than 20 years ago, signal peptide peptidase (SPP) and its homologues, the signal peptide peptidase-like (SPPL) proteases have been identified based on their sequence similarity to presenilins, a related family of intramembrane aspartyl proteases. Other than those for the presenilins, no high-resolution structures for the SPP/SPPL proteases are available. Despite this limitation, over the years bioinformatical and biochemical data have accumulated, which altogether have provided a picture of the overall structure and topology of these proteases, their localization in the cell, the process of substrate recognition, their cleavage mechanism, and their function. Recently, the artificial intelligence-based structure prediction tool AlphaFold has added high-confidence models of the expected fold of SPP/SPPL proteases. In this review, we summarize known structural aspects of the SPP/SPPL family as well as their substrates. Of particular interest are the emerging substrate recognition and catalytic mechanisms that might lead to the prediction and identification of more potential substrates and deeper insight into physiological and pathophysiological roles of proteolysis.


Subject(s)
Membrane Proteins , Peptide Hydrolases , Peptide Hydrolases/genetics , Artificial Intelligence , Aspartic Acid Endopeptidases/chemistry , Presenilins
10.
J Chem Inf Model ; 63(21): 6890-6899, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37801405

ABSTRACT

Predicting the interaction modes and binding affinities of virtual compound libraries is of great interest in drug development. It reduces the cost and time of lead compound identification and selection. Here we apply path-based metadynamics simulations to characterize the binding of potential inhibitors to the Plasmodium falciparum aspartic protease plasmepsin V (plm V), a validated antimalarial drug target that has a highly mobile binding site. The potential plm V binders were identified in a high-throughput virtual screening (HTVS) campaign and were experimentally verified in a fluorescence resonance energy transfer (FRET) assay. Our simulations allowed us to estimate compound binding energies and revealed relevant states along binding/unbinding pathways in atomistic resolution. We believe that the method described allows the prioritization of compounds for synthesis and enables rational structure-based drug design for targets that undergo considerable conformational changes upon inhibitor binding.


Subject(s)
Antimalarials , Antimalarials/pharmacology , Antimalarials/chemistry , Binding Sites , Aspartic Acid Endopeptidases/chemistry , Plasmodium falciparum , Protozoan Proteins/metabolism , Protease Inhibitors/chemistry
11.
ACS Chem Biol ; 18(4): 686-692, 2023 04 21.
Article in English | MEDLINE | ID: mdl-36920024

ABSTRACT

Aspartic proteases are a small class of proteases implicated in a wide variety of human diseases. Covalent chemical probes for photoaffinity labeling (PAL) of these proteases are underdeveloped. We here report a full on-resin synthesis of clickable PAL probes based on the natural product inhibitor pepstatin incorporating a minimal diazirine reactive group. The position of this group in the inhibitor determines the labeling efficiency. The most effective probes sensitively detect cathepsin D, a biomarker for breast cancer, in cell lysates. Moreover, through chemical proteomics experiments and deep learning algorithms, we identified sequestosome-1, an important player in autophagy, as a direct interaction partner and substrate of cathepsin D.


Subject(s)
Aspartic Acid Endopeptidases , Cathepsin D , Pepstatins , Photoaffinity Labels , Humans , Aspartic Acid Endopeptidases/chemistry , Cathepsin D/chemistry , Diazomethane , Pepstatins/chemistry , Pepstatins/pharmacology , Photoaffinity Labels/chemistry , Sequestosome-1 Protein/chemistry
12.
J Labelled Comp Radiopharm ; 66(4-6): 145-154, 2023.
Article in English | MEDLINE | ID: mdl-36931890

ABSTRACT

The generation of amyloid beta peptides that aggregate in the brain is believed to play a major role in Alzheimer's disease. In theory, the inhibition of beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1), which catalyzes the initial rate-limiting step in amyloid beta production, may slow or stop Alzheimer's disease. Herein, we report the preparation of two potent BACE1 inhibitors, BI 1147560 (1) and BI 1181181 (2), labeled with carbon-14 and with deuterium. The use of advanced key chiral intermediates like 3 and 5 shortened the carbon-14 syntheses of these two compounds to five and six steps, respectively, and helped in preparing them with very high chemical purity and enantiomeric excess without deviating from the process chemistry route. For the deuterium synthesis, oxetan-3-ylmethanamine [2 H6 ]-7 and 2-fluoro-2-methylpropan-1-amine [2 H6 ]-9 were prepared then used with the chiral intermediate 5 to furnish deuterium labeled 1 and 2, respectively.


Subject(s)
Alzheimer Disease , Humans , Amyloid beta-Peptides , Amyloid Precursor Protein Secretases/physiology , Amyloid beta-Protein Precursor , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/physiology , Carbon Radioisotopes , Deuterium , Enzyme Inhibitors
13.
J Biomol Struct Dyn ; 41(11): 5057-5066, 2023 07.
Article in English | MEDLINE | ID: mdl-35612907

ABSTRACT

Human T-cell leukemia virus type I (HTLV-1) belongs to the delta retrovirus family and the etiological agent of adult T-cell leukemia (ATL(. While the current HTLV-1 therapy, relies on using Zidovudine plus IFN-γ, there is no FDA approved drugs against it. In silico drug repurposing is a fast and accurate way for screening US-FDA approved drugs to find a therapeutic option for the HTLV-1 infection. So that, this research aims to analyze a dataset of approved antiviral drugs as a potential prospect for an anti-viral drug against HTLV-1 infection. Molecular docking simulation was performed to identify interactions of the antiviral drugs with the key residues in the HTLV-1 protease binding site. Then, molecular dynamics simulation was also performed for the potential protein-ligand complexes to confirm the stable behavior of the ligands inside the binding pocket. The best docking scores with the target was found to be Simeprevir, Atazanavir, and Saquinavir compounds which indicate that these drugs can firmly bind to the HTLV-1 protease. The MD simulation confirmed the stability of Simeprevir-protease, Atazanavir-Protease, and Saquinavir-Protease interactions. Clearly, these compounds should be further evaluated in experimental assays and clinical trials to confirm their actual activity against HTLV-1 infection.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Simeprevir , Humans , Antiviral Agents/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Saquinavir , Atazanavir Sulfate , Drug Repositioning , Aspartic Acid Endopeptidases/chemistry , Protease Inhibitors/chemistry
14.
Cent Nerv Syst Agents Med Chem ; 22(2): 139-150, 2022.
Article in English | MEDLINE | ID: mdl-36104859

ABSTRACT

BACKGROUND: Alzheimer's disease is a progressive neurodegenerative process with multifactorial characteristics. This disease follows the natural aging process, affecting mainly people over 65 years. Pharmacotherapeutic treatment currently combats symptoms related to cognitive function. Several targets have begun to attract the interest of the scientific community to develop new drug candidates which have better pharmacokinetic and lower toxicity parameters. OBJECTIVE: The present study aims to design new candidates for acetylcholinesterase/ß-secretase (AChE/BACE1) multitarget inhibitor drugs. METHODS: 17 natural products were selected from the literature with anticholinesterase activity and 1 synthetic molecule with inhibitory activity for BACE1. Subsequently, the molecular docking study was performed, followed by the derivation of the pharmacophoric pattern and prediction of pharmacokinetic and toxicological properties. Finally, the hybrid prototype was designed. RESULTS: All selected molecules showed interactions with their respective target enzymes. Derivation of the pharmacophoric pattern from molecules that interacted with the AChE enzyme resulted in 3 pharmacophoric regions: an aromatic ring, an electron-acceptor region and a hydrophobic region. The molecules showed good pharmacokinetic and toxicological results, showing no warnings of mutagenicity and/or carcinogenicity. After the hybridization process, three hybrid molecules were obtained, which showed inhibitory activity for both targets. CONCLUSION: It is concluded that research in the field of medicinal chemistry is advancing towards the discovery of new drug candidates that bring a better quality of life to patients with AD.


Subject(s)
Acetylcholinesterase , Amyloid Precursor Protein Secretases , Amyloid Precursor Protein Secretases/chemistry , Aspartic Acid Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Quality of Life
15.
J Chem Inf Model ; 62(13): 3263-3273, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35712895

ABSTRACT

Selectivity is a major issue in the development of drugs targeting pathogen aspartic proteases. Here, we explore the selectivity-determining factors by studying specifically designed malaria aspartic protease (plasmepsin) open-flap inhibitors. Metadynamics simulations are used to uncover the complex binding/unbinding pathways of these inhibitors and describe the critical transition states in atomistic resolution. The simulation results are compared with experimentally determined enzymatic activities. Our findings demonstrate that plasmepsin inhibitor selectivity can be achieved by targeting the flap loop with hydrophobic substituents that enable ligand binding under the flap loop, as such a behavior is not observed for several other aspartic proteases. The ability to estimate the selectivity of compounds before they are synthesized is of considerable importance in drug design; therefore, we expect that our approach will be useful in selective inhibitor designs against not only aspartic proteases but also other enzyme classes.


Subject(s)
Antimalarials , Aspartic Acid Endopeptidases , Plasmodium falciparum , Protease Inhibitors , Antimalarials/chemistry , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/chemistry , Computer Simulation , Drug Design , Malaria/drug therapy , Plasmodium falciparum/drug effects , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protozoan Proteins/chemistry
16.
Molecules ; 27(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35566023

ABSTRACT

Malaria chemotherapy is greatly threatened by the recent emergence and spread of resistance in the Plasmodium falciparum parasite against artemisinins and their partner drugs. Therefore, it is an urgent priority to develop new antimalarials. Plasmepsin V (PMV) is regarded as a superior drug target for its essential role in protein export. In this study, we performed virtual screening based on homology modeling of PMV structure, molecular docking and pharmacophore model analysis against a library with 1,535,478 compounds, which yielded 233 hits. Their antimalarial activities were assessed amongst four non-peptidomimetic compounds that demonstrated the promising inhibition of parasite growth, with mean IC50 values of 6.67 µM, 5.10 µM, 12.55 µM and 8.31 µM. No significant affection to the viability of L929 cells was detected in these candidates. These four compounds displayed strong binding activities with the PfPMV model through H-bond, hydrophobic, halogen bond or π-π interactions in molecular docking, with binding scores under -9.0 kcal/mol. The experimental validation of molecule-protein interaction identified the binding of four compounds with multiple plasmepsins; however, only compound 47 showed interaction with plasmepsin V, which exhibited the potential to be developed as an active PfPMV inhibitor.


Subject(s)
Antimalarials , Folic Acid Antagonists , Antimalarials/chemistry , Aspartic Acid Endopeptidases/chemistry , Molecular Docking Simulation , Plasmodium falciparum/metabolism , Protozoan Proteins/chemistry
17.
Structure ; 30(7): 947-961.e6, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35460613

ABSTRACT

Plasmepsins IX (PMIX) and X (PMX) are essential aspartyl proteases for Plasmodium spp. egress, invasion, and development. WM4 and WM382 inhibit PMIX and PMX in Plasmodium falciparum and P. vivax. WM4 inhibits PMX, while WM382 is a dual inhibitor of PMIX and PMX. To understand their function, we identified protein substrates. Enzyme kinetic and structural analyses identified interactions responsible for drug specificity. PMIX and PMX have similar substrate specificity; however, there are distinct differences for peptide and protein substrates. Differences in WM4 and WM382 binding for PMIX and PMX map to variations in the S' region and engagement of the active site S3 pocket. Structures of PMX reveal interactions and mechanistic detail of drug binding important for development of clinical candidates against these targets.


Subject(s)
Aspartic Acid Endopeptidases , Plasmodium falciparum , Aspartic Acid Endopeptidases/chemistry , Kinetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Substrate Specificity
18.
Comput Biol Med ; 145: 105422, 2022 06.
Article in English | MEDLINE | ID: mdl-35354103

ABSTRACT

Alzheimer's disease is a progressive and irreversible neurodegenerative disease that accounts for 70-80% of dementia in the elderly. According to recent clinical data, the incidence of the disease is exponentially increasing with age. Beta-site amyloid precursor protein cleaving enzyme1 (BACE1) is an important molecule involved in the pathogenesis of Alzheimer's disease due to its early role in the amyloid cascade. Cleavage of amyloid precursor protein by BACE1 is the rate-limiting step leading to the production and aggregation of amyloid-beta plaques. A number of natural products are being identified as non-competitive BACE1 inhibitors. In Ayurveda, Medhya rasayana is a group of medicinal herbs, specifically used for managing neurological disorders and is known to be effective in improving cognitivity and intellect. This study aimed to analyze the pharmacological activity of bio-active compounds in Medhya rasayana plants against BACE1, employing structure-based docking approach. 11 compounds out of 876 were identified as potential hits, based on docking scores, binding energies, and interactions with the critical residues of BACE1. Possible neurological activities of these compounds were predicted using PASS server. Out of the 11 compounds screened, two compounds, 'Convolidine' from the plant Convolvulus pleuricaulis Choisy and 'N-(4-hydroxybutyl) phthalimide' from Glycyrrhiza glabra satisfied the pharmacological parameters of Lipinski rule of filtering and ADMET prediction. The binding stability of these compounds against BACE1 was confirmed by molecular dynamic simulation and post dynamic MM/GBSA calculations. Detailed analysis of the interaction with the critical amino acids in the active site revealed the possible inhibitory potential of these compounds of medicinal plant origin against BACE1.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Humans , Lead , Molecular Docking Simulation , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
19.
J Chem Inf Model ; 62(4): 914-926, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35138093

ABSTRACT

The flexibility of ß hairpin structure known as the flap plays a key role in catalytic activity and substrate intake in pepsin-like aspartic proteases. Most of these enzymes share structural and sequential similarity. In this study, we have used apo Plm-II and BACE-1 as model systems. In the apo form of the proteases, a conserved tyrosine residue in the flap region remains in a dynamic equilibrium between the normal and flipped states through rotation of the χ1 and χ2 angles. Independent MD simulations of Plm-II and BACE-1 remained stuck either in the normal or flipped state. Metadynamics simulations using side-chain torsion angles (χ1 and χ2 of tyrosine) as collective variables sampled the transition between the normal and flipped states. Qualitatively, the two states were predicted to be equally populated. The normal and flipped states were stabilized by H-bond interactions to a tryptophan residue and to the catalytic aspartate, respectively. Further, mutation of tyrosine to an amino-acid with smaller side-chain, such as alanine, reduced the flexibility of the flap and resulted in a flap collapse (flap loses flexibility and remains stuck in a particular state). This is in accordance with previous experimental studies, which showed that mutation to alanine resulted in loss of activity in pepsin-like aspartic proteases. Our results suggest that the ring flipping associated with the tyrosine side-chain is the key order parameter that governs flap dynamics and opening of the binding pocket in most pepsin-like aspartic proteases.


Subject(s)
Aspartic Acid Endopeptidases , Pepsin A , Aspartic Acid Endopeptidases/chemistry , Catalysis
20.
Protein Sci ; 31(4): 882-899, 2022 04.
Article in English | MEDLINE | ID: mdl-35048450

ABSTRACT

Plasmodium falciparum plasmepsin X (PfPMX), involved in the invasion and egress of this deadliest malarial parasite, is essential for its survival and hence considered as an important drug target. We report the first crystal structure of PfPMX zymogen containing a novel fold of its prosegment. A unique twisted loop from the prosegment and arginine 244 from the mature enzyme is involved in zymogen inactivation; such mechanism, not previously reported, might be common for apicomplexan proteases similar to PfPMX. The maturation of PfPMX zymogen occurs through cleavage of its prosegment at multiple sites. Our data provide thorough insights into the mode of binding of a substrate and a potent inhibitor 49c to PfPMX. We present molecular details of inactivation, maturation, and inhibition of PfPMX that should aid in the development of potent inhibitors against pepsin-like aspartic proteases from apicomplexan parasites.


Subject(s)
Aspartic Acid Endopeptidases , Enzyme Precursors , Plasmodium falciparum , Protozoan Proteins , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Enzyme Precursors/chemistry , Plasmodium falciparum/enzymology , Protozoan Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL