Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.451
Filter
1.
Int Immunopharmacol ; 136: 112395, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38833845

ABSTRACT

Asthma is a long-term disease that causes airways swelling and inflammation and in turn airway narrowing. AdipoRonis an orally active synthetic small molecule that acts as a selective agonist at theadiponectin receptor 1 and 2. The aim of the current study is to delineate the protective effect and the potential underlying mechanism ofadipoRon inairway inflammationinduced byovalbumin (OVA) in comparison withdexamethasone. Adult maleSwiss Albino micewere sensitized to OVA on days 0 and 7, then challenged with OVA on days 14, 15 and 16. AdipoRon was administered orally for 6 days starting from the 11th day till the 16th and 1 h prior to OVA in the challenge days. Obtained results from asthmatic control group showed a significant decrease in serum adiponectin concentration, an increase in inflammatory cell counts inthe bronchoalveolar lavage fluid(BALF), CD68 protein expression, inflammatory cytokine concentration and oxidative stress as well. Administration of adipoRon enhanced antioxidant mechanisms limiting oxidative stress by significantly increasing reduced glutathione (GSH) pulmonary content, decreasing serum lactate dehydrogenase (LDH) together with malondialdehyde (MDA) significant reduction in lung tissue. In addition, it modulated the levels of serum immunoglobulin E (IgE), pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-13, nuclear factor kappa B (NF-κB) and the anti-inflammatory one IL-10 improving lung inflammation as revealed by histopathological evaluation. Furthermore, lung tissue expression of nuclear factor erythroid 2-related factor (Nrf2) and 5'AMP-activated protein kinase (AMPK) were significantly increased adipoRon. Notably, results of adipoRon received group were comparable to those of dexamethasone group. In conclusion, our study demonstrates that adipoRon can positively modulate adiponectin expression with activation of AMPK pathway and subsequent improvement in inflammatory and oxidative signaling.


Subject(s)
AMP-Activated Protein Kinases , Asthma , Disease Models, Animal , Ovalbumin , Receptors, Adiponectin , Signal Transduction , Animals , Asthma/drug therapy , Asthma/immunology , Asthma/chemically induced , Asthma/metabolism , Mice , Receptors, Adiponectin/agonists , Receptors, Adiponectin/metabolism , Ovalbumin/immunology , Male , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Lung/pathology , Lung/drug effects , Lung/immunology , Cytokines/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Oxidative Stress/drug effects , Adiponectin , Anti-Asthmatic Agents/therapeutic use , Anti-Asthmatic Agents/pharmacology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Immunoglobulin E/blood , Humans , Dexamethasone/therapeutic use , Dexamethasone/pharmacology , Piperidines
2.
Front Public Health ; 12: 1402908, 2024.
Article in English | MEDLINE | ID: mdl-38868160

ABSTRACT

Background: Exposure to pesticides is a global public health problem, especially for children. Its association with chronic respiratory disease among children has attracted considerable attention, but the existing evidence remains inconclusive and cannot be certain. Therefore, this systematic review and meta-analysis aim to determine the global pooled effect size of association with pesticide exposure and asthma, wheezing, and respiratory tract infections among children. Methods: A comprehensive search was conducted for relevant literature from electronic databases, including PubMed, Google Scholar, Hinari, Semantic Scholar, and Science Direct. Studies that provided effect size on the association between pesticide exposure and childhood asthma, wheezing, and respiratory tract infections in children were included. The articles were screened, data was extracted, and the quality of each study was assessed with four independent reviewers. Random effects models for significant heterogeneity and fixed effect models for homogeneous studies were conducted to estimate pooled effect sizes with 95% confidence intervals using Comprehensive Meta-Analysis version 3.3.070 and MetaXL version 2. Funnel plot and Higgins I 2 statistics were used to determine the heterogeneity of the included studies. Subgroup analyses were computed based on the types of pesticide exposure, study design, sample size category, and outcome assessment technique. Result: A total of 38 articles with 118,303 children less than 18 years of age were included in this meta-analysis. Pesticide exposure among children increased the risk of asthma by 24%; (OR = 1.24, 95% CI: 1.14-1.35) with extreme heterogeneity (I 2 = 81%, p < 0.001). Exposure to pesticides increased the odds of developing wheezing among children by 34% (OR = 1.34, 95% CI: 1.14-1.57), with high heterogeneity (I 2 = 79%, p < 0.001) and also increased the risk of developing lower respiratory tract infection by 79% (OR = 1.79, 95% CI: 1.45-2.21) with nonsignificant low heterogeneity (I 2 = 30%, p-value = 0.18). Conclusion: This meta-analysis provided valuable evidence supporting the association between childhood asthma, wheezing, and lower respiratory tract infection with pesticide exposure. The findings would contribute to a better understanding of the estimate of the effect of pesticide exposure on respiratory health in children and inform evidence-based preventive strategies and public health interventions.


Subject(s)
Asthma , Environmental Exposure , Pesticides , Respiratory Sounds , Respiratory Tract Infections , Humans , Asthma/epidemiology , Asthma/chemically induced , Respiratory Sounds/etiology , Pesticides/adverse effects , Respiratory Tract Infections/epidemiology , Child , Environmental Exposure/adverse effects , Child, Preschool , Adolescent , Infant
3.
Environ Int ; 189: 108810, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38875815

ABSTRACT

Previous studies of air pollution and respiratory disease often relied on aggregated or lagged acute respiratory disease outcome measures, such as emergency department (ED) visits or hospitalizations, which may lack temporal and spatial resolution. This study investigated the association between daily air pollution exposure and respiratory symptoms among participants with asthma and chronic obstructive pulmonary disease (COPD), using a unique dataset passively collected by digital sensors monitoring inhaled medication use. The aggregated dataset comprised 456,779 short-acting beta-agonist (SABA) puffs across 3,386 people with asthma or COPD, between 2012 and 2019, across the state of California. Each rescue use was assigned space-time air pollution values of nitrogen dioxide (NO2), fine particulate matter with diameter ≤ 2.5 µm (PM2.5) and ozone (O3), derived from highly spatially resolved air pollution surfaces generated for the state of California. Statistical analyses were conducted using linear mixed models and random forest machine learning. Results indicate that daily air pollution exposure is positively associated with an increase in daily SABA use, for individual pollutants and simultaneous exposure to multiple pollutants. The advanced linear mixed model found that a 10-ppb increase in NO2, a 10 µg m-3 increase in PM2.5, and a 30-ppb increase in O3 were respectively associated with incidence rate ratios of SABA use of 1.025 (95 % CI: 1.013-1.038), 1.054 (95 % CI: 1.041-1.068), and 1.161 (95 % CI: 1.127-1.233), equivalent to a respective 2.5 %, 5.4 % and 16 % increase in SABA puffs over the mean. The random forest machine learning approach showed similar results. This study highlights the potential of digital health sensors to provide valuable insights into the daily health impacts of environmental exposures, offering a novel approach to epidemiological research that goes beyond residential address. Further investigation is warranted to explore potential causal relationships and to inform public health strategies for respiratory disease management.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Particulate Matter , Humans , Air Pollution/adverse effects , Air Pollution/statistics & numerical data , California/epidemiology , Particulate Matter/analysis , Particulate Matter/adverse effects , Air Pollutants/analysis , Air Pollutants/adverse effects , Longitudinal Studies , Ozone/analysis , Ozone/adverse effects , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Asthma/epidemiology , Asthma/chemically induced , Male , Nitrogen Dioxide/analysis , Nitrogen Dioxide/adverse effects , Pulmonary Disease, Chronic Obstructive/epidemiology , Female , Middle Aged , Environmental Monitoring/methods , Aged , Adult , Digital Health
4.
Ecotoxicol Environ Saf ; 280: 116534, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38823345

ABSTRACT

The correlation between formaldehyde (FA) exposure and prevalence of asthma has been widely reported. However, the underlying mechanism is still not fully understood. FA exposure at 2.0 mg/m3 was found to exacerbate asthma in OVA-induced murine models. IFN-γ, the cytokine produced by T helper 1 (Th1) cells, was significantly induced by FA in serum and bronchoalveolar lavage fluid (BALF) of asthmatic mice, which was different from cytokines secreted by other Th cells. The observation was also confirmed by mRNA levels of Th marker genes in CD4+ T cells isolated from BALF. In addition, increased production of IFN-γ and expression of T-bet in Jurkat T cells primed with phorbol ester and phytohaemagglutinin were also observed with 100 µM FA treatment in vitro. Upregulated STAT1 phosphorylation, T-bet expression and IFN-γ production induced by FA was found to be restrained by STAT1 inhibitor fludarabine, indicating that FA promoted Th1 commitment through the autocrine IFN-γ/STAT1/T-bet pathway in asthma. This work not only revealed that FA could bias Th lineage commitment to exacerbate allergic asthma, but also identified the signaling mechanism of FA-induced Th1 differentiation, which may be utilized as the target for development of interfering strategies against FA-induced immune disorders.


Subject(s)
Asthma , Formaldehyde , Interferon-gamma , STAT1 Transcription Factor , T-Box Domain Proteins , Asthma/chemically induced , Animals , STAT1 Transcription Factor/metabolism , Interferon-gamma/metabolism , Mice , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Formaldehyde/toxicity , Inflammation/chemically induced , Mice, Inbred BALB C , Humans , Female , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/chemistry , T-Lymphocytes, Helper-Inducer/drug effects , Signal Transduction/drug effects , Th1 Cells/drug effects , Th1 Cells/immunology , Jurkat Cells
5.
Sci Rep ; 14(1): 14712, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926453

ABSTRACT

Human health is becoming concerned about exposure to endocrine disrupting chemicals (EDCs) emanating from plastic, such as phthalates, which are industrially employed as plasticizers in the manufacturing of plastic products. Due to some toxicity concerns, di(2-ethylhexyl) phthalate (DEHP) was replaced by diisononyl phthalate (DiNP). Recent data, however, highlights the potential of DiNP to interfere with the endocrine system and influence allergic responses. Asthma affects brain function through hypoxia, systemic inflammation, oxidative stress, and sleep disturbances and its effective management is crucial for maintaining respiratory and brain health. Therefore, in DiNP-induced asthmatic mice, this study investigated possible crosstalk between the lungs and the brain inducing perturbations in neural mitochondrial antioxidant status, inflammation biomarkers, energy metabolizing enzymes, and apoptotic indicators. To achieve this, twelve (n = 12, 20-30 g) male BALB/c mice were divided into two (2) experimental groups, each with five (6) mice. Mice in group II were subjected to 50 mg/kg body weight (BW) DiNP (Intraperitoneal and intranasal), while group I served as the control group for 24 days. The effects of DiNP on neural energy metabolizing enzymes (Hexokinase, Aldolase, NADase, Lactate dehydrogenase, Complex I, II, II & IV), biomarkers of inflammation (Nitric oxide, Myeloperoxidase), oxidative stress (malondialdehyde), antioxidants (catalase, glutathione-S-transferase, and reduced glutathione), oncogenic and apoptotic factors (p53, K-ras, Bcl, etc.), and brain histopathology were investigated. DiNP-induced asthmatic mice have significantly (p < 0.05) altered neural energy metabolizing capacities due to disruption of activities of enzymes of glycolytic and oxidative phosphorylation. Other responses include significant inflammation, oxidative distress, decreased antioxidant status, altered oncogenic-apoptotic factors level and neural degeneration (as shown in hematoxylin and eosin-stained brain sections) relative to control. Current findings suggest that neural histoarchitecture, energy metabolizing potentials, inflammation, oncogenic and apoptotic factors, and mitochondrial antioxidant status may be impaired and altered in DiNP-induced asthmatic mice suggesting a pivotal crosstalk between the two intricate organs (lungs and brain).


Subject(s)
Apoptosis , Asthma , Lung , Mice, Inbred BALB C , Mitochondria , Oxidative Stress , Phthalic Acids , Animals , Apoptosis/drug effects , Asthma/metabolism , Asthma/chemically induced , Asthma/pathology , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Male , Lung/metabolism , Lung/pathology , Lung/drug effects , Cell Respiration/drug effects , Signal Transduction/drug effects , Brain/metabolism , Brain/pathology , Brain/drug effects
6.
Environ Res ; 255: 119130, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38735375

ABSTRACT

OBJECTIVES: This study aims to assess the specific PM2.5-bound metallic elements that contribute to asthma emergency department visits by using a case-crossover study design. METHODS: This study analyzed data from 11,410 asthma emergency department visits as case group and 22,820 non-asthma onset dates occurring one week and two weeks preceding the case day as controls from 2017 to 2020. PM2.5 monitoring data and 35 PM.2.5-bound metallic elements from six different regions in Taiwan were collected. Conditional logistic regression models were used to assess the relationship between asthma and PM2.5-bound metallic elements. RESULTS: Our investigation revealed a statistically significant risk of asthma emergency department visits associated with PM2.5 exposure at lag 0, 1, 2, and 3 during autumn. Additionally, PM2.5-bound hafnium (Hf), thallium (Tl), rubidium (Rb), and aluminum (Al) exhibited a consistently significant positive correlation with asthma emergency department visits at lags 1, 2, and 3. In stratified analyses by area, age, and sex, PM2.5-bound Hf showed a significant and consistent correlation. CONCLUSIONS: This study provides evidence of PM2.5-bound metallic elements effects in asthma exacerbations, particularly for Hf. It emphasizes the importance of understanding the origins of these metallic elements and pursuing emission reductions to mitigate regional health risks.


Subject(s)
Air Pollutants , Asthma , Cross-Over Studies , Emergency Service, Hospital , Particulate Matter , Asthma/epidemiology , Asthma/chemically induced , Taiwan/epidemiology , Emergency Service, Hospital/statistics & numerical data , Particulate Matter/analysis , Humans , Male , Female , Middle Aged , Adult , Air Pollutants/analysis , Aged , Adolescent , Young Adult , Metals/analysis , Child , Environmental Exposure/adverse effects , Child, Preschool , Infant , Emergency Room Visits
7.
Biomed Pharmacother ; 175: 116788, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772153

ABSTRACT

AIMS: Penicilazaphilone C (PAC) is hypothesized to potentially serve as a therapeutic treatment for allergic airway inflammation by inhibiting the NLRP3 inflammasome and reducing oxidative stress. METHODS: An allergic asthma model was induced in female BALB/c mice of the OVA, OVA+PAC, OVA+PAC+LPS, and OVA+Dex groups by sensitizing and subsequently challenging them with OVA. The OVA+PAC and Normal+PAC groups were treated with PAC, while the OVA+PAC+LPS group also received LPS. The OVA+Dex group was given dexamethasone (Dex). Samples of serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for histological and cytological analysis. RESULTS: Allergic mice treated with PAC or Dex showed inhibited inflammation and mucus production in the lungs. There was a decrease in the number of inflammatory cells in the BALF, lower levels of inflammatory cytokines in the serum and BALF, and a reduction in the protein expression of NLRP3, ASC, cleaved caspase-1, IL-1ß, activated gasdermin D, MPO, Ly6G, and ICAM-1. Additionally, oxidative stress was reduced, as shown by a decrease in MDA and DCF, but an increase in SOD and GSH. Treatment with PAC also resulted in a decrease in pulmonary memory CD4+ T cells and an increase in regulatory T cells. However, the positive effects seen in the PAC-treated mice were reversed when the NLRP3 inflammasome was activated by LPS, almost returning to the levels of the Sham-treated mice. SIGNIFICANCE: PAC acts in a similar way to anti-allergic inflammation as Dex, suggesting it may be a viable therapeutic option for managing allergic asthma inflammation.


Subject(s)
Asthma , Bronchoalveolar Lavage Fluid , Inflammasomes , Mice, Inbred BALB C , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Female , Inflammasomes/metabolism , Inflammasomes/drug effects , Asthma/drug therapy , Asthma/immunology , Asthma/chemically induced , Mice , Lung/drug effects , Lung/pathology , Lung/metabolism , Lung/immunology , Oxidative Stress/drug effects , Ovalbumin , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/pathology , Disease Models, Animal , Dexamethasone/pharmacology , Anti-Inflammatory Agents/pharmacology
8.
Mol Biol Rep ; 51(1): 698, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811424

ABSTRACT

BACKGROUND: Existing investigations suggest that the blockade of phosphoinositide 3-kinase (PI3K) activity contributes to inflammatory solution in allergic asthma, but whether this inhibition directly attenuates neutrophilic airway inflammation in vivo is still unclear. We explored the pharmacological effects of LY294002, a specific inhibitor of PI3K on the progression of neutrophilic airway inflammation and investigated the underlying mechanism. METHODS AND RESULTS: Female C57BL/6 mice were intranasally sensitized with ovalbumin (OVA) together with lipopolysaccharide (LPS) on days 0 and 6, and challenged with OVA on days 14-17 to establish a neutrophilic airway disease model. In the challenge phase, a subset of mice was treated intratracheally with LY294002. We found that treatment of LY294002 attenuates clinic symptoms of inflammatory mice. Histological studies showed that LY294002 significantly inhibited inflammatory cell infiltration and mucus production. The treatment also significantly inhibited OVA-LPS induced increases in inflammatory cell counts, especially neutrophil counts, and IL-17 levels in bronchoalveolar lavage fluid (BALF). LY294002 treated mice exhibited significantly increased IL-10 levels in BALF compared to the untreated mice. In addition, LY294002 reduced the plasma concentrations of IL-6 and IL-17. The anti-inflammatory effects of LY29402 were correlated with the downregulation of NLRP3 inflammasome. CONCLUSIONS: Our findings suggested that LY294002 as a potential pharmacological target for neutrophilic airway inflammation.


Subject(s)
Asthma , Bronchoalveolar Lavage Fluid , Chromones , Disease Models, Animal , Inflammasomes , Lipopolysaccharides , Mice, Inbred C57BL , Morpholines , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophils , Ovalbumin , Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors , Animals , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/immunology , Lipopolysaccharides/pharmacology , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Female , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Chromones/pharmacology , Morpholines/pharmacology , Neutrophils/drug effects , Neutrophils/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lung/pathology , Lung/drug effects , Lung/metabolism , Interleukin-17/metabolism
9.
J Neuroimmune Pharmacol ; 19(1): 13, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613591

ABSTRACT

The occurrence of major asthma symptoms is largely attributed to airway vagal hypertonia, of which the central mechanisms remain unclear. This study tests the hypotheses that endothelin-1-mediated brainstem glial activation produces asthmatic airway vagal hypertonia via enhanced action of adenosine 5'-triphosphate on neuronal purinergic P2X4 receptors. A rat model of asthma was prepared using ovalbumin. Airway vagal tone was evaluated by the recurrent laryngeal discharge and plethysmographic measurement of pulmonary function. The changes in the brainstem were examined using ELISA, Western blot, luciferin-luciferase, quantitative reverse transcription-polymerase chain reaction, enzyme activity assay and immunofluorescent staining, respectively. The results showed that in the medulla of rats, endothelin receptor type B and P2X4 receptors were primarily expressed in astrocytes and neurons, respectively, and both of which, along with endothelin-1 content, were significantly increased after ovalbumin sensitization. Ovalbumin sensitization significantly increased recurrent laryngeal discharge, which was blocked by acute intracisternal injection of P2X4 receptor antagonist 5-BDBD, knockdown of brainstem P2X4 receptors, and chronic intraperitoneal injection of endothelin receptor type B antagonist BQ788, respectively. Ovalbumin sensitization activated microglia and astrocytes and significantly decreased ecto-5'-nucleotidase activity in the medulla, and all of which, together with the increase of medullary P2X4 receptor expression and decrease of pulmonary function, were reversed by chronic BQ788 treatment. These results demonstrated that in rats, allergic airway challenge activates both microglia and astrocytes in the medulla via enhanced endothelin-1/endothelin receptor type B signaling, which subsequently causes airway vagal hypertonia via augmented adenosine 5'-triphosphate/P2X4 receptor signaling in central neurons of airway vagal reflex.


Subject(s)
Asthma , Polyphosphates , Receptors, Purinergic P2X4 , Rats , Animals , Rats, Sprague-Dawley , Endothelin-1 , Ovalbumin/toxicity , Asthma/chemically induced , Brain Stem , Muscle Hypertonia , Adenosine Triphosphate , Receptors, Endothelin , Adenosine
10.
Chemosphere ; 357: 141957, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641296

ABSTRACT

The current study aimed to explore whether bisphenol A (BPA) exposure aggravated the decrease in Tregs induced by ovalbumin (OVA) in adolescent female mouse models of asthma, and whether the process was associated with mTOR-mediated signaling pathways and DNA methylation levels. A total of 40 female C57BL/6 mice at the age of four weeks were used and divided into five groups after 1 week of domestication. Each group consisted of eight mice: the control group, OVA group, OVA + BPA (0.1 µg mL-1) group, OVA + BPA (0.2 µg mL-1) group, and OVA + BPA (0.4 µg mL-1) group. Results revealed that Foxp3 protein levels decreased in the spleens of mice exposed to BPA compared to those in the OVA group. After an elevation in BPA dose, the mRNAs of methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) were gradually upregulated. The mechanism was related to the activity of TLR4/NF-κB and PI3K/Akt/mTOR signaling pathways and the enhancement of Foxp3 DNA methylation. Our results, collectively, provided a new view for studying the mechanisms underlying BPA exposure-induced immune dysfunction. Investigation of the regulatory mechanisms of DNA methylation in the abnormal Th immune response caused by BPA exposure could help reveal the causes and molecular mechanisms underlying the high incidence of allergic diseases in children in recent years.


Subject(s)
Benzhydryl Compounds , DNA Methylation , Phenols , Signal Transduction , T-Lymphocytes, Regulatory , Animals , Female , Mice , Asthma/chemically induced , Benzhydryl Compounds/toxicity , DNA Methylation/drug effects , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Mice, Inbred C57BL , Ovalbumin , Phenols/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Spleen/drug effects , Spleen/metabolism , T-Lymphocytes, Regulatory/drug effects , TOR Serine-Threonine Kinases/metabolism , Up-Regulation/drug effects
11.
Environ Res ; 252(Pt 2): 118962, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38642637

ABSTRACT

BACKGROUND: The association between long-term exposure to ozone (O3) and adult-onset asthma (AOA) remains inconclusive, and analysis of causality is lacking. OBJECTIVES: To examine the causal association between long-term O3 exposure and AOA. METHODS: A prospective cohort study of 362,098 participants was conducted using the UK Biobank study. Incident cases of AOA were identified using health administrative data of the National Health Services. O3 exposure at participants' residential addresses was estimated by a spatio-temporal model. Instrumental variable (IV) modelling was used to analyze the causal association between O3 exposure and AOA, by incorporating wind speed and planetary boundary layer height as IVs into time-dependent Cox model. Negative control outcome (accidental injury) was also used to additionally evaluate unmeasured confounding. RESULTS: During a mean follow-up of 11.38 years, a total of 10,973 incident AOA cases were identified. A U-shaped concentration-response relationship was observed between O3 exposure and AOA in the traditional Cox models with HR of 0.916 (95% CI: 0.888, 0.945) for O3 at low levels (<38.17 ppb), and 1.204 (95% CI: 1.168, 1.242) for O3 at high levels (≥38.17 ppb). However, in the IV analysis we only found a statistically significant association between high-level O3 exposure and AOA risk, but not for low-level O3 exposure. No significant associations between O3 exposure and accidental injury were observed. CONCLUSION: Our findings suggest a potential causal relationship between long-term exposure to high-level ambient O3 and increased risks of AOA.


Subject(s)
Air Pollutants , Asthma , Environmental Exposure , Ozone , Humans , Ozone/analysis , Ozone/adverse effects , Asthma/epidemiology , Asthma/chemically induced , Prospective Studies , Male , Female , Middle Aged , Air Pollutants/analysis , Air Pollutants/toxicity , Adult , Environmental Exposure/adverse effects , Aged , United Kingdom/epidemiology , Incidence
12.
Nutrients ; 16(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38674852

ABSTRACT

Probiotics may protect against asthma. We want to investigate whether probiotics can reverse the adverse effects of phthalate exposure on asthma. We selected the female offspring of BALB/c mice, born from pregnant female mice fed with diethylhexyl phthalate (DEHP). They were continuously administrated DEHP and Lactobacillus salivarius ssp. salicinius SA-03 when they were 5 weeks old, and ovalbumin (OVA) for asthma induction started at 6 weeks for 32 days. The mice were divided into four groups (n = 6/group): 1. control group (C), 2. OVA/DEHP group (OD), 3. OVA/DEHP/probiotics low-dose group (ODP-1X), and OVA/DEHP/probiotics high-dose group (ODP-5X). We found that the administration of probiotics significantly reduced the asthma severity of the mice, as well as serum IgE and IL-5. In the ODP-5X group, the proportion of CD4+ cells in the lung was reduced, whereas IL-10 in serum and CD8+ cells in BALF were increased. In histopathology, the ODP group showed reduced infiltration of inflammatory cells, bronchial epithelial cell hyperplasia, and tracheal mucus secretion. These results might indicate that high-dose probiotics may affect anti-inflammatory cytokines and reduce asthma-relative indicators. The above results may provide evidence that high-dose probiotics supplementation might play a modulating role in DEHP causes of allergic asthma in the pediatric animal model.


Subject(s)
Asthma , Mice, Inbred BALB C , Probiotics , Animals , Asthma/chemically induced , Probiotics/pharmacology , Female , Mice , Ovalbumin , Ligilactobacillus salivarius , Diethylhexyl Phthalate/toxicity , Disease Models, Animal , Pregnancy , Lung/pathology , Lung/drug effects , Dietary Supplements , Immunoglobulin E/blood , Bronchoalveolar Lavage Fluid
13.
J Med Food ; 27(5): 437-448, 2024 May.
Article in English | MEDLINE | ID: mdl-38608247

ABSTRACT

Fine dust concentrations come in direct contact with the human respiratory system, thereby reducing lung function and causing respiratory diseases such as asthma and rhinitis. The aim of this study was to evaluate the efficacy of GHX02 (combination of four herbs [Trichosanthes kirilowii, Prunus armeniaca, Coptis japonica, and Scutellaria baicalensis]), a herbal extract with established efficacy against bronchitis and pulmonary disease, in the treatment of asthma accompanied by rhinitis aggravated by fine dust. Therefore, we constructed an asthma-rhinitis mouse model of Balb/c mice challenged with ovalbumin (OVA) and fine diesel particulate matter, which were administered with three concentrations of GHX02. GHX02 significantly inhibited the increase of total cells and immune cells in bronchoalveolar lavage fluid, lung tissue, and nasal ductal lymphoid tissue (NALT). GHX02 also reduced the severity of histological lung injury and the expression of interleukin (IL)-1α and nuclear factor kappa B (NF-κB), which regulate inflammatory responses. The results indicate that GHX02 inhibited the inflammatory immune response in mice. Therefore, this study highlights the potential of GHX02 as a treatment for patients with asthma accompanied by rhinitis. Balb/c mice were challenged with OVA and PM10D, and then treated with three concentration of GHX02. GHX02 significantly inhibited the increase of total cells, immune cells lymphocytes, neutrophils, and macrophages, as well as their expression in lung tissue. GHX02 significantly inhibited the increase of total cells and immune cells in NALT. GHX02 decreased the severity of histological lung injury, expression of IL-1α and NF-κB. This study suggests the probability that GHX02 is effective for asthma patients with rhinitis by inhibiting inflammatory immune response.


Subject(s)
Asthma , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Mice, Inbred BALB C , Ovalbumin , Particulate Matter , Plant Extracts , Animals , Asthma/drug therapy , Asthma/immunology , Asthma/chemically induced , Mice , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Female , Humans , Lung/drug effects , Lung/immunology , Lung/pathology , Rhinitis/drug therapy , Rhinitis/immunology , NF-kappa B/metabolism
14.
Exp Cell Res ; 438(1): 114029, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38608805

ABSTRACT

Aberrant expression of airway epithelial E-cadherin is a key feature of asthma, yet the underlying mechanisms are largely unknown. Ferroptosis is a novel form of regulated cell death involved in asthma pathogenesis. This study was aimed to evaluate the role of ferroptosis and to investigate whether ferroptosis mediates E-cadherin disruption in mixed granulocyte asthma (MGA). Two murine models of MGA were established using toluene diisocyanate (TDI) or ovalbumin with Complete Freund's Adjuvant (OVA/CFA). Specific antagonists of ferroptosis, including Liproxstatin-1 (Lip-1) and Ferrostatin-1 (Fer-1) were given to the mice. The allergen-exposed mice displayed markedly shrunk mitochondria in the airway epithelia, with decreased volume and denser staining accompanied by down-regulated GPX4 as well as up-regulated FTH1 and malondialdehyde, which are markers of ferroptosis. Decreased pulmonary expression of E-cadherin was also observed, with profound loss of membrane E-cadherin in the airway epithelia, as well as increased secretion of sE-cadherin. Treatment with Lip-1 not only showed potent protective effects against the allergen-induced airway hyperresponsiveness and inflammatory responses, but also rescued airway epithelial E-cadherin expression and inhibited the release of sE-cadherin. Taken together, our data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in MGA.


Subject(s)
Asthma , Cadherins , Disease Models, Animal , Ferroptosis , Granulocytes , Animals , Female , Mice , Asthma/metabolism , Asthma/pathology , Asthma/chemically induced , Cadherins/metabolism , Cyclohexylamines/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/drug effects , Ferroptosis/drug effects , Granulocytes/metabolism , Granulocytes/pathology , Mice, Inbred BALB C , Ovalbumin , Phenylenediamines/pharmacology , Quinoxalines , Spiro Compounds
15.
Chem Biol Interact ; 394: 111002, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38604395

ABSTRACT

Lung inflammatory disorders are a major global health burden, impacting millions of people and raising rates of morbidity and death across many demographic groups. An industrial chemical and common environmental contaminant, formaldehyde (FA) presents serious health concerns to the respiratory system, including the onset and aggravation of lung inflammatory disorders. Epidemiological studies have shown significant associations between FA exposure levels and the incidence and severity of several respiratory diseases. FA causes inflammation in the respiratory tract via immunological activation, oxidative stress, and airway remodelling, aggravating pre-existing pulmonary inflammation and compromising lung function. Additionally, FA functions as a respiratory sensitizer, causing allergic responses and hypersensitivity pneumonitis in sensitive people. Understanding the complicated processes behind formaldehyde-induced lung inflammation is critical for directing targeted strategies aimed at minimizing environmental exposures and alleviating the burden of formaldehyde-related lung illnesses on global respiratory health. This abstract explores the intricate relationship between FA exposure and lung inflammatory diseases, including asthma, bronchitis, allergic inflammation, lung injury and pulmonary fibrosis.


Subject(s)
Asthma , Bronchitis , Formaldehyde , Pulmonary Fibrosis , Formaldehyde/toxicity , Formaldehyde/adverse effects , Humans , Asthma/chemically induced , Pulmonary Fibrosis/chemically induced , Bronchitis/chemically induced , Animals , Environmental Exposure/adverse effects , Lung/drug effects , Lung/pathology , Pneumonia/chemically induced , Oxidative Stress/drug effects , Inflammation/chemically induced
16.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 29-39, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650159

ABSTRACT

Asthma is a chronic inflammatory disease of the airways strongly associated with interleukin-4 (IL-4), a cytokine that mediates and regulates various immune responses, including allergic reactions. This study aimed to evaluate the anti-inflammatory and antioxidant effects of an Aqueous Extract of Clove (AEC) Syzygium aromaticum on the lungs and erythrocytes of an experimental asthma model in Wistar rats. For this purpose, four groups of male rats were examined: control, sensitized with ovalbumin (OVA), treated with AEC, and treated with a combination of OVA/AEC. After treatment, the antioxidant effect was determined by measuring the malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione (GSH), and catalase (CAT) levels. The anti-inflammatory effect was determined by measuring IL-4 levels by performing enzyme-linked immunosorbent assay (ELISA) using serum, lung, and bronchoalveolar lavage fluid (BALF) samples. A significant reduction (p ≤ 0.05) in the MDA levels and a significant increase (p ≤ 0.05) in the levels of GPx and CAT were observed in the lungs of rats treated with cloves. However, no statistically significant variation was observed in GSH levels. In erythrocytes, no statistically significant differences were observed between the experimental batches. Regarding the anti-inflammatory effect, the administration of S. aromaticum extract to sensitized rats resulted in a recovery in the levels of total proteins and IL-4 and a decrease in the three compartments studied (lungs, serum, and bronchoalveolar liquid). These results were confirmed by microscopic examination of lung histological sections. Overall, these findings confirmed that the AEC has anti-inflammatory and antioxidant effects.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Asthma , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Glutathione Peroxidase , Glutathione , Interleukin-4 , Lung , Malondialdehyde , Plant Extracts , Rats, Wistar , Syzygium , Animals , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Syzygium/chemistry , Male , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/pathology , Bronchoalveolar Lavage Fluid/chemistry , Lung/drug effects , Lung/pathology , Lung/metabolism , Glutathione Peroxidase/metabolism , Glutathione/metabolism , Interleukin-4/metabolism , Interleukin-4/blood , Malondialdehyde/metabolism , Ovalbumin , Catalase/metabolism , Rats , Erythrocytes/drug effects , Erythrocytes/metabolism , Water/chemistry
17.
Biomed Pharmacother ; 174: 116596, 2024 May.
Article in English | MEDLINE | ID: mdl-38631146

ABSTRACT

Particulate matter (PM) significantly contributes to the global health crisis of respiratory diseases. It is known to induce and exacerbate conditions such as asthma and respiratory infections. Long exposure to PM can increase the risk of combined allergic rhinitis and asthma syndrome (CARAS). Although therapeutic drugs can be used to improve symptoms of respiratory diseases caused by PM, their usage is often accompanied by side effects. Therefore, many studies are being conducted to discover functional food materials that can more effectively treat respiratory diseases while minimizing the side effects of these therapeutic drugs. This study was conducted to investigate the efficacy of Hydrangea serrata extract (HSE) in airway inflammation in a mouse model of CARAS exacerbated by PM. In the CARAS mouse model worsened by PM, the airway inflammation improvement effect of HSE was evaluated by analyzing allergic nasal symptoms, changes in inflammatory cells, OVA-specific immunoglobulin (Ig) levels, cytokines, mast cell activation, and histopathological findings of both nasal mucosa and lung tissue. HSE effectively reduced OVA-specific IgE and IgG1 and inhibited the production of T helper type 2 (Th2)-related cytokines such as IL-4 and IL-5. Importantly, HSE reduced IL-33 and ST2 expression and inhibited the activation of the NF-κB signaling pathway. In addition, HSE inhibited airway hypersensitivity, mucus production, and inflammatory cell infiltration. These results suggest that HSE may inhibit airway inflammation in CARAS/PM mice by regulating the IL-33/ST2/NF-κB signaling pathway, opening avenues for considering HSE as a potential material for treating allergic airway inflammation diseases in the future.


Subject(s)
Asthma , Disease Models, Animal , Hydrangea , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Mice, Inbred BALB C , NF-kappa B , Particulate Matter , Plant Extracts , Signal Transduction , Animals , NF-kappa B/metabolism , Signal Transduction/drug effects , Plant Extracts/pharmacology , Interleukin-33/metabolism , Particulate Matter/toxicity , Particulate Matter/adverse effects , Asthma/drug therapy , Asthma/chemically induced , Mice , Hydrangea/chemistry , Interleukin-1 Receptor-Like 1 Protein/metabolism , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/chemically induced , Female , Inflammation/drug therapy , Inflammation/pathology , Cytokines/metabolism , Ovalbumin , Lung/drug effects , Lung/pathology , Lung/metabolism
18.
Int Immunopharmacol ; 132: 111985, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38603862

ABSTRACT

BACKGROUND: Bronchial asthma is a severe respiratory condition characterized by airway inflammation, remodeling, and oxidative stress. ß-Glucan (BG) is a polysaccharide found in fungal cell walls with powerful immunomodulatory properties. This study examined and clarified the mechanisms behind BG's ameliorativeactivitiesin an allergic asthma animal model. METHOD: BG was extracted from Chaga mushroom and characterized using FT-IR, UV-visible, zeta potential, and 1H NMR analysis. The mice were divided into five groups, including control, untreated asthmatic, dexamethasone (Dexa)-treated (1 mg/kg), and BG (30 and 100 mg/kg)-treated groups. RESULTS: BG treatment reduced nasal scratching behavior, airway-infiltrating inflammatory cells, and serum levels of IgE significantly. Additionally, BG attenuated oxidative stress biomarkers by lowering malonaldehyde (MDA) concentrations and increasing the levels of reduced glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT). Immunohistochemical and flow cytometric analyses have confirmed the suppressive effect of BG on the percentage of airway-infiltrating cytotoxic CD8+ T cells. CONCLUSION: The findings revealed the role of CD8+ T cells in the pathogenesis of asthma and the role of BG as a potential therapeutic agent for asthma management through the suppression of airway inflammation and oxidative stress.


Subject(s)
Asthma , CD8-Positive T-Lymphocytes , Mice, Inbred BALB C , Ovalbumin , Oxidative Stress , beta-Glucans , Animals , Oxidative Stress/drug effects , beta-Glucans/pharmacology , beta-Glucans/therapeutic use , beta-Glucans/chemistry , Asthma/drug therapy , Asthma/immunology , Asthma/chemically induced , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Ovalbumin/immunology , Mice , Disease Models, Animal , Immunoglobulin E/blood , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Lung/pathology , Lung/drug effects , Lung/immunology , Female , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use
19.
Aging (Albany NY) ; 16(7): 6478-6487, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38579176

ABSTRACT

Stigmasterol is a common dietary phytosterol with high nutritional value and physiological activity. In this study, we evaluated the effects of stigmasterol on inflammatory cytokines and the TGF-ß1/Smad2 and IL-17A signaling pathway in an ovalbumin (OVA)-induced asthma mouse model. Stigmasterol treatment improved airway remodeling. In addition, it significantly attenuated the symptoms of asthma attacks, reduced the number of macrophages, lymphocytes, neutrophils, and eosinophils in BALF and inflammatory cytokines, including IL-1ß, IL-5, IL-6, and IL-13. It further decreased the level of IL-17A in BALF, serum and spleen. Spleen single-cell suspension analysis via flow cytometry showed that IL-17A level was consistent with the results obtained in BALF, serum and spleen. Stigmasterol decreased the protein expression levels of TGF-ß, p-Smad2 and IL-17A in the spleen, by increasing the protein expression level of IL-10. After 24 h of co-culture of TGF-ß, IL-6 and stigmasterol, the level of IL-17 in CD4+ T cell supernatant was lower relative to levels in the group without stigmasterol. Meanwhile, stigmasterol treatment attenuated the expression level of TGF- ß, p-Smad2 and IL-17A proteins in CD4+ T cells and enhanced the expression levels of IL-10 protein. These data suggested that stigmasterol inhibited the TGF-ß1/Smad2 and IL-17A signaling pathway to achieve anti-asthmatic effects in the OVA-induced asthma mouse model. Collectively, the results of this study are that stigmasterol has achieved preliminary efficacy in the non-clinical laboratory, further studies are needed to consider the clinical application of stigmasterol.


Subject(s)
Asthma , Interleukin-17 , Ovalbumin , Signal Transduction , Smad2 Protein , Stigmasterol , Transforming Growth Factor beta1 , Animals , Asthma/drug therapy , Asthma/metabolism , Asthma/chemically induced , Asthma/immunology , Smad2 Protein/metabolism , Mice , Transforming Growth Factor beta1/metabolism , Signal Transduction/drug effects , Interleukin-17/metabolism , Stigmasterol/pharmacology , Disease Models, Animal , Mice, Inbred BALB C , Female , Airway Remodeling/drug effects , Inflammation/metabolism , Inflammation/drug therapy
20.
J Water Health ; 22(4): 735-745, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38678426

ABSTRACT

Swimming is a widely practiced exercise in modern society, where there is a heightened interest in health. The exceptional benefits of swimming are well-known, yet the issue of water quality management inevitably arises due to its nature as an aquatic exercise. Several studies reported that chlorine disinfectants commonly used in swimming pool water disinfection could degrade into toxic disinfection by-products (DBPs) and suggested that the DBPs might induce respiratory disorders, including asthma. Conversely, there were also reports that the DBPs had no significant effects on respiratory conditions. In this study, we investigated the influence of swimming exercise and DBPs on asthma. The decomposition products had little effect on the number of T cells in various immune organs. However, swimming exercise was found to increase the cell count in proportion to the exercise duration. Nevertheless, there were no significant changes in other immune cells and the secretion of asthma-related cytokines. These findings indicate that the effects of swimming pool DBPs on respiratory conditions during swimming exercise are either negligible or absent, and instead, the immunological benefits gained through consistent swimming exercise outweigh any potential drawbacks.


Subject(s)
Asthma , Disinfectants , Swimming Pools , Swimming , Asthma/chemically induced , Disinfection/methods , Male , Mice , Animals , Humans , Water Pollutants, Chemical , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...