Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.610
Filter
1.
PLoS One ; 19(9): e0309400, 2024.
Article in English | MEDLINE | ID: mdl-39255314

ABSTRACT

Glaucoma is a blinding disease where the retinal ganglion cells and their axons degenerate. Degradation of axonal microtubules is thought to play a critical role in the pathogenesis, but the mechanism is unknown. Here we investigate whether microtubule disruption in glaucoma can be alleviated by metabolic rescue. The integrity of axonal microtubules and the morphology of the retinal nerve fibers were evaluated by second-harmonic generation microscopy in a mouse model of glaucoma, DBA/2J, which received a dietary supplement of nicotinamide (NAM) for reducing metabolic stress. It was compared with control DBA/2J, which did not receive NAM, and non-glaucomatous DBA/2J-Gpnmb+. We found that the morphology of the retinal nerve fibers, but not axonal microtubules, are significantly protected by NAM. The decoupling is analogous to microtubule deficit, a glaucoma pathology in which axonal microtubules exhibit rapid degradation compared to the morphology of the retinal nerve fibers. Understanding microtubule deficit could provide insights into the divergent responses to NAM. From co-registered images of second-harmonic generation and immunofluorescence, it was determined that microtubule deficit was not due to a shortage of tubulins. Furthermore, microtubule deficit colocalized with the sectors in which the retinal ganglion cells were disconnected from the brain, suggesting that microtubule disruption is associated with axonal transport deficit in glaucoma. Together, our data suggests significant role axonal microtubules play in glaucomatous degeneration, offering a new opportunity for neuroprotection.


Subject(s)
Disease Models, Animal , Glaucoma , Mice, Inbred DBA , Microtubules , Niacinamide , Retinal Ganglion Cells , Animals , Glaucoma/pathology , Glaucoma/metabolism , Glaucoma/drug therapy , Niacinamide/pharmacology , Niacinamide/therapeutic use , Mice , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Microtubules/drug effects , Microtubules/metabolism , Axons/drug effects , Axons/metabolism , Axons/pathology , Microscopy/methods , Nerve Fibers/drug effects , Nerve Fibers/pathology , Nerve Fibers/metabolism
2.
Int J Mol Sci ; 25(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39273121

ABSTRACT

Traumatic spinal cord injury (tSCI) has complex pathophysiological events that begin after the initial trauma. One such event is fibroglial scar formation by fibroblasts and reactive astrocytes. A strong inhibition of axonal growth is caused by the activated astroglial cells as a component of fibroglial scarring through the production of inhibitory molecules, such as chondroitin sulfate proteoglycans or myelin-associated proteins. Here, we used neural precursor cells (aldynoglia) as promoters of axonal growth and a fibrin hydrogel gelled under alkaline conditions to support and guide neuronal cell growth, respectively. We added Tol-51 sulfoglycolipid as a synthetic inhibitor of astrocyte and microglia in order to test its effect on the axonal growth-promoting function of aldynoglia precursor cells. We obtained an increase in GFAP expression corresponding to the expected glial phenotype for aldynoglia cells cultured in alkaline fibrin. In co-cultures of dorsal root ganglia (DRG) and aldynoglia, the axonal growth promotion of DRG neurons by aldynoglia was not affected. We observed that the neural precursor cells first clustered together and then formed niches from which aldynoglia cells grew and connected to groups of adjacent cells. We conclude that the combination of alkaline fibrin with synthetic sulfoglycolipid Tol-51 increased cell adhesion, cell migration, fasciculation, and axonal growth capacity, promoted by aldynoglia cells. There was no negative effect on the behavior of aldynoglia cells after the addition of sulfoglycolipid Tol-51, suggesting that a combination of aldynoglia plus alkaline fibrin and Tol-51 compound could be useful as a therapeutic strategy for tSCI repair.


Subject(s)
Axons , Fibrin , Ganglia, Spinal , Animals , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/cytology , Axons/metabolism , Axons/drug effects , Fibrin/metabolism , Hydrogels/chemistry , Hydrogels/pharmacology , Rats , Glycolipids/pharmacology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neurons/metabolism , Neurons/drug effects , Cells, Cultured , Coculture Techniques , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Neuroglia/drug effects , Neuroglia/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Spinal Cord/metabolism , Spinal Cord/drug effects , Spinal Cord/cytology , Cell Movement/drug effects
3.
Cells ; 13(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39120298

ABSTRACT

The establishment of neuronal polarity, involving axon specification and outgrowth, is critical to achieve the proper morphology of neurons, which is important for neuronal connectivity and cognitive functions. Extracellular factors, such as Wnts, modulate diverse aspects of neuronal morphology. In particular, non-canonical Wnt5a exhibits differential effects on neurite outgrowth depending upon the context. Thus, the role of Wnt5a in axon outgrowth and neuronal polarization is not completely understood. In this study, we demonstrate that Wnt5a, but not Wnt3a, promotes axon outgrowth in dissociated mouse embryonic cortical neurons and does so in coordination with the core PCP components, Prickle and Vangl. Unexpectedly, exogenous Wnt5a-induced axon outgrowth was dependent on endogenous, neuronal Wnts, as the chemical inhibition of Porcupine using the IWP2- and siRNA-mediated knockdown of either Porcupine or Wntless inhibited Wnt5a-induced elongation. Importantly, delayed treatment with IWP2 did not block Wnt5a-induced elongation, suggesting that endogenous Wnts and Wnt5a act during specific timeframes of neuronal polarization. Wnt5a in fibroblast-conditioned media can associate with small extracellular vesicles (sEVs), and we also show that these Wnt5a-containing sEVs are primarily responsible for inducing axon elongation.


Subject(s)
Axons , Cell Polarity , Wnt-5a Protein , Animals , Wnt-5a Protein/metabolism , Cell Polarity/drug effects , Axons/metabolism , Axons/drug effects , Mice , Wnt Signaling Pathway/drug effects , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neuronal Outgrowth/drug effects , Neurons/metabolism , Neurons/cytology , Wnt3A Protein/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics
4.
Methods Mol Biol ; 2831: 325-332, 2024.
Article in English | MEDLINE | ID: mdl-39134860

ABSTRACT

The analysis of nerve regeneration in the chemotherapy-induced peripheral neuropathy (CIPN) model can be achieved using the compartmentalized culture system. This system enables us to isolate the cell body from the axon physically and fluidically, therefore allowing for the independent manipulation of the cell body and axons. Compartmentalized chambers mimic the human body conditions, and can be used to study axonal degeneration, disease modeling, and drug screening. This culture system is applied to the CIPN model to study and analyze axonal behavior in response to paclitaxel (PTX) with and without fluocinolone acetonide (FA) and to better understand the site-specific target of PTX. Therefore, this compartmentalized system allows for the independent treatment of chemotherapy drugs to the cell body or axonal side which enables monitoring their reaction as a result of the treatment.


Subject(s)
Nerve Regeneration , Paclitaxel , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Paclitaxel/pharmacology , Animals , Humans , Peripheral Nervous System Diseases/pathology , Peripheral Nervous System Diseases/chemically induced , Axons/physiology , Axons/drug effects , Axons/metabolism , Rats
5.
Cells ; 13(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39195214

ABSTRACT

Following spinal cord injury (SCI), the regenerative capacity of the central nervous system (CNS) is severely limited by the failure of axonal regeneration. The regeneration of CNS axons has been shown to occur by grafting predegenerated peripheral nerves (PPNs) and to be promoted by the transplantation of neural precursor cells (NPCs). The introduction of a combinatorial treatment of PPNs and NPCs after SCI has to address the additional problem of glial scar formation, which prevents regenerating axons from leaving the implant and making functional connections. Previously, we discovered that the synthetic sulfoglycolipid Tol-51 inhibits astrogliosis. The objective was to evaluate axonal regeneration and locomotor function improvement after SCI in rats treated with a combination of PPN, NPC, and Tol-51. One month after SCI, the scar tissue was removed and replaced with segments of PPN or PPN+Tol-51; PPN+NPC+Tol-51. The transplantation of a PPN segment favors regenerative axonal growth; in combination with Tol-51 and NPC, 30% of the labeled descending corticospinal axons were able to grow through the PPN and penetrate the caudal spinal cord. The animals treated with PPN showed significantly better motor function. Our data demonstrate that PPN implants plus NPC and Tol-51 allow successful axonal regeneration in the CNS.


Subject(s)
Nerve Regeneration , Neural Stem Cells , Peripheral Nerves , Spinal Cord Injuries , Animals , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Rats , Nerve Regeneration/drug effects , Neural Stem Cells/drug effects , Neural Stem Cells/transplantation , Neural Stem Cells/cytology , Peripheral Nerves/drug effects , Peripheral Nerves/pathology , Female , Axons/drug effects , Glycolipids/pharmacology , Recovery of Function/drug effects
6.
Environ Pollut ; 360: 124651, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39094998

ABSTRACT

2,5-hexanedione (HD) is the γ-diketone metabolite of industrial organic solvent n-hexane, primarily responsible for n-hexane neurotoxicity. Previous studies have shown that the formation of pyrrole adducts (PAs) is crucial for the toxic axonopathy induced by HD. However, the exact mechanism underlying PAs-induced axonal degeneration remains unclear. Recently, Sterile α and toll/interleukin 1 receptor motif-containing protein 1 (SARM1) has been identified as the central executor of axon degeneration. This study was designed to investigate the role of SARM1-mediated axon degeneration in rats exposed to HD. Furthermore, the causal relationship between PAs and SARM1-mediated axon degeneration was further explored using Sarm1 KO mice. Our findings suggest that HD causes axon degeneration and neuronal loss in animals. Mechanistic studies revealed that HD activates SARM1-dependent axonal degeneration machinery. In contrast, Sarm1 KO attenuates motor dysfunction and rescues neuron loss following HD exposure. Interestingly, the PAs formed by the binding of HD to proteins primarily accumulate on mitochondria, leading to mitochondrial dysfunction. This dysfunction serves as an upstream event in HD-induced nerve injuries. Our findings highlight the crucial role of PAs formation in the major pathological changes during n-hexane poisoning, providing a potential therapeutic target for n-hexane neuropathy.


Subject(s)
Armadillo Domain Proteins , Axons , Cytoskeletal Proteins , Hexanones , Mitochondria , Animals , Armadillo Domain Proteins/metabolism , Armadillo Domain Proteins/genetics , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Hexanones/toxicity , Axons/drug effects , Axons/metabolism , Rats , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Mice, Knockout , Male , Rats, Sprague-Dawley , Neurotoxicity Syndromes , Hexanes/toxicity
7.
Int J Mol Sci ; 25(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39000003

ABSTRACT

Peripheral nerve injuries (PNIs) represent a significant clinical challenge, particularly in elderly populations where axonal remyelination and regeneration are impaired. Developing therapies to enhance these processes is crucial for improving PNI repair outcomes. Glutamate carboxypeptidase II (GCPII) is a neuropeptidase that plays a pivotal role in modulating glutamate signaling through its enzymatic cleavage of the abundant neuropeptide N-acetyl aspartyl glutamate (NAAG) to liberate glutamate. Within the PNS, GCPII is expressed in Schwann cells and activated macrophages, and its expression is amplified with aging. In this study, we explored the therapeutic potential of inhibiting GCPII activity following PNI. We report significant GCPII protein and activity upregulation following PNI, which was normalized by the potent and selective GCPII inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In vitro, 2-PMPA robustly enhanced myelination in dorsal root ganglion (DRG) explants. In vivo, using a sciatic nerve crush injury model in aged mice, 2-PMPA accelerated remyelination, as evidenced by increased myelin sheath thickness and higher numbers of remyelinated axons. These findings suggest that GCPII inhibition may be a promising therapeutic strategy to enhance remyelination and potentially improve functional recovery after PNI, which is especially relevant in elderly PNI patients where this process is compromised.


Subject(s)
Glutamate Carboxypeptidase II , Peripheral Nerve Injuries , Remyelination , Animals , Mice , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/metabolism , Remyelination/drug effects , Glutamate Carboxypeptidase II/antagonists & inhibitors , Glutamate Carboxypeptidase II/metabolism , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Aging/drug effects , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Mice, Inbred C57BL , Nerve Regeneration/drug effects , Sciatic Nerve/injuries , Sciatic Nerve/drug effects , Male , Axons/drug effects , Axons/metabolism
8.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000515

ABSTRACT

Advanced glycation end-products (AGEs) form through non-enzymatic glycation of various proteins. Optic nerve degeneration is a frequent complication of diabetes, and retinal AGE accumulation is strongly linked to the development of diabetic retinopathy. Type 2 diabetes mellitus is a major risk factor for Alzheimer's disease (AD), with patients often exhibiting optic axon degeneration in the nerve fiber layer. Notably, a gap exists in our understanding of how AGEs contribute to neuronal degeneration in the optic nerve within the context of both diabetes and AD. Our previous work demonstrated that glyceraldehyde (GA)-derived toxic advanced glycation end-products (TAGE) disrupt neurite outgrowth through TAGE-ß-tubulin aggregation and tau phosphorylation in neural cultures. In this study, we further illustrated GA-induced suppression of optic nerve axonal elongation via abnormal ß-tubulin aggregation in mouse retinas. Elucidating this optic nerve degeneration mechanism holds promise for bridging the knowledge gap regarding vision loss associated with diabetes mellitus and AD.


Subject(s)
Axons , Glycation End Products, Advanced , Optic Nerve , Tubulin , Animals , Tubulin/metabolism , Glycation End Products, Advanced/metabolism , Mice , Optic Nerve/metabolism , Optic Nerve/pathology , Optic Nerve/drug effects , Axons/metabolism , Axons/drug effects , Axons/pathology , Mice, Inbred C57BL , Protein Aggregates/drug effects
9.
Sci Adv ; 10(27): eado9120, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959311

ABSTRACT

A bioinspired hydrogel composed of hyaluronic acid-graft-dopamine (HADA) and a designer peptide HGF-(RADA)4-DGDRGDS (HRR) was presented to enhance tissue integration following spinal cord injury (SCI). The HADA/HRR hydrogel manipulated the infiltration of PDGFRß+ cells in a parallel pattern, transforming dense scars into an aligned fibrous substrate that guided axonal regrowth. Further incorporation of NT3 and curcumin promoted axonal regrowth and survival of interneurons at lesion borders, which served as relays for establishing heterogeneous axon connections in a target-specific manner. Notable improvements in motor, sensory, and bladder functions resulted in rats with complete spinal cord transection. The HADA/HRR + NT3/Cur hydrogel promoted V2a neuron accumulation in ventral spinal cord, facilitating the recovery of locomotor function. Meanwhile, the establishment of heterogeneous neural connections across the hemisected lesion of canines was documented in a target-specific manner via neuronal relays, significantly improving motor functions. Therefore, biomaterials can inspire beneficial biological activities for SCI repair.


Subject(s)
Extracellular Matrix , Hydrogels , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Animals , Hydrogels/chemistry , Rats , Extracellular Matrix/metabolism , Neurons/metabolism , Neurons/drug effects , Dogs , Axons/metabolism , Axons/drug effects , Nerve Regeneration/drug effects , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Recovery of Function/drug effects , Dopamine/metabolism , Female , Disease Models, Animal , Rats, Sprague-Dawley , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Spinal Cord/metabolism
10.
Exp Neurol ; 379: 114886, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996862

ABSTRACT

Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) and the failure of axonal growth. SCI activates a complex series of responses, including cell apoptosis and endoplasmic reticulum (ER) stress. Pericytes play a critical role in maintaining BSCB integrity and facilitating tissue growth and repair. However, the roles of pericytes in SCI and the potential mechanisms underlying the improvements in functional recovery in SCI remain unclear. Recent evidence indicates that irisflorentin exerts neuroprotective effects against Parkinson's disease; however, whether it has potential protective roles in SCI or not is still unknown. In this study, we found that the administration of irisflorentin significantly inhibited pericyte apoptosis, protected BSCB integrity, promoted axonal growth, and ultimately improved locomotion recovery in a rat model of SCI. In vitro, we found that the positive effects of irisflorentin on axonal growth were likely to be mediated by regulating the crosstalk between pericytes and neurons. Furthermore, irisflorentin effectively ameliorated ER stress caused by incubation with thapsigargin (TG) in pericytes. Meanwhile, the protective effect of irisflorentin on BSCB disruption is strongly related to the reduction of pericyte apoptosis via inhibition of ER stress. Collectively, our findings demonstrate that irisflorentin is beneficial for functional recovery after SCI and that pericytes are a valid target of interest for future SCI therapies.


Subject(s)
Neuroprotective Agents , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord Injuries , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Recovery of Function/drug effects , Recovery of Function/physiology , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Axons/drug effects , Pericytes/drug effects , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Female , Spinal Cord/drug effects , Apoptosis/drug effects , Cells, Cultured
11.
Epigenetics ; 19(1): 2380930, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39066680

ABSTRACT

In mammals, the molecular mechanisms underlying transgenerational inheritance of phenotypic traits in serial generations of progeny after ancestral environmental exposures, without variation in DNA sequence, remain elusive. We've recently described transmission of a beneficial trait in rats and mice, in which F0 supplementation of methyl donors, including folic acid, generates enhanced axon regeneration after sharp spinal cord injury in untreated F1 to F3 progeny linked to differential DNA methylation levels in spinal cord tissue. To test whether the transgenerational effect of folic acid is transmitted via the germline, we performed whole-genome methylation sequencing on sperm DNA from F0 mice treated with either folic acid or vehicle control, and their F1, F2, and F3 untreated progeny. Transgenerational differentially methylated regions (DMRs) are observed in each consecutive generation and distinguish folic acid from untreated lineages, predominate outside of CpG islands and in regions of the genome that regulate gene expression, including promoters, and overlap at both the differentially methylated position (DMP) and gene levels. These findings indicate that molecular changes between generations are caused by ancestral folate supplementation. In addition, 29,719 DMPs exhibit serial increases or decreases in DNA methylation levels in successive generations of untreated offspring, correlating with a serial increase in the phenotype across generations, consistent with a 'wash-in' effect. Sibship-specific DMPs annotate to genes that participate in axon- and synapse-related pathways.


Subject(s)
Axons , DNA Methylation , Folic Acid , Spermatozoa , Folic Acid/pharmacology , Folic Acid/administration & dosage , Animals , Male , Mice , Spermatozoa/drug effects , Spermatozoa/metabolism , Axons/metabolism , Axons/drug effects , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , CpG Islands , Female , Nerve Regeneration/drug effects , Epigenesis, Genetic , Spinal Cord/metabolism , Spinal Cord/drug effects , Spinal Cord/cytology
12.
Neurobiol Dis ; 199: 106611, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032797

ABSTRACT

Ultrastructural studies of contusive spinal cord injury (SCI) in mammals have shown that the most prominent acute changes in white matter are periaxonal swelling and separation of myelin away from their axon, axonal swelling, and axonal spheroid formation. However, the underlying cellular and molecular mechanisms that cause periaxonal swelling and the functional consequences are poorly understood. We hypothesized that periaxonal swelling and loss of connectivity between the axo-myelinic interface impedes neurological recovery by disrupting conduction velocity, and glial to axonal trophic support resulting in axonal swelling and spheroid formation. Utilizing in vivo longitudinal imaging of Thy1YFP+ axons and myelin labeled with Nile red, we reveal that periaxonal swelling significantly increases acutely following a contusive SCI (T13, 30 kdyn, IH Impactor) versus baseline recordings (laminectomy only) and often precedes axonal spheroid formation. In addition, using longitudinal imaging to determine the fate of myelinated fibers acutely after SCI, we show that ∼73% of myelinated fibers present with periaxonal swelling at 1 h post SCI and âˆ¼ 51% of those fibers transition to axonal spheroids by 4 h post SCI. Next, we assessed whether cation-chloride cotransporters present within the internode contributed to periaxonal swelling and whether their modulation would increase white matter sparing and improve neurological recovery following a moderate contusive SCI (T9, 50 kdyn). Mechanistically, activation of the cation-chloride cotransporter KCC2 did not improve neurological recovery and acute axonal survival, but did improve chronic tissue sparing. In distinction, the NKKC1 antagonist bumetanide improved neurological recovery, tissue sparing, and axonal survival, in part through preventing periaxonal swelling and disruption of the axo-myelinic interface. Collectively, these data reveal a novel neuroprotective target to prevent periaxonal swelling and improve neurological recovery after SCI.


Subject(s)
Axons , Recovery of Function , Solute Carrier Family 12, Member 2 , Spinal Cord Injuries , White Matter , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , White Matter/drug effects , White Matter/pathology , Recovery of Function/drug effects , Recovery of Function/physiology , Solute Carrier Family 12, Member 2/metabolism , Axons/drug effects , Axons/pathology , Female , Myelin Sheath/pathology , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Mice , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Bumetanide/pharmacology
13.
Sci Rep ; 14(1): 17360, 2024 07 29.
Article in English | MEDLINE | ID: mdl-39075089

ABSTRACT

Prostaglandin E2 (PGE2) is a major contributor to inflammatory pain hyperalgesia, however, the extent to which it modulates the activity of nociceptive axons is incompletely understood. We developed and characterized a microfluidic cell culture model to investigate sensitisation of the axons of dorsal root ganglia neurons. We show that application of PGE2 to fluidically isolated axons leads to sensitisation of their responses to depolarising stimuli. Interestingly the application of PGE2 to the DRG axons elicited a direct and persistent spiking activity propagated to the soma. Both the persistent activity and the membrane depolarisation in the axons are abolished by the EP4 receptor inhibitor and a blocker of cAMP synthesis. Further investigated into the mechanisms of the spiking activity showed that the PGE2 evoked depolarisation was inhibited by Nav1.8 sodium channel blockers but was refractory to the application of TTX or zatebradine. Interestingly, the depolarisation of axons was blocked by blocking ANO1 channels with T16Ainh-A01. We further show that PGE2-elicited axonal responses are altered by the changes in chloride gradient within the axons following treatment with bumetanide a Na-K-2Cl cotransporter NKCC1 inhibitor, but not by VU01240551 an inhibitor of potassium-chloride transporter KCC2. Our data demonstrate a novel role for PGE2/EP4/cAMP pathway which culminates in a sustained depolarisation of sensory axons mediated by a chloride current through ANO1 channels. Therefore, using a microfluidic culture model, we provide evidence for a potential dual function of PGE2 in inflammatory pain: it sensitises depolarisation-evoked responses in nociceptive axons and directly triggers action potentials by activating ANO1 and Nav1.8 channels.


Subject(s)
Anoctamin-1 , Axons , Dinoprostone , Ganglia, Spinal , NAV1.8 Voltage-Gated Sodium Channel , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Animals , Dinoprostone/pharmacology , Dinoprostone/metabolism , Axons/metabolism , Axons/drug effects , Axons/physiology , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Rats , Anoctamin-1/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Action Potentials/drug effects , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Rats, Sprague-Dawley , Cells, Cultured , Solute Carrier Family 12, Member 2/metabolism , Cyclic AMP/metabolism
14.
Cell Mol Life Sci ; 81(1): 315, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066803

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of cancer chemotherapy that can often limit treatment options for cancer patients or have life-long neurodegenerative consequences that reduce the patient's quality of life. CIPN is caused by the detrimental actions of various chemotherapeutic agents on peripheral axons. Currently, there are no approved preventative measures or treatment options for CIPN, highlighting the need for the discovery of novel therapeutics and improving our understanding of disease mechanisms. In this study, we utilized human-induced pluripotent stem cell (hiPSC)-derived motor neurons as a platform to mimic axonal damage after treatment with vincristine, a chemotherapeutic used for the treatment of breast cancers, osteosarcomas, and leukemia. We screened a total of 1902 small molecules for neuroprotective properties in rescuing vincristine-induced axon growth deficits. From our primary screen, we identified 38 hit compounds that were subjected to secondary dose response screens. Six compounds showed favorable pharmacological profiles - AZD7762, A-674563, Blebbistatin, Glesatinib, KW-2449, and Pelitinib, all novel neuroprotectants against vincristine toxicity to neurons. In addition, four of these six compounds also showed efficacy against vincristine-induced growth arrest in human iPSC-derived sensory neurons. In this study, we utilized high-throughput screening of a large library of compounds in a therapeutically relevant assay. We identified several novel compounds that are efficacious in protecting different neuronal subtypes from the toxicity induced by a common chemotherapeutic agent, vincristine which could have therapeutic potential in the clinic.


Subject(s)
Induced Pluripotent Stem Cells , Neuroprotective Agents , Vincristine , Vincristine/pharmacology , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Neuroprotective Agents/pharmacology , Motor Neurons/drug effects , Motor Neurons/pathology , Motor Neurons/metabolism , Axons/drug effects , Axons/metabolism , Axons/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Cells, Cultured , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/pathology , Peripheral Nervous System Diseases/drug therapy
15.
Regen Med ; 19(6): 327-343, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38957920

ABSTRACT

Background: Adjunctive pharmacological treatment may improve nerve regeneration. We investigated nerve regeneration processes of PXL01 - a lactoferrin-derived peptide - after repair of the sciatic nerve in healthy Wistar rats.Materials & methods: PXL01, sodium hyaluronate (carrier) or sodium chloride was administered around the repair. After 6 days axonal outgrowth, Schwann cell response, pan- (CD68) and pro-healing (CD206) macrophages in sciatic nerve, sensory neuronal response in dorsal root ganglia (DRG) and expression of heat shock protein 27 (HSP27) in sciatic nerves and DRGs were analyzed.Results: Despite a lower number of pan-macrophages, other investigated variables in sciatic nerves or DRGs did not differ between the treatment groups.Conclusion: PLX01 applied locally inhibits inflammation through pan-macrophages in repaired sciatic nerves without any impact on nerve regeneration or pro-healing macrophages.


[Box: see text].


Subject(s)
Axons , Macrophages , Nerve Regeneration , Rats, Wistar , Schwann Cells , Sciatic Nerve , Animals , Schwann Cells/metabolism , Schwann Cells/drug effects , Macrophages/metabolism , Macrophages/drug effects , Nerve Regeneration/drug effects , Sciatic Nerve/drug effects , Sciatic Nerve/injuries , Axons/drug effects , Axons/metabolism , Rats , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Male
16.
Synapse ; 78(4): e22304, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38896000

ABSTRACT

The goal of this report is to explore how K2P channels modulate axonal excitability by using the crayfish ventral superficial flexor preparation. This preparation allows for simultaneous recording of motor nerve extracellular action potentials (eAP) and intracellular excitatory junctional potential (EJP) from a muscle fiber. Previous pharmacological studies have demonstrated the presence of K2P-like channels in crayfish. Fluoxetine (50 µM) was used to block K2P channels in this study. The blocker caused a gradual decline, and eventually complete block, of motor axon action potentials. At an intermediate stage of the block, when the peak-to-peak amplitude of eAP decreased to ∼60%-80% of the control value, the amplitude of the initial positive component of eAP declined at a faster rate than that of the negative peak representing sodium influx. Furthermore, the second positive peak following this sodium influx, which corresponds to the after-hyperpolarizing phase of intracellularly recorded action potentials (iAP), became larger during the intermediate stage of eAP block. Finally, EJP recorded simultaneously with eAP showed no change in amplitude, but did show a significant increase in synaptic delay. These changes in eAP shape and EJP delay are interpreted as the consequence of depolarized resting membrane potential after K2P channel block. In addition to providing insights to possible functions of K2P channels in unmyelinated axons, results presented here also serve as an example of how changes in eAP shape contain information that can be used to infer alterations in intracellular events. This type of eAP-iAP cross-inference is valuable for gaining mechanistic insights here and may also be applicable to other model systems.


Subject(s)
Action Potentials , Astacoidea , Axons , Fluoxetine , Motor Neurons , Animals , Astacoidea/drug effects , Astacoidea/physiology , Fluoxetine/pharmacology , Action Potentials/drug effects , Action Potentials/physiology , Motor Neurons/drug effects , Motor Neurons/physiology , Axons/drug effects , Axons/physiology
17.
J Mol Neurosci ; 74(3): 60, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904846

ABSTRACT

Our former studies have identified the alleviating effect of Calycosin (CA) on spinal cord injury (SCI). In this study, our purpose is to explore the influence of CA on SCI from the perspective of promoting axon growth. The SCI animal model was constructed by spinal cord compression, wherein rat primary cortex neuronal isolation was performed, and the axonal growth restriction cell model was established via chondroitin sulfate proteoglycan (CSPG) treatment. The expressions of axon regeneration markers were measured via immunofluorescent staining and western blot, and the direct target of CA was examined using silver staining. Finally, the expression of the protein tyrosine phosphatase receptor type S (PTPRS) was assessed using western blot. CA treatment increased neuronal process outgrowth and the expressions of axon regeneration markers, such as neurofilament H (NF-H), vesicular glutamate transporter 1 (vGlut1), and synaptophysin (Syn) in both SCI model rats and CSPG-treated primary cortical neurons, and PTPRS levels were elevated after SCI induction. In addition, PTPRS was the direct target of CA, and according to in vivo findings, exposure to CA reduced the PTPRS content. Furthermore, PTPRS overexpression inhibited CA's enhancement of axon regeneration marker content and neuronal axon lengths. CA improves SCI by increasing axon development through regulating PTPRS expression.


Subject(s)
Axons , Isoflavones , Rats, Sprague-Dawley , Spinal Cord Injuries , Synaptophysin , Animals , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Rats , Isoflavones/pharmacology , Isoflavones/therapeutic use , Axons/drug effects , Axons/metabolism , Cells, Cultured , Synaptophysin/metabolism , Synaptophysin/genetics , Neurofilament Proteins/metabolism , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 1/genetics , Neurons/metabolism , Neurons/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/cytology , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Male , Chondroitin Sulfate Proteoglycans/metabolism , Neuronal Outgrowth/drug effects , Female , Vesicular Glutamate Transport Protein 2
18.
Phytomedicine ; 129: 155641, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718639

ABSTRACT

BACKGROUND: The limited regenerative capacity of injured axons hinders functional recovery after nerve injury. Although no drugs are currently available in the clinic to accelerate axon regeneration, recent studies show the potential of vasohibin inhibition by parthenolide, produced in Tanacetum parthenium, to accelerate axon regeneration. However, due to its poor oral bioavailability, parthenolide is limited to parenteral administration. PURPOSE: This study investigates another sesquiterpene lactone, cnicin, produced in Cnicus benedictus for promoting axon regeneration. RESULTS: Cnicin is equally potent and effective in facilitating nerve regeneration as parthenolide. In culture, cnicin promotes axon growth of sensory and CNS neurons from various species, including humans. Neuronal overexpression of vasohibin increases the effective concentrations comparable to parthenolide, suggesting an interaction between cnicin and vasohibin. Remarkably, intravenous administration of cnicin significantly accelerates functional recovery after severe nerve injury in various species, including the anastomosis of severed nerves. Pharmacokinetic analysis of intravenously applied cnicin shows a blood half-life of 12.7 min and an oral bioavailability of 84.7 % in rats. Oral drug administration promotes axon regeneration and recovery after nerve injury in mice. CONCLUSION: These results highlight the potential of cnicin as a promising drug to treat axonal insults and improve recovery.


Subject(s)
Nerve Regeneration , Sesquiterpenes , Animals , Humans , Male , Mice , Rats , Axons/drug effects , Axons/physiology , Biological Availability , Cell Cycle Proteins/metabolism , Lactones/pharmacology , Nerve Regeneration/drug effects , Rats, Sprague-Dawley , Sesquiterpenes/pharmacology
19.
Exp Neurol ; 378: 114816, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38789023

ABSTRACT

High spinal cord injury (SCI) leads to persistent and debilitating compromise in respiratory function. Cervical SCI not only causes the death of phrenic motor neurons (PhMNs) that innervate the diaphragm, but also damages descending respiratory pathways originating in the rostral ventral respiratory group (rVRG) located in the brainstem, resulting in denervation and consequent silencing of spared PhMNs located caudal to injury. It is imperative to determine whether interventions targeting rVRG axon growth and respiratory neural circuit reconnection are efficacious in chronic cervical contusion SCI, given that the vast majority of individuals are chronically-injured and most cases of SCI involve contusion-type damage to the cervical region. We therefore employed a rat model of chronic cervical hemicontusion to test therapeutic manipulations aimed at reconstructing damaged rVRG-PhMN-diaphragm circuitry to achieve recovery of respiratory function. At a chronic time point post-injury, we systemically administered: an antagonist peptide directed against phosphatase and tensin homolog (PTEN), a central inhibitor of neuron-intrinsic axon growth potential; an antagonist peptide directed against receptor-type protein tyrosine phosphatase sigma (PTPσ), another important negative regulator of axon growth capacity; or a combination of these two peptides. PTEN antagonist peptide (PAP4) promoted partial recovery of diaphragm motor activity out to nine months post-injury (though this effect depended on the anesthetic regimen used during recording), while PTPσ peptide did not impact diaphragm function after cervical SCI. Furthermore, PAP4 promoted robust growth of descending bulbospinal rVRG axons caudal to the injury within the denervated portion of the PhMN pool, while PTPσ peptide did not affect rVRG axon growth at this location that is critical to control of diaphragmatic respiratory function. In conclusion, we find that, when PTEN inhibition is targeted at a chronic time point following cervical contusion, our non-invasive PAP4 strategy can successfully promote significant regrowth of damaged respiratory neural circuitry and also partial recovery of diaphragm motor function.


Subject(s)
Axons , Diaphragm , PTEN Phosphohydrolase , Recovery of Function , Spinal Cord Injuries , Animals , Female , Rats , Axons/drug effects , Cervical Cord/injuries , Chronic Disease , Diaphragm/innervation , Disease Models, Animal , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/metabolism , Rats, Sprague-Dawley , Receptor-Like Protein Tyrosine Phosphatases, Class 2/antagonists & inhibitors , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Recovery of Function/physiology , Recovery of Function/drug effects , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/pathology
20.
Int Immunopharmacol ; 134: 112188, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728880

ABSTRACT

Neuroinflammation is one of the extensive secondary injury processes that aggravate metabolic and cellular dysfunction and tissue loss following spinal cord injury (SCI). Thus, an anti-inflammatory strategy is crucial for modulating structural and functional restoration during the stage of acute and chronic SCI. Recombinant fibroblast growth factor 4 (rFGF4) has eliminated its mitogenic activity and demonstrated a metabolic regulator for alleviating hyperglycemia in type 2 diabetes and liver injury in non-alcoholic steatohepatitis. However, it remains to be explored whether or not rFGF4 has a neuroprotective effect for restoring neurological disorders, such as SCI. Here, we identified that rFGF4 could polarize microglia/macrophages into the restorative M2 subtype, thus exerting an anti-inflammatory effect to promote neurological functional recovery and nerve fiber regeneration after SCI. Importantly, these effects by rFGF4 were related to triggering PI3K/AKT/GSK3ß and attenuating TLR4/NF-κB signaling axes. Conversely, gene silencing of the PI3K/AKT/GSK3ß signaling or pharmacological reactivation of the TLR4/NF-κB axis aggravated inflammatory reaction. Thus, our findings highlight rFGF4 as a potentially therapeutic regulator for repairing SCI, and its outstanding effect is associated with regulating macrophage/microglial polarization.


Subject(s)
Glycogen Synthase Kinase 3 beta , Macrophages , Microglia , NF-kappa B , Nerve Regeneration , Recovery of Function , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Animals , Microglia/drug effects , Microglia/metabolism , Macrophages/drug effects , Macrophages/immunology , Nerve Regeneration/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , NF-kappa B/metabolism , Recombinant Proteins/therapeutic use , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice , Male , Axons/metabolism , Axons/drug effects , Axons/pathology , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred C57BL , Rats, Sprague-Dawley , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phenotype , Rats , Humans , Disease Models, Animal , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL