Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.845
Filter
1.
Ghana Med J ; 58(1): 86-90, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38957275

ABSTRACT

Objective: This study aims to examine the frequency of Salmonella Paratyphi found in blood cultures and evaluate the antibiotic susceptibility pattern of Salmonella isolates to different antibiotics. Additionally, the study aims to assess the paradigm shift in the trend of enteric fever caused by Salmonella Typhi (S. Typhi) to Salmonella Paratyphi(S. Paratyphi) . Study Design: Retrospective study. Participant: The study enrolled patients aged 12 years and above diagnosed with enteric fever (positive blood culture) and admitted to Peelamedu Samanaidu Govindasamy Naidu (PSG) Hospital. Interventions: The study analyzed demographic and antibiotic susceptibility profiles of Salmonella isolates collected from 106 enteric fever patients in the hospital between 2010 and 2022. The susceptibility profiles of Salmonella isolates to multiple antibiotics were assessed. Results: There were 106 participants, and 95 (89.62%) of them had enteric fever linked to Salmonella Typhi, while only 11 (10.38%) had enteric fever linked to Salmonella Paratyphi A. From 2010 to 2022, the study discovered a general decline in the prevalence of enteric fever caused by Salmonella species. But between 2014 and 2022, the incidence of enteric fever linked to S. Typhi rapidly increased. Azithromycin (100% , n = 106) and ceftriaxone (99% , n = 105) were highly effective against the Salmonella isolates, whereas nalidixic acid was resisted by 3 isolates (4.72%, n = 3). Conclusion: The study observed a higher incidence of Salmonella Typhi in comparison to Paratyphi A and a greater susceptibility of males to enteric fever. Funding: None declared.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Salmonella paratyphi A , Salmonella typhi , Typhoid Fever , Humans , Male , Female , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Typhoid Fever/epidemiology , Typhoid Fever/microbiology , Typhoid Fever/drug therapy , Retrospective Studies , Salmonella typhi/drug effects , Salmonella typhi/isolation & purification , Salmonella paratyphi A/drug effects , Salmonella paratyphi A/isolation & purification , Adult , Adolescent , Child , Middle Aged , Young Adult , Paratyphoid Fever/epidemiology , Paratyphoid Fever/microbiology , Paratyphoid Fever/drug therapy , Incidence , Drug Resistance, Bacterial , Azithromycin/therapeutic use , Azithromycin/pharmacology , Ceftriaxone/therapeutic use , Ceftriaxone/pharmacology , Aged , Prevalence
2.
N Engl J Med ; 390(22): 2127-2128, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38865666
3.
P R Health Sci J ; 43(2): 68-72, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860959

ABSTRACT

OBJECTIVE: Monitoring the susceptibility patterns of Neisseria gonorrhoeae is essential for the continuing compliance with current treatment recommendations. Puerto Rico conducts susceptibility tests on N. gonorrhoeae; however, trends on antimicrobial resistance in the island have not been reported since the mid 80's. METHODS: We performed a secondary analysis of a national data repository on the antimicrobial susceptibility of N. gonorrhoeae isolates between 2012 and 2017; a period of time when the CDC recommended a single dose of ceftriaxone and azithromycin for the treatment of uncomplicated gonorrhea. Data on susceptibility to eight antibiotics using the standard disk diffusion method was obtained for 30.0% (84/276) of the samples collected from the Sexually Transmitted Disease clinics in Puerto Rico. We also performed patient demographic analyses linked to resistance. RESULTS: Rates of resistance to ceftriaxone and azithromycin were 0% and 4.0% (2/50), respectively. The percentage of isolates resistant to antimicrobials no longer recommended in Puerto Rico, such as tetracycline, ciprofloxacin, and penicillin, was 86.0% (43/50), 76.0% (38/50), and 38.0% (19/50), respectively. Prevalence of resistant N. gonorrhoeae was higher among men who have sex with men, MSM (79%, 37/47). DISCUSSION: Lack of resistance to ceftriaxone and slow emergence of azithromycin resistance was identified from 2012-2017. It is imperative to continue the surveillance for emerging patterns of resistance, especially for ceftriaxone, as it is part of the current treatment guidelines. Therefore, protocols for culture based surveillance, including sample transport and processing, should be strengthened to ensure quality assured epidemiology of gonococcal resistance in Puerto Rico.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Gonorrhea , Microbial Sensitivity Tests , Neisseria gonorrhoeae , Puerto Rico , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/isolation & purification , Humans , Male , Gonorrhea/drug therapy , Gonorrhea/microbiology , Gonorrhea/epidemiology , Female , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Adult , Young Adult , Azithromycin/pharmacology , Azithromycin/administration & dosage , Ceftriaxone/pharmacology , Adolescent , Middle Aged
4.
Nat Commun ; 15(1): 4731, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830889

ABSTRACT

Major antibiotic groups are losing effectiveness due to the uncontrollable spread of antimicrobial resistance (AMR) genes. Among these, ß-lactam resistance genes -encoding ß-lactamases- stand as the most common resistance mechanism in Enterobacterales due to their frequent association with mobile genetic elements. In this context, novel approaches that counter mobile AMR are urgently needed. Collateral sensitivity (CS) occurs when the acquisition of resistance to one antibiotic increases susceptibility to another antibiotic and can be exploited to eliminate AMR selectively. However, most CS networks described so far emerge as a consequence of chromosomal mutations and cannot be leveraged to tackle mobile AMR. Here, we dissect the CS response elicited by the acquisition of a prevalent antibiotic resistance plasmid to reveal that the expression of the ß-lactamase gene blaOXA-48 induces CS to colistin and azithromycin. We next show that other clinically relevant mobile ß-lactamases produce similar CS responses in multiple, phylogenetically unrelated E. coli strains. Finally, by combining experiments with surveillance data comprising thousands of antibiotic susceptibility tests, we show that ß-lactamase-induced CS is pervasive within Enterobacterales. These results highlight that the physiological side-effects of ß-lactamases can be leveraged therapeutically, paving the way for the rational design of specific therapies to block mobile AMR or at least counteract their effects.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Escherichia coli/genetics , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Drug Collateral Sensitivity/genetics , Plasmids/genetics , Azithromycin/pharmacology , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactam Resistance/genetics
5.
J Antimicrob Chemother ; 79(7): 1657-1667, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38775752

ABSTRACT

OBJECTIVES: To characterize the genetic basis of azithromycin resistance in Escherichia coli and Salmonella collected within the EU harmonized antimicrobial resistance (AMR) surveillance programme in 2014-18 and the Danish AMR surveillance programme in 2016-19. METHODS: WGS data of 1007 E. coli [165 azithromycin resistant (MIC > 16 mg/L)] and 269 Salmonella [29 azithromycin resistant (MIC > 16 mg/L)] were screened for acquired macrolide resistance genes and mutations in rplDV, 23S rRNA and acrB genes using ResFinder v4.0, AMRFinder Plus and custom scripts. Genotype-phenotype concordance was determined for all isolates. Transferability of mef(C)-mph(G)-carrying plasmids was assessed by conjugation experiments. RESULTS: mph(A), mph(B), mef(B), erm(B) and mef(C)-mph(G) were detected in E. coli and Salmonella, whereas erm(C), erm(42), ere(A) and mph(E)-msr(E) were detected in E. coli only. The presence of macrolide resistance genes, alone or in combination, was concordant with the azithromycin-resistant phenotype in 69% of isolates. Distinct mph(A) operon structures were observed in azithromycin-susceptible (n = 50) and -resistant (n = 136) isolates. mef(C)-mph(G) were detected in porcine and bovine E. coli and in porcine Salmonella enterica serovar Derby and Salmonella enterica 1,4, [5],12:i:-, flanked downstream by ISCR2 or TnAs1 and associated with IncIγ and IncFII plasmids. CONCLUSIONS: Diverse azithromycin resistance genes were detected in E. coli and Salmonella from food-producing animals and meat in Europe. Azithromycin resistance genes mef(C)-mph(G) and erm(42) appear to be emerging primarily in porcine E. coli isolates. The identification of distinct mph(A) operon structures in susceptible and resistant isolates increases the predictive power of WGS-based methods for in silico detection of azithromycin resistance in Enterobacterales.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Drug Resistance, Bacterial , Escherichia coli , Meat , Microbial Sensitivity Tests , Salmonella , Animals , Azithromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Salmonella/drug effects , Salmonella/genetics , Salmonella/isolation & purification , Drug Resistance, Bacterial/genetics , Europe , Meat/microbiology , Plasmids/genetics , Whole Genome Sequencing , Genotype , Escherichia coli Infections/microbiology , Swine , Macrolides/pharmacology , Epidemiological Monitoring , Genes, Bacterial
6.
ACS Infect Dis ; 10(6): 2183-2195, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38695481

ABSTRACT

Chemicals bacteria encounter at the infection site could shape their stress and antibiotic responses; such effects are typically undetected under standard lab conditions. Polyamines are small molecules typically overproduced by the host during infection and have been shown to alter bacterial stress responses. We sought to determine the effect of polyamines on the antibiotic response of Klebsiella pneumoniae, a Gram-negative priority pathogen. Interestingly, putrescine and other natural polyamines sensitized K. pneumoniae to azithromycin, a macrolide protein translation inhibitor typically used for Gram-positive bacteria. This synergy was further potentiated in the physiological buffer, bicarbonate. Chemical genomic screens suggested a dual mechanism, whereby putrescine acts at the membrane and ribosome levels. Putrescine permeabilized the outer membrane of K. pneumoniae (NPN and ß-lactamase assays) and the inner membrane (Escherichia coli ß-galactosidase assays). Chemically and genetically perturbing membranes led to a loss of putrescine-azithromycin synergy. Putrescine also inhibited protein synthesis in an E. coli-derived cell-free protein expression assay simultaneously monitoring transcription and translation. Profiling the putrescine-azithromycin synergy against a combinatorial array of antibiotics targeting various ribosomal sites suggested that putrescine acts as tetracyclines targeting the 30S ribosomal acceptor site. Next, exploiting the natural polyamine-azithromycin synergy, we screened a polyamine analogue library for azithromycin adjuvants, discovering four azithromycin synergists with activity starting from the low micromolar range and mechanisms similar to putrescine. This work sheds light on the bacterial antibiotic responses under conditions more reflective of those at the infection site and provides a new strategy to extend the macrolide spectrum to drug-resistant K. pneumoniae.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Drug Synergism , Klebsiella pneumoniae , Macrolides , Microbial Sensitivity Tests , Polyamines , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Polyamines/pharmacology , Polyamines/metabolism , Macrolides/pharmacology , Putrescine/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Protein Biosynthesis/drug effects
7.
Int J Infect Dis ; 145: 107082, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38703812

ABSTRACT

OBJECTIVES: Antimicrobial resistance poses a considerable threat in high-antimicrobial-consumption populations, such as men who have sex with men (MSM) taking HIV pre-exposure prophylaxis. While the ResistAZM trial found no increase in macrolide resistance genes in MSM with gonorrhea after azithromycin treatment, the MORDOR trial observed an increase in these genes after mass azithromycin distribution. We hypothesized that this could be due to saturation of the resistome. To test this hypothesis, we compared the abundance of macrolide resistance determinants in anorectal samples between the baselines of the two trials. METHODS: Shotgun metagenome reads from the anorectal baseline samples from the ResistAZM (n = 42) and MORDOR (n = 30) trials were analyzed using AMRPlusPlus. Nonhost reads were mapped to the MEGARes database to detect antibiotic resistance genes (ARG). Antimicrobial resistance (AMR) was normalized using cumulative sum scaling, and ARG abundance was estimated. RESULTS: Macrolide, lincosamides, and streptogramins determinants were approximately 10-fold more abundant in the ResistAZM than the MORDOR samples (P ≤ 0.001). CONCLUSION: The findings are compatible with our hypothesis. Thus, in populations with high-antimicrobial use, the relationship between antimicrobial consumption and AMR may be diminished due to saturation. These findings are vital for future studies investigating the resistogencity of novel interventions, such as doxycycline post-exposure prophylaxis, in populations with high preceding consumption of antimicrobials.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Drug Resistance, Bacterial , Humans , Male , Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Drug Resistance, Bacterial/genetics , Gonorrhea/microbiology , Gonorrhea/drug therapy , Homosexuality, Male , Macrolides/pharmacology , Lincosamides/pharmacology , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Streptogramins/pharmacology , HIV Infections/drug therapy , Adult , Pre-Exposure Prophylaxis , Metagenome
8.
Sci Rep ; 14(1): 10418, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710793

ABSTRACT

A new drug delivery system using an asymmetric polyethersulfone (PES) membrane modified by SBA-15 and glutamine-modified SBA-15 (SBA-Q) was prepared in this study by the aim of azithromycin delivery enhancement in both in vitro and ex vivo experiments. The research focused on optimizing membrane performance by adjusting critical parameters including drug concentration, membrane thickness, modifier percentage, polymer percentage, and pore maker percentage. To characterize the fabricated membranes, various techniques were employed, including scanning electron microscopy, water contact angle, and tensile strength assessments. Following optimization, membrane composition of 17% PES, 2% polyvinylpyrrolidone, 1% SBA-15, and 0.5% SBA-Q emerged as the most effective. The optimized membranes demonstrated a substantial increase in drug release (906 mg/L) compared to the unmodified membrane (440 mg/L). The unique membrane structure, with a dense top layer facilitating sustained drug release and a porous sub-layer acting as a drug reservoir, contributed to this improvement. Biocompatibility assessments, antibacterial activity analysis, blood compatibility tests, and post-diffusion tissue integrity evaluations confirmed the promising biocompatibility of the optimized membranes. Moreover, long-term performance evaluations involving ten repeated usages underscored the reusability of the optimized membrane, highlighting its potential for sustained and reliable drug delivery applications.


Subject(s)
Anti-Bacterial Agents , Drug Delivery Systems , Membranes, Artificial , Polymers , Silicon Dioxide , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silicon Dioxide/chemistry , Polymers/chemistry , Porosity , Sulfones/chemistry , Sulfones/administration & dosage , Drug Liberation , Animals , Azithromycin/administration & dosage , Azithromycin/pharmacokinetics , Azithromycin/chemistry , Azithromycin/pharmacology , Humans
9.
Front Cell Infect Microbiol ; 14: 1352339, 2024.
Article in English | MEDLINE | ID: mdl-38808066

ABSTRACT

Antibiotic drug combination therapy is critical for the successful treatment of infections caused by multidrug resistant pathogens. We investigated the efficacy of ß-lactam and ß-lactam/ß-lactamase inhibitor combinations with other antibiotics, against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory concentrations in vitro differed by up to eighty-fold between standard and host-mimicking media, combinatorial effects only marginally changed between conditions for some combinations. Effective combinations in vitro were further tested in a chronic, high-density murine infection model. Colistin and azithromycin demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited strong synergy in vitro, this effect was not observed in vivo. Our approach of using host-mimicking conditions and a sophisticated animal model to evaluate drug synergy against bacterial pathogens represents a promising approach. This methodology may offer insights into the prediction of combination therapy outcomes and the identification of potential treatment failures.


Subject(s)
Abscess , Anti-Bacterial Agents , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Mice , Abscess/drug therapy , Abscess/microbiology , Drug Combinations , Drug Resistance, Multiple, Bacterial , Female , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Azithromycin/administration & dosage , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Colistin/administration & dosage
10.
Cells ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786063

ABSTRACT

Although cellular senescence was originally defined as an irreversible form of cell cycle arrest, in therapy-induced senescence models, the emergence of proliferative senescence-escaped cancer cells has been reported by several groups, challenging the definition of senescence. Indeed, senescence-escaped cancer cells may contribute to resistance to cancer treatment. Here, to study senescence escape and isolate senescence-escaped cells, we developed novel flow cytometry-based methods using the proliferation marker Ki-67 and CellTrace CFSE live-staining. We investigated the role of a novel senescence marker (DPP4/CD26) and a senolytic drug (azithromycin) on the senescence-escaping ability of MCF-7 and MDA-MB-231 breast cancer cells. Our results show that the expression of DPP4/CD26 is significantly increased in both senescent MCF-7 and MDA-MB-231 cells. While not essential for senescence induction, DPP4/CD26 contributed to promoting senescence escape in MCF-7 cells but not in MDA-MB-231 cells. Our results also confirmed the potential senolytic effect of azithromycin in senescent cancer cells. Importantly, the combination of azithromycin and a DPP4 inhibitor (sitagliptin) demonstrated a synergistic effect in senescent MCF-7 cells and reduced the number of senescence-escaped cells. Although further research is needed, our results and novel methods could contribute to the investigation of the mechanisms of senescence escape and the identification of potential therapeutic targets. Indeed, DPP4/CD26 could be a promising marker and a novel target to potentially decrease senescence escape in cancer.


Subject(s)
Breast Neoplasms , Cellular Senescence , Dipeptidyl Peptidase 4 , Flow Cytometry , Humans , Cellular Senescence/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Flow Cytometry/methods , Female , Dipeptidyl Peptidase 4/metabolism , MCF-7 Cells , Azithromycin/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects
11.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791439

ABSTRACT

Lefamulin is a first-in-class systemic pleuromutilin antimicrobial and potent inhibitor of bacterial translation, and the most recent novel antimicrobial approved for the treatment of community-acquired pneumonia (CAP). It exhibits potent antibacterial activity against the most prevalent bacterial pathogens that cause typical and atypical pneumonia and other infectious diseases. Early studies indicate additional anti-inflammatory activity. In this study, we further investigated the immune-modulatory activity of lefamulin in the influenza A/H1N1 acute respiratory distress syndrome (ARDS) model in BALB/c mice. Comparators included azithromycin, an anti-inflammatory antimicrobial, and the antiviral oseltamivir. Lefamulin significantly decreased the total immune cell infiltration, specifically the neutrophils, inflammatory monocytes, CD4+ and CD8+ T-cells, NK cells, and B-cells into the lung by Day 6 at both doses tested compared to the untreated vehicle control group (placebo), whereas azithromycin and oseltamivir did not significantly affect the total immune cell counts at the tested dosing regimens. Bronchioalveolar lavage fluid concentrations of pro-inflammatory cytokines and chemokines including TNF-α, IL-6, IL-12p70, IL-17A, IFN-γ, and GM-CSF were significantly reduced, and MCP-1 concentrations were lowered (not significantly) by lefamulin at the clinically relevant 'low' dose on Day 3 when the viral load peaked. Similar effects were also observed for oseltamivir and azithromycin. Lefamulin also decreased the viral load (TCID50) by half a log10 by Day 6 and showed positive effects on the gross lung pathology and survival. Oseltamivir and lefamulin were efficacious in the suppression of the development of influenza-induced bronchi-interstitial pneumonia, whereas azithromycin did not show reduced pathology at the tested treatment regimen. The observed anti-inflammatory and immune-modulatory activity of lefamulin at the tested treatment regimens highlights a promising secondary pharmacological property of lefamulin. While these results require confirmation in a clinical trial, they indicate that lefamulin may provide an immune-modulatory activity beyond its proven potent antibacterial activity. This additional activity may benefit CAP patients and potentially prevent acute lung injury (ALI) and ARDS.


Subject(s)
Disease Models, Animal , Diterpenes , Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/drug effects , Mice , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Diterpenes/pharmacology , Diterpenes/therapeutic use , Cytokines/metabolism , Azithromycin/pharmacology , Azithromycin/therapeutic use , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Female , Lung/immunology , Lung/virology , Lung/drug effects , Lung/pathology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Tetrahydronaphthalenes/pharmacology , Tetrahydronaphthalenes/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Bronchoalveolar Lavage Fluid/immunology , Polycyclic Compounds , Thioglycolates
12.
Diagn Microbiol Infect Dis ; 109(3): 116333, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703532

ABSTRACT

Syphilis remains a public health concern in Brazil, and the data on the characterization and resistance of Treponema pallidum in Brazil is limited. The present study aimed to detect Treponema DNA in the lesions and blood samples obtained from individuals diagnosed with syphilis. The Brazilian isolates were submitted to the Enhanced Centers for Disease Control and Prevention (ECDC) scheme and also analyzed for resistance gene. Treponemal DNA from 18 lesions and 18 blood specimens were submitted for amplification using Polymerase Chain Reaction (PCR) and Polymerase Chain Reaction in Real Time (RT-PCR). Eight samples from lesions and eight from blood were positive in the RT-PCR analysis. Eight lesions and three blood samples were positive using PCR. Two samples exhibited azithromycin resistance. The Brazilian isolate types 14d/g, 14 d/c, 15d/c, and 15d/e were identified using the ECDC scheme. The three subtypes 14d/c, 15d/c, and 15d/e have been identified in Brazil for the first time.


Subject(s)
DNA, Bacterial , Syphilis , Treponema pallidum , Humans , Treponema pallidum/genetics , Treponema pallidum/isolation & purification , Treponema pallidum/classification , Brazil , Syphilis/microbiology , Syphilis/diagnosis , DNA, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Male , Genotype , Female , Adult , Polymerase Chain Reaction , Middle Aged , Azithromycin/pharmacology , Real-Time Polymerase Chain Reaction
13.
Microbiol Spectr ; 12(6): e0021824, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687080

ABSTRACT

The latest guidelines include azithromycin as a preferred regimen for treating Mycobacterium avium complex (MAC) pulmonary disease. However, serially collected susceptibility data on clinical MAC isolates are limited, and no breakpoints have been determined. We investigated the minimum inhibitory concentrations (MICs) of azithromycin and clarithromycin for all MAC strains isolated in 2021 from a single center in Japan, excluding duplicates. The MICs were determined using a panel based on the microbroth dilution method, according to the latest Clinical and Laboratory Standards Institute recommendations. The MICs were determined for 318 MAC strains. Although there was a significant positive correlation between the MICs of azithromycin and clarithromycin, the MICs of azithromycin tended to be higher than those of clarithromycin. Among the cases in which the strains were isolated, 18 patients initiated treatment, including azithromycin treatment, after sample collection. Some patients infected with stains with relatively high azithromycin MICs achieved a microbiological cure with azithromycin-containing regimens. This study revealed a higher MIC distribution for azithromycin than clarithromycin, raising questions about the current practice of estimating azithromycin susceptibility based on the clarithromycin susceptibility test result. However, this was a single-center study that included only a limited number of cases treated with azithromycin. Therefore, further multicenter studies that include a greater number of cases treated with azithromycin are warranted to verify the distribution of azithromycin MICs and examine the correlation between azithromycin MICs and treatment effectiveness.IMPORTANCEThe macrolides serve as key drugs in the treatment of pulmonary Mycobacterium avium complex infection, and the administration of macrolide should be guided by susceptibility test results. Azithromycin is recommended as a preferred choice among macrolides, surpassing clarithromycin; however, drug susceptibility testing is often not conducted, and clarithromycin susceptibility is used as a surrogate. This study represents the first investigation into the minimum inhibitory concentration of azithromycin on a scale of several hundred clinical isolates, revealing an overall tendency for higher minimum inhibitory concentrations compared with clarithromycin. The results raise questions about the appropriateness of using clarithromycin susceptibility test outcomes for determining the administration of azithromycin. This study highlights the need for future discussions on the clinical breakpoints of azithromycin, based on large-scale clinical research correlating azithromycin susceptibility with treatment outcomes.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Clarithromycin , Microbial Sensitivity Tests , Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection , Azithromycin/pharmacology , Azithromycin/therapeutic use , Humans , Japan , Mycobacterium avium Complex/drug effects , Mycobacterium avium Complex/isolation & purification , Clarithromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Mycobacterium avium-intracellulare Infection/drug therapy , Mycobacterium avium-intracellulare Infection/microbiology , Female , Male , Aged , Middle Aged , Aged, 80 and over , Adult
14.
Bioorg Chem ; 147: 107338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583253

ABSTRACT

Macrozones are novel conjugates of azithromycin and thiosemicarbazones, which exhibit very good in vitro antibacterial activities against susceptible and some resistant bacterial strains thus showing a potential for further development. A combination of spectrometric (fluorimetry, STD and WaterLOGSY NMR) and molecular docking studies provided insights into atomic details of interactions between selected macrozones and biological receptors such as E. coli ribosome and bovine serum albumin. Fluorimetric measurements revealed binding constants in the micro-molar range while NMR experiments provided data on binding epitopes. It has been demonstrated that both STD and WaterLOGSY gave comparable and consistent results unveiling atoms in intimate contacts with biological receptors. Docking studies pointed towards main interactions between macrozones and E. coli ribosome which included specific π - π stacking and hydrogen bonding interactions with thiosemicarbazone part extending down the ribosome exit tunnel. The results of the docking experiments were in fine correlation with those obtained by NMR and fluorimetry. Our investigation pointed towards a two-site binding mechanism of interactions between macrozones and E. coli ribosome which is the most probable reason for their activity against azithromycin-resistant strains. Much better activity of macrozone-nickel coordinated compound against E. coli ribosome compared to other macrozones has been attributed to the higher polarity which enabled better bacterial membrane penetration and binding of the two thiosemicarbazone units thus additionally contributing to the overall binding energy. The knowledge gained in this study should play an important role in anti-infective macrolide design in the future.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Fluorometry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Binding Sites , Molecular Structure , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Structure-Activity Relationship , Ribosomes/metabolism , Ribosomes/drug effects , Dose-Response Relationship, Drug , Animals , Cattle , Azithromycin/pharmacology , Azithromycin/chemistry , Azithromycin/metabolism
15.
Rev Esp Quimioter ; 37(3): 270-273, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38591493

ABSTRACT

OBJECTIVE: Mycoplasma genitalium (MG) is a microorganism related to sexually transmitted infections. Antibiotic resistance of MG leads to an increase in treatment failure rates and the persistence of the infection. The aim of this study was to describe the most frequent mutations associated with azithromycin and moxifloxacin resistance in our geographical area. METHODS: A prospective study from May 2019 to May 2023 was performed. MG-positive samples were collected. Real-time PCRs (AllplexTM MG-AziR Assay and AllplexTM MG-MoxiR Assay, Seegene) were performed in MG positive samples to detect mutations in 23S rRNA V domain and parC gene. RESULTS: A 37.1% of samples presented resistance determinants to azithromycin and the most common mutation detected was A2059G (57.9%). Resistance to moxifloxacin was studied in 72 azithromycin-resistant samples and 36.1% showed mutations, being G248T the most prevalent (73.1%). CONCLUSIONS: The resistance to different lines of treat ment suggests the need for a targeted therapy and the performing of a test of cure afterwards.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Drug Resistance, Bacterial , Moxifloxacin , Mutation , Mycoplasma Infections , Mycoplasma genitalium , Mycoplasma genitalium/drug effects , Mycoplasma genitalium/genetics , Moxifloxacin/pharmacology , Moxifloxacin/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Spain , Humans , Prospective Studies , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Mycoplasma Infections/drug therapy , Mycoplasma Infections/microbiology , Female , Male , Microbial Sensitivity Tests , RNA, Ribosomal, 23S/genetics , Adult , DNA Topoisomerase IV/genetics
16.
Lancet Microbe ; 5(5): e478-e488, 2024 May.
Article in English | MEDLINE | ID: mdl-38614111

ABSTRACT

BACKGROUND: Regular quality-assured whole-genome sequencing linked to antimicrobial resistance (AMR) and patient metadata is imperative to elucidate the shifting gonorrhoea epidemiology, both nationally and internationally. We aimed to examine the gonococcal population in the European Economic Area (EEA) in 2020, elucidate emerging and disappearing gonococcal lineages associated with AMR and patient metadata, compare with 2013 and 2018 whole-genome sequencing data, and explain changes in gonococcal AMR and gonorrhoea epidemiology. METHODS: In this retrospective genomic surveillance study, we analysed consecutive gonococcal isolates that were collected in EEA countries through the European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) in 2020, and made comparisons with Euro-GASP data from 2013 and 2018. All isolates had linked AMR data (based on minimum inhibitory concentration determination) and patient metadata. We performed whole-genome sequencing and molecular typing and AMR determinants were derived from quality-checked whole-genome sequencing data. Links between genomic lineages, AMR, and patient metadata were examined. FINDINGS: 1932 gonococcal isolates collected in 2020 in 21 EEA countries were included. The majority (81·2%, 147 of 181 isolates) of azithromycin resistance (present in 9·4%, 181 of 1932) was explained by the continued expansion of the Neisseria gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR) clonal complexes (CCs) 63, 168, and 213 (with mtrD/mtrR promoter mosaic 2) and the novel NG-STAR CC1031 (semi-mosaic mtrD variant 13), associated with men who have sex with men and anorectal or oropharyngeal infections. The declining cefixime resistance (0·5%, nine of 1932) and negligible ceftriaxone resistance (0·1%, one of 1932) was largely because of the progressive disappearance of NG-STAR CC90 (with mosaic penA allele), which was predominant in 2013. No known resistance determinants for novel antimicrobials (zoliflodacin, gepotidacin, and lefamulin) were found. INTERPRETATION: Azithromycin-resistant clones, mainly with mtrD mosaic or semi-mosaic variants, appear to be stabilising at a relatively high level in the EEA. This mostly low-level azithromycin resistance might threaten the recommended ceftriaxone-azithromycin therapy, but the negligible ceftriaxone resistance is encouraging. The decreased genomic population diversity and increased clonality could be explained in part by the COVID-19 pandemic resulting in lower importation of novel strains into Europe. FUNDING: European Centre for Disease Prevention and Control and Örebro University Hospital.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Gonorrhea , Microbial Sensitivity Tests , Neisseria gonorrhoeae , Whole Genome Sequencing , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Humans , Retrospective Studies , Europe/epidemiology , Gonorrhea/epidemiology , Gonorrhea/drug therapy , Gonorrhea/microbiology , Male , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Female , Adult , Genome, Bacterial/genetics , Middle Aged , Young Adult , Genomics , Azithromycin/pharmacology , Azithromycin/therapeutic use , Adolescent
18.
Sex Transm Infect ; 100(3): 173-180, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38575313

ABSTRACT

OBJECTIVES: International travel combined with sex may contribute to dissemination of antimicrobial-resistant (AMR) Neisseria gonorrhoeae (Ng). To assess the role of travel in Ng strain susceptibility, we compared minimum inhibitory concentrations (MICs) for five antibiotics (ie, azithromycin, ceftriaxone, cefotaxime, cefixime and ciprofloxacin) in strains from clients with an exclusively Dutch sexual network and clients with an additional international sexual network. METHODS: From 2013 to 2019, we recorded recent residence of sexual partners of clients (and of their partners) with Ng at the Center for Sexual Health of Amsterdam. We categorised clients as having: (1) exclusively sexual partners residing in the Netherlands ('Dutch only') or (2) at least one partner residing outside the Netherlands. We categorised the country of residence of sexual partners by World Bank/EuroVoc regions. We analysed the difference of log-transformed MIC of Ng strains between categories using linear or hurdle regression for each antibiotic. RESULTS: We included 3367 gay and bisexual men who had sex with men (GBMSM), 516 women and 525 men who exclusively had sex with women (MSW) with Ng. Compared with GBMSM with a 'Dutch only' network, GBMSM with: (1) a Western European network had higher MICs for ceftriaxone (ß=0.19, 95% CI=0.08 to 0.29), cefotaxime (ß=0.19, 95% CI=0.08 to 0.31) and cefixime (ß=0.06, 95% CI=0.001 to 0.11); (2) a Southern European network had a higher MIC for cefixime (ß=0.10, 95% CI=0.02 to 0.17); and (3) a sub-Saharan African network had a lower MIC for ciprofloxacin (ß=-1.79, 95% CI=-2.84 to -0.74). In women and MSW, higher MICs were found for ceftriaxone in clients with a Latin American and Caribbean network (ß=0.26, 95% CI=0.02 to 0.51). CONCLUSIONS: For three cephalosporin antibiotics, we found Ng strains with slightly higher MICs in clients with partner(s) from Europe or Latin America and the Caribbean. International travel might contribute to the spread of Ng with lower susceptibility. More understanding of the emergence of AMR Ng is needed.


Subject(s)
Anti-Infective Agents , Gonorrhea , Sexual Health , Male , Female , Humans , Neisseria gonorrhoeae , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Cefixime/pharmacology , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Azithromycin/pharmacology , Cefotaxime/pharmacology , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Drug Resistance, Bacterial
19.
AAPS PharmSciTech ; 25(4): 77, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589761

ABSTRACT

Keratin has the potential to function as the gel matrix in an ophthalmic formulation for the encapsulation of the macrolide antibiotic azithromycin. The quality of this formulation was thoroughly evaluated through various analyses, such as in vitro release assessment, rheological examination, intraocular retention studies in rabbits, assessment of bacteriostatic efficacy, and safety evaluations. It is worth mentioning that the gel demonstrated shear thinning properties and exhibited characteristics of an elastic solid, thereby confirming its structural stability. The gel demonstrated a notable affinity for mucosal surfaces in comparison to traditional azithromycin aqueous solutions. In vitro release testing revealed that drug release transpired via diffusion mechanisms, following a first-order kinetic release pattern. Additionally, the formulated gel exhibited remarkable antibacterial efficacy against Staphylococcus aureus and Pseudomonas aeruginosa in bacteriostatic evaluations. Lastly, safety assessments confirmed that the gel eye drops induced minimal irritation and displayed no apparent cytotoxicity, indicating their good safety and biocompatibility for ocular application. Thus, these findings indicated that the prepared azithromycin gel eye drops complied with the requisite standards for ophthalmic preparations.


Subject(s)
Conjunctivitis, Bacterial , Drug Delivery Systems , Animals , Rabbits , Azithromycin/pharmacology , Keratins/therapeutic use , Conjunctivitis, Bacterial/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gels/chemistry , Ophthalmic Solutions/chemistry
20.
Microbiol Spectr ; 12(4): e0391823, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38441474

ABSTRACT

The outer membrane (OM) in gram-negative bacteria contains proteins that regulate the passive or active uptake of small molecules for growth and cell function, as well as mediate the emergence of antibiotic resistance. This study aims to explore the potential mechanisms for restoring bacteria to azithromycin susceptibility based on transcriptome analysis of bacterial membrane-related genes. Transcriptome sequencing was performed by treating multidrug-resistant Escherichia coli T28R with azithromycin or in combination with colistin and confirmed by reverse transcription-quantitative PCR (RT-qPCR). Azithromycin enzyme-linked immunosorbent assay (ELISA) test, ompC gene overexpression, and molecular docking were utilized to conduct the confirmatory research of the potential mechanisms. We found that colistin combined with azithromycin led to 48 differentially expressed genes, compared to azithromycin alone, such as downregulation of tolA, eptB, lpxP, and opgE and upregulation of ompC gene. Interestingly, the addition of colistin to azithromycin differentially downregulated the mph(A) gene mediating azithromycin resistance, facilitating the intracellular accumulation of azithromycin. Also, overexpression of the ompC elevated azithromycin susceptibility, and colistin contributed to further suppression of the Mph(A) activity in the presence of azithromycin. These findings suggested that colistin firstly enhanced the permeability of bacterial OM, causing intracellular drug accumulation, and then had a repressive effect on the Mph(A) activity along with azithromycin. Our study provides a novel perspective that the improvement of azithromycin susceptibility is related not only to the downregulation of the mph(A) gene and conformational remodeling of the Mph(A) protein but also the upregulation of the membrane porin gene ompC.IMPORTANCEUsually, active efflux via efflux pumps is an important mechanism of antimicrobial resistance, such as the AcrAB-TolC complex and MdtEF. Also, bacterial porins exhibited a substantial fraction of the total number of outer membrane proteins in Enterobacteriaceae, which are involved in mediating the development of the resistance. We found that the upregulation or overexpression of the ompC gene contributed to the enhancement of resistant bacteria to azithromycin susceptibility, probably due to the augment of drug uptakes caused and the opportunity of Mph(A) function suppressed by azithromycin with colistin. Under the combination of colistin and azithromycin treatment, OmpC exhibited an increased selectivity for cationic molecules and played a key role in the restoral of the antibiotic susceptibility. Investigations on the regulation of porin expression that mediated drug resistance would be important in clinical isolates treated with antibiotics.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Azithromycin/pharmacology , Colistin/pharmacology , Up-Regulation , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Porins/genetics , Porins/metabolism , Microbial Sensitivity Tests , Escherichia coli Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...