Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.251
Filter
1.
Pharmacol Biochem Behav ; 244: 173850, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39159761

ABSTRACT

RATIONALE: Although the mesocorticolimbic dopamine (DA) system is the main neurochemical substrate that regulates the addictive and reinforcing effects of ethanol (EtOH), other neurotransmitter systems, such as the acetylcholine (Ach) system, modulate DAergic function in the nucleus accumbens (nAcc). Previously, we reported that intra-nAcc administration of the nicotinic Ach receptor agonist cytisine increased oral EtOH self-administration. GABAB receptors in the nAcc are expressed in DAergic terminals, inhibit the regulation of DA release into the nAcc, and could modulate the effects of cytisine on oral EtOH self-administration. The present study assessed the effects of intra-nAcc administration of the GABAB receptor agonist baclofen (BCF) on the impacts of cytisine on oral EtOH self-administration. METHODS: Male Wistar rats were deprived of water for 23.30 h and then trained to press a lever to receive EtOH on an FR3 schedule until a stable response rate of 80 % was achieved. After this training, the rats received an intra-nAcc injection of the nAch receptor agonist cytisine, BCF, and cytisine or 2-hydroxysaclofen, BCF, and cytisine before they were given access to EtOH on an FR3 schedule. RESULTS: Intra-nAcc injections of cytisine increased oral EtOH self-administration; this effect was reduced by BCF, and 2-hydroxysaclofen blocked the effects of BCF. CONCLUSIONS: These findings suggest that the reinforcing effects of EtOH are modulated not only by the DA system but also by other neurotransmitter systems involved in regulating DA release from DAergic terminals.


Subject(s)
Alkaloids , Azocines , Baclofen , Conditioning, Operant , Ethanol , GABA-B Receptor Agonists , Nicotinic Agonists , Nucleus Accumbens , Quinolizines , Rats, Wistar , Self Administration , Animals , Male , Baclofen/pharmacology , Baclofen/administration & dosage , Rats , Alkaloids/pharmacology , Alkaloids/administration & dosage , Azocines/pharmacology , Azocines/administration & dosage , Quinolizines/pharmacology , Quinolizines/administration & dosage , GABA-B Receptor Agonists/pharmacology , GABA-B Receptor Agonists/administration & dosage , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Ethanol/administration & dosage , Ethanol/pharmacology , Conditioning, Operant/drug effects , Nicotinic Agonists/pharmacology , Nicotinic Agonists/administration & dosage , Administration, Oral , Alcohol Drinking/drug therapy , Alcohol Drinking/psychology , Quinolizidine Alkaloids
2.
Spinal Cord ; 62(10): 574-583, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39187628

ABSTRACT

STUDY DESIGN: Preclinical pilot study. OBJECTIVES: To explore peripheral and central nociceptive mechanisms that contribute to muscle stretch-induced locomotor deficits following spinal cord injury. SETTING: Kentucky Spinal Cord Injury Research Center, Louisville, KY, USA. METHODS: Ten female Sprague-Dawley rats received moderate, 25 g/cm T10 contusion injuries and recovered for 4 weeks. Rats were divided into three groups: Morphine/Ibuprofen-treated, Acetaminophen/Baclofen-treated, and saline control. Each group received daily hindlimb muscle stretching during weeks 4, 5, 9, and 10 post-injury and drugs were administered with stretching during weeks 4 and 9 only. Locomotor function was assessed throughout the experiment using the BBB Open Field Locomotor Scale. Hindlimb responses including spasticity, writhing, and clonic-like vibrations during muscle stretching were classified and scored. RESULTS: Consistent with our previous studies, hindlimb muscle stretching caused significant deficits in locomotor recovery following spinal cord injury. Baclofen and Ibuprofen partially mitigated the stretching effect, but none of the drugs significantly prevented the drop in locomotor function during stretching. Interestingly, treatment with Baclofen or Ibuprofen significantly reduced hindlimb responses such as spasticity and writhing during stretching, while Morphine exacerbated clonic-like vibrations in response to stretching maneuvers. CONCLUSIONS: These findings suggest that stretching may inhibit locomotor recovery through combined mechanisms of peripheral inflammation and sensitization of nociceptive afferents. When combined with central sprouting and loss of descending controls after SCI, this results in exaggerated nociceptive input during stretching. The inability of the applied clinical drugs to mitigate the detrimental effects of stretching highlights the complexity of the stretching phenomenon and emphasizes the need for further investigation.


Subject(s)
Disease Models, Animal , Hindlimb , Ibuprofen , Morphine , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Female , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/complications , Hindlimb/physiopathology , Hindlimb/drug effects , Ibuprofen/pharmacology , Ibuprofen/administration & dosage , Morphine/pharmacology , Morphine/administration & dosage , Rats , Baclofen/pharmacology , Baclofen/administration & dosage , Acetaminophen/pharmacology , Acetaminophen/administration & dosage , Pilot Projects , Muscle Stretching Exercises , Muscle Relaxants, Central/pharmacology , Muscle Relaxants, Central/administration & dosage , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage
3.
J Mol Neurosci ; 74(3): 82, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212758

ABSTRACT

Hippocamposeptal (HS) neurons send GABAergic projections from the hippocampus to the medial septum/diagonal band of Broca (MS/DBB) as part of a reciprocal loop that is critical for memory. HS neurons are proposed to be particularly sensitive to the deleterious effects of pathological exposure to amyloid-ß (Aß), as would occur during Alzheimer's disease (AD). However, it is not known how HS GABA release in the MS/DBB is altered during the progression of AD. To target HS neurons in a mouse model of AD, we crossed SST-Cre mice to 5XFAD mice and performed stereotaxic injections of Cre-dependent AAV containing mCherry/channelrhodopsin-2 (ChR2) into the hippocampus of offspring at 4, 6, 9, and 12 months. We used optogenetics to selectively stimulate HS terminals while performing whole-cell patch-clamp recordings from MS/DBB neurons in slices. There was a transient reduction in HS-inhibitory postsynaptic current (IPSC) amplitude in female 5XFAD mice at 6 months, but no difference in males at any age, and no difference in paired-pulse ratio in either sex at any age. When bath applying the GABABR agonist, baclofen, we found a larger decrease in HS-IPSC amplitude in 5XFAD females at 9 months and 5XFAD males at 12 months. In 12-month-old 5XFAD females, response to baclofen was significantly reduced. These data suggest that there is a transient increase in responsiveness to GABABR activation in 5XFAD mice that occurs earlier in females than in males. These sex-specific changes to HS function are likely to impact the relay of information between the hippocampus and MS/DBB.


Subject(s)
Hippocampus , Receptors, GABA-B , Animals , Mice , Male , Female , Receptors, GABA-B/metabolism , Receptors, GABA-B/genetics , Hippocampus/metabolism , Alzheimer Disease/metabolism , Inhibitory Postsynaptic Potentials , Baclofen/pharmacology , GABA-B Receptor Agonists/pharmacology , Septal Nuclei/metabolism
4.
Eur J Pharmacol ; 979: 176768, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39002637

ABSTRACT

Previous studies from our laboratory have shown sex differences in the behavioral, molecular, and neurochemical manifestations of morphine withdrawal and they were related to an increased sensitivity to morphine effects in males. In addition, we observed an interaction between the GABAergic and opioid systems that could also be sex-dependent. Baclofen, a GABAB receptor agonist, prevented the somatic expression and the molecular and neurochemical changes induced by morphine withdrawal syndrome in mice. On the contrary, little is known about baclofen effects in the rewarding properties of morphine in male and female mice. The present study aimed to explore the effect of baclofen (1, 2 and 3 mg/kg, i.p.) pretreatment in the rewarding effects induced by morphine (7 mg/kg, s.c.) and its effect on c-Fos and brain-derived neurotrophic factor (BDNF) expression induced by the rewarding properties of morphine in prepubertal male and female mice. Baclofen (2 mg/kg) pretreatment prevented the rewarding effects of morphine only in male mice, while baclofen (3 mg/kg) reduced these effects in both sexes. Moreover, the rewarding effects of morphine were associated with a decrease of BDNF and c-Fos expression cingulate cortex, nucleus accumbens shell, cornu ammonis 1 (CA1), and cornu ammonis 3 (CA3) areas of the hippocampus only in male mice. In addition, baclofen pretreatment prevented these changes in BDNF, but not in c-Fos expression. In conclusion, our results show that GABAB receptors have a regulatory role in the rewarding effects of morphine that could be of interest for a potential future therapeutic application in opioid use disorders.


Subject(s)
Baclofen , Brain-Derived Neurotrophic Factor , Morphine , Proto-Oncogene Proteins c-fos , Reward , Animals , Baclofen/pharmacology , Male , Female , Morphine/pharmacology , Mice , Brain-Derived Neurotrophic Factor/metabolism , Proto-Oncogene Proteins c-fos/metabolism , GABA-B Receptor Agonists/pharmacology , Sex Characteristics , Behavior, Animal/drug effects , Sex Factors
5.
J Chin Med Assoc ; 87(8): 754-764, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38860774

ABSTRACT

BACKGROUND: Drug addiction is a social and medical problem that must be urgently addressed. The nucleus accumbens (NAc) is closely related to addiction-related learning memory, and γ-aminobutyric acid type B receptor (GABA B R) is a potential target for the treatment of drug addiction. However, the role of GABA B R activity levels in the NAc in cocaine addiction is unclear. METHODS: In this study, we established an animal model of cocaine dependence, modulated the level of GABA B R activity, applied a conditioned place preference assay (CPP) to assess the role of the NAc in reconsolidation of addiction memory, evaluated learning and memory functions by behavioral experiments, examined the expression of GB1, GB2, cyclic adenosine monophosphate response element binding protein (CREB), p-CREB, protein kinase A (PKA), protein kinase (ERK), and Brain-derived neurotrophic factor (BDNF) in the NAc by molecular biology experiments, and screened differentially significantly expressed genes by transcriptome sequencing. RESULTS: Our study showed that the GABA B receptor agonist baclofen (BLF) had a significant effect on locomotor distance in rats, promoted an increase in GABA levels and significantly inhibited the PKA and ERK1/2/CREB/BDNF signaling pathways. Moreover, transcriptome sequencing showed that GABA B R antagonist intervention identified a total of 21 upregulated mRNAs and 21 downregulated mRNAs. The differentially expressed (DE) mRNA genes were mainly enriched in tyrosine metabolism; however, further study is needed. CONCLUSION: GABA B R activity in the NAc is involved in the regulation of cocaine addiction and may play an important role through key mRNA pathways.


Subject(s)
Cocaine-Related Disorders , Nucleus Accumbens , RNA, Messenger , Rats, Sprague-Dawley , Receptors, GABA-B , Animals , Rats , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Male , Receptors, GABA-B/genetics , RNA, Messenger/analysis , Cocaine-Related Disorders/metabolism , Baclofen/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Cyclic AMP Response Element-Binding Protein/metabolism
6.
Brain Res ; 1841: 149086, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38876319

ABSTRACT

Alcohol use disorder (AUD) remains a critical public health issue worldwide, characterized by high relapse rates often triggered by contextual cues. This research investigates the neural mechanisms behind context-induced reinstatement of alcohol-seeking behavior, focusing on the nucleus accumbens and its interactions with the prelimbic cortex, employing Male Long-Evans rats in an ABA renewal model. In our experimental setup, rats were trained to self-administer 10 % ethanol in Context A, followed by extinction of lever pressing in the presence of discrete cues in Context B. The context-induced reinstatement of ethanol-seeking was then assessed by re-exposing rats to Context A or B under extinction conditions, aiming to simulate the environmental cues' influence on relapse behaviors. Three experiments were conducted: Experiment 1 utilized Fos-immunohistochemistry to examine neuronal activation in the nucleus accumbens; Experiment 2 applied the baclofen + muscimol inactivation technique to probe the functional importance of the nucleus accumbens core; Experiment 3 used Fos-immunofluorescence along with Retrobeads injection to investigate activation of neurons projecting from the prelimbic cortex to the nucleus accumbens core. Our findings revealed significant increases in Fos-immunoreactive nuclei within the nucleus accumbens core and shell during the reinstatement phase in Context A, underscoring the environment's potent effect on ethanol-seeking behavior. Additionally, inactivation of the nucleus accumbens core markedly reduced reinstatement, and there was a notable activation of neurons from the prelimbic cortex to the nucleus accumbens core in the ethanol-associated context. These results highlight the critical role of the nucleus accumbens core and its corticostriatal projections in the neural circuitry underlying context-driven ethanol seeking.


Subject(s)
Drug-Seeking Behavior , Ethanol , Extinction, Psychological , Nucleus Accumbens , Rats, Long-Evans , Animals , Nucleus Accumbens/drug effects , Male , Ethanol/administration & dosage , Ethanol/pharmacology , Drug-Seeking Behavior/physiology , Rats , Extinction, Psychological/physiology , Extinction, Psychological/drug effects , Self Administration , Neural Pathways/physiology , Alcoholism , Cues , Prefrontal Cortex/physiology , Prefrontal Cortex/drug effects , Baclofen/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Muscimol/pharmacology
7.
J Psychopharmacol ; 38(6): 532-540, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38647196

ABSTRACT

BACKGROUND: Dysfunctional sensory gating in anxiety disorders, indexed by the failure to inhibit the P50 event-related potential (ERP) to repeated stimuli, has been linked to deficits in the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). AIMS/METHODS: This study, conducted in 30 healthy volunteers, examined the acute effects of GABAA (lorazepam: 1 mg) and GABAB receptor (baclofen: 10 mg) agonists on P50 measures of auditory sensory gating within a paired-stimulus (S1-S2) paradigm and assessed changes in gating in relation to self-ratings of anxiety. RESULTS: Compared to placebo, lorazepam reduced ERP indices of sensory gating by attenuating response to S1. Although not directly impacting P50 inhibition, baclofen-induced changes in gating (relative to placebo) were negatively correlated with trait but not state anxiety. CONCLUSIONS: These preliminary findings support the involvement of GABA in sensory gating and tentatively suggest a role for GABAB receptor signaling in anxiety-associated gating dysregulation.


Subject(s)
Anxiety , Baclofen , GABA-B Receptor Agonists , Lorazepam , Receptors, GABA-B , Sensory Gating , Humans , Male , Female , Adult , Baclofen/pharmacology , Lorazepam/pharmacology , GABA-B Receptor Agonists/pharmacology , Anxiety/metabolism , Young Adult , Sensory Gating/drug effects , Receptors, GABA-B/metabolism , Receptors, GABA-B/drug effects , GABA-A Receptor Agonists/pharmacology , Healthy Volunteers , Double-Blind Method , Evoked Potentials, Auditory/drug effects , Evoked Potentials, Auditory/physiology , Receptors, GABA-A/metabolism , Receptors, GABA-A/drug effects , Adolescent
8.
Alcohol Alcohol ; 59(3)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38566580

ABSTRACT

BACKGROUND: Positive allosteric modulators (PAMs) of the GABAB receptor constitute a new class of GABAB-receptor ligands. GABAB PAMs reproduce several pharmacological effects of the orthosteric GABAB receptor agonist, baclofen, although displaying a better safety profile. AIMS: This paper reviews the reducing or, frequently, even suppressing effects of all GABAB PAMs tested to date on multiple alcohol-related behaviours in laboratory rodents exposed to validated experimental models of human alcohol use disorder. RESULTS: Acute or repeated treatment with CGP7930, GS39783, BHF177, rac-BHFF, ADX71441, CMPPE, COR659, ASP8062, KK-92A, and ORM-27669 reduced excessive alcohol drinking, relapse- and binge-like drinking, operant alcohol self-administration, reinstatement of alcohol seeking, and alcohol-induced conditioned place preference in rats and mice. CONCLUSIONS: These effects closely mirrored those of baclofen; notably, they were associated to remarkably lower levels of tolerance and toxicity. The recent transition of ASP8062 to clinical testing will soon prove whether these highly consistent preclinical data translate to AUD patients.


Subject(s)
Alcoholism , Animals , Mice , Rats , Alcohol Drinking/drug therapy , Alcoholism/drug therapy , Baclofen/pharmacology , Baclofen/therapeutic use , GABA-B Receptor Agonists/pharmacology , GABA-B Receptor Agonists/therapeutic use , Receptors, GABA-B
9.
Neuropsychopharmacology ; 49(10): 1540-1549, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38499719

ABSTRACT

Evidence indicates that the anterior (aIC), but not posterior (pIC), insular cortex promotes cued reinstatement of cocaine seeking after extinction in rats. It is unknown whether these subregions also regulate heroin seeking and whether such involvement depends on prior extinction learning. To address these questions, we used baclofen and muscimol (BM) to inactivate the aIC or pIC bilaterally during a seeking test after extinction or prolonged withdrawal from heroin. Male Sprague-Dawley rats in the extinction groups underwent 10+ days of heroin self-administration, followed by 6+ days of extinction sessions, and subsequent cued or heroin-primed reinstatement. Results indicate that aIC inactivation increased cued reinstatement of heroin seeking after extinction, whereas pIC inactivation prevented cued reinstatement. To determine whether these effects were extinction-dependent, we conducted a subsequent study using both sexes with prolonged withdrawal. Male and female rats in the withdrawal groups underwent 10+ days of heroin self-administration, followed by cued seeking tests after 1 and 14 days of homecage withdrawal to measure incubation of heroin craving. In this case, the findings indicate that aIC inactivation had no effect on incubation of heroin craving after withdrawal in either sex, whereas pIC inactivation decreased heroin craving only in males. These findings suggest that the aIC and pIC have opposing roles in suppressing vs promoting cued heroin seeking after extinction and that these roles are distinct from those in cocaine seeking. Moreover, the incubation of craving results suggest that new contingency learning is necessary to recruit the aIC in cued heroin seeking.


Subject(s)
Baclofen , Cues , Drug-Seeking Behavior , Extinction, Psychological , Heroin , Insular Cortex , Muscimol , Rats, Sprague-Dawley , Self Administration , Substance Withdrawal Syndrome , Animals , Male , Extinction, Psychological/drug effects , Heroin/administration & dosage , Heroin/pharmacology , Rats , Drug-Seeking Behavior/drug effects , Drug-Seeking Behavior/physiology , Baclofen/pharmacology , Baclofen/administration & dosage , Female , Insular Cortex/drug effects , Muscimol/pharmacology , Muscimol/administration & dosage , Narcotics/pharmacology , Narcotics/administration & dosage
10.
Neurochem Int ; 175: 105718, 2024 May.
Article in English | MEDLINE | ID: mdl-38490487

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia in the elderly. Recent evidence suggests that gamma-aminobutyric acid B (GABAB) receptor-mediated inhibition is a major contributor to AD pathobiology, and GABAB receptors have been hypothesized to be a potential target for AD treatment. The aim of this study is to determine how GABAB regulation alters cognitive function and brain activity in an AD mouse model. Early, middle and late stage (8-23 months) amyloid precursor protein (APP) and presenilin 1 (PS1) transgenic mice were used for the study. The GABAB agonist baclofen (1 and 2.5 mg/kg, i. p.) and the antagonist phaclofen (0.5 mg/kg, i. p.) were used. Primarily, we found that GABAB activation was able to improve spatial and/or working memory performance in early and late stage AD animals. In addition, GABAB activation and inhibition could regulate global and local EEG oscillations in AD animals, with activation mainly regulating low-frequency activity (delta-theta bands) and inhibition mainly regulating mid- and high-frequency activity (alpha-gamma bands), although the regulated magnitude at some frequencies was reduced in AD. The cognitive improvements in AD animals may be explained by the reduced EEG activity in the theta frequency band (2-4 Hz). This study provides evidence for a potential therapeutic effect of baclofen in the elderly AD brain and for GABAB receptor-mediated inhibition as a potential therapeutic target for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Humans , Mice , Animals , Aged , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mice, Transgenic , Baclofen/pharmacology , Presenilin-1/genetics , Receptors, GABA-B , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , gamma-Aminobutyric Acid , Cognition , Electroencephalography , Disease Models, Animal
11.
Eur J Neurosci ; 59(9): 2260-2275, 2024 May.
Article in English | MEDLINE | ID: mdl-38411499

ABSTRACT

The anterior retrosplenial cortex (aRSC) integrates multimodal sensory information into cohesive associative recognition memories. Little is known about how information is integrated during different learning phases (i.e., encoding and retrieval). Additionally, sex differences are observed in performance of some visuospatial memory tasks; however, inconsistent findings warrant more research. We conducted three experiments using the 1-h delay object-in-place (1-h OiP) test to assess recognition memory retrieval in male and female Long-Evans rats. (i) We found both sexes performed equally in three repeated 1-h OiP test sessions. (ii) We showed infusions of a mixture of muscimol/baclofen (GABAA/B receptor agonists) into the aRSC ~15-min prior to the test phase disrupted 1-h OiP in both sexes. (iii) We assessed the role of aRSC ionotropic glutamate receptors in 1-h OiP retrieval using another squad of cannulated rats and confirmed that infusions of either the competitive AMPA/Kainate receptor antagonist CNQX (3 mM) or competitive NMDA receptor antagonist AP-5 (30 mM) (volumes = 0.50 uL/side) significantly impaired 1-h OiP retrieval in both sexes compared to controls. Taken together, findings challenge reported sex differences and clearly establish a role for aRSC ionotropic glutamate receptors in short-term visuospatial recognition memory retrieval. Thus, modulating neural activity in the aRSC may alleviate some memory processing impairments in related disorders.


Subject(s)
Muscimol , Rats, Long-Evans , Recognition, Psychology , Animals , Male , Female , Rats , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Muscimol/pharmacology , GABA-A Receptor Agonists/pharmacology , Baclofen/pharmacology , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Receptors, Ionotropic Glutamate/metabolism , Receptors, Ionotropic Glutamate/antagonists & inhibitors , Mental Recall/drug effects , Mental Recall/physiology , Excitatory Amino Acid Antagonists/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Sex Characteristics , GABA-B Receptor Agonists/pharmacology
12.
Eur J Neurosci ; 59(5): 966-981, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38180306

ABSTRACT

The dorsal nucleus of the lateral lemniscus (DNLL) is a GABAergic, reciprocally connected auditory brainstem structure that continues to develop postnatally in rodents. One key feature of the DNLL is the generation of a strong, prolonged, ionotropic, GABAA receptor-mediated inhibition. Possible GABAB receptor-mediated signalling is unexplored in the DNLL. Here, we used Mongolian gerbils of either sex to describe GABAB receptor-mediated modulation of postsynaptic potassium currents and synaptic inputs in postnatal (P) animals of days 10/11 and 23-28. Throughout development, we observed the presence of a Baclofen-activated GABAB receptor-enhanced potassium outward conductance that is capable of suppressing action potential generation. In P10/11, old gerbils GABAB receptor activation enhances glutamatergic and suppresses ionotropic GABAergic synaptic transmission. During development, this differential modulation becomes less distinct, because in P22-28, old animals Baclofen-activated GABAB receptors rather enhance ionotropic GABAergic synaptic transmission, whereas glutamatergic transmission is both enhanced and suppressed. Blocking GABAB receptors causes an increase in ionotropic GABAergic transmission in P10/11 old gerbils that was independent on stimulation frequency but depended on the type of short-term plasticity. Together with the lack of Baclofen-induced changes in the synaptic paired-pulse ratio of either input type, we suggest that GABAB receptor-mediated modulation is predominantly postsynaptic and activates different signalling cascades. Thus, we argue that in DNLL neurons, the GABAB receptor is a post-synaptically located signalling hub that alters signalling cascades during development for distinct targets.


Subject(s)
Baclofen , Receptors, GABA-B , Animals , Baclofen/pharmacology , Gerbillinae , Synaptic Transmission/physiology , Receptors, GABA-A , Potassium
13.
Bull Exp Biol Med ; 175(6): 777-780, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37979027

ABSTRACT

The effect of the toxic dose of the muscle relaxant baclofen on the parameters of the cardiovascular and respiratory systems was studied in adult male Wistar rats (n=20). Systolic and diastolic BP, HR, and respiratory rate were measured; histological changes in the lungs 3, 4.5, and 24 h after drug administration. Baclofen was administered orally in a sublethal toxic dose of 85 mg/kg under anesthesia. Cardiac activity was analyzed using RSM physiological indicators monitoring system with MouseMonitor S (Indus Instruments) software. Histological examination was performed by light microscopy. Baclofen significantly decreased the respiratory rate and increased HR and BP. Histological examination of the lungs revealed a complex of general pathological processes, such as local circulatory disorders (venular and capillary fullness, sludge), leukocyte infiltration of the interalveolar septa and their thickening due to edema. These findings can be used to estimate the time elapsed after baclofen treatment.


Subject(s)
Baclofen , Cardiovascular System , Rats , Animals , Male , Baclofen/pharmacology , Rats, Wistar , Blood Pressure , Lung
14.
Sci Rep ; 13(1): 18563, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903976

ABSTRACT

Secondary injury from traumatic brain injury (TBI) perpetuates cerebral damages through varied ways. Attenuating neuroinflammation, which is a key feature of TBI, is important for long-term prognosis of its patients. Baclofen, a muscle relaxant, has shown promise in reducing excessive inflammation in other neurologic disorders. However, its effectiveness in TBI remains ambiguous. Thus, our study aimed to investigate whether early administration of baclofen could elicit potential therapeutic effects by diminishing exaggerated neuroinflammation in TBI mice. In this study, 80 C57BL/6 mice were used, of which 69 mice received controlled cortical impact. The mice were divided into six groups (11-16 mice each). Baclofen, administered at dose of 0.05, 0.2 and 1 mg/kg, was injected intraperitoneally a day after TBI for 3 consecutive weeks. 3 weeks after completing the treatments, the mice were assessed histologically. The results showed that mice treated with baclofen exhibited a significantly lower volume of lesion tissue than TBI mice with normal saline. Baclofen also reduced activated glial cells with neurotoxic immune molecules and inhibited apoptotic cells. Significant recovery was observed and sustained for 6 weeks at the 0.2 mg/kg dose in the modified neurological severity score. Furthermore, memory impairment was recovered with low-doses of baclofen in the Y-maze. Our findings demonstrate that early administration of low dose baclofen can regulate neuroinflammation, prevent cell death, and improve TBI motor and cognitive abnormalities.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Humans , Mice , Animals , Baclofen/pharmacology , Baclofen/therapeutic use , Neuroinflammatory Diseases , Mice, Inbred C57BL , Brain Injuries, Traumatic/metabolism , Brain Injuries/etiology , Brain Injuries/complications , Disease Models, Animal
15.
Behav Neurosci ; 137(6): 373-379, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37824233

ABSTRACT

Our recent research suggests that the interoceptive state associated with stress can function as a contextual stimulus for operant behavior. In the present experiment, we investigated the role of the rodent prelimbic cortex (PL), a brain region that is critical in contextual control of operant behavior, in the ability of a stressed state to produce ABA renewal of an extinguished operant response. Rats were trained to perform a lever press response for a food pellet reward during daily sessions that followed exposure to a stressor that changed each day. The response was then extinguished in the absence of stress. ABA renewal of extinguished responding occurred following exposure to another stressor (different from any used during acquisition) in control rats but not in rats that received a PL-inactivating infusion (baclofen/muscimol). Results confirm that the interoceptive state of stress can play the role of a contextual stimulus and initiate renewal (relapse) of an inhibited behavior when stress has previously been associated with the behavior. In conjunction with our previous work, the present results support the hypothesis that the PL is important for contexts, both exteroceptive and interoceptive, to exert such control over operant behavior. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Conditioning, Operant , Extinction, Psychological , Rats , Animals , Conditioning, Operant/physiology , Extinction, Psychological/physiology , Muscimol/pharmacology , Baclofen/pharmacology , Reward , Prefrontal Cortex/physiology
16.
World J Gastroenterol ; 29(28): 4416-4432, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37576707

ABSTRACT

BACKGROUND: The association between diabetes mellitus (DM) and the increased risk and progression of cholangiocarcinoma (CCA) has been reported with unclear underlying mechanisms. Previous studies showed that γ-aminobutyric acid (GABA) B2 receptor (GABBR2) was upregulated in CCA cells cultured in high glucose (HG) conditions. Roles of GABA receptors in CCA progression have also been studied, but their association with DM and hyperglycemia in CCA remains unclarified. AIM: To investigate the effects of hyperglycemia on GABBR2 expression and the potential use of GABBR2 as a CCA therapeutic target. METHODS: CCA cells, KKU-055 and KKU-213A, were cultured in Dulbecco Modified Eagle's Medium supplemented with 5.6 mmol/L (normal glucose, NG) or 25 mmol/L (HG) glucose and assigned as NG and HG cells, respectively. GABBR2 expression in NG and HG cells was investigated using real-time quantitative polymerase chain reaction and western blot. Expression and localization of GABBR2 in CCA cells were determined using immunocytofluorescence. GABBR2 expression in tumor tissues from CCA patients with and without DM was studied using immunohistochemistry, and the correlations of GABBR2 with the clinicopathological characteristics of patients were analyzed using univariate analysis. Effects of baclofen, a GABA-B receptor agonist, on CCA cell proliferation and clonogenicity were tested using the MTT and clonogenic assays. Phospho-kinases arrays were used to screen the affected signaling pathways after baclofen treatment, and the candidate signaling molecules were validated using the public transcriptomic data and western blot. RESULTS: GABBR2 expression in CCA cells was induced by HG in a dose- and time-dependent manner. CCA tissues from patients with DM and hyperglycemia also showed a significantly higher GABBR2 expression compared with tumor tissues from those with euglycemia (P < 0.01). High GABBR2 expression was significantly associated with a poorer non-papillary histological subtype but with smaller sizes of CCA tumors (P < 0.05). HG cells of both tested CCA cell lines were more sensitive to baclofen treatment. Baclofen significantly suppressed the proliferation and clonogenicity of CCA cells in both NG and HG conditions (P < 0.05). Phospho-kinase arrays suggested glycogen synthase kinase 3 (GSK3), ß-catenin, and the signal transducer and activator of transcription 3 (STAT3) as candidate signaling molecules under the regulation of GABBR2, which were verified in NG and HG cells of the individual CCA cell lines. Cyclin D1 and c-Myc, the common downstream targets of GSK3/ß-catenin and STAT3 involving cell proliferation, were accordingly downregulated after baclofen treatment. CONCLUSION: GABBR2 is upregulated by HG and holds a promising role as a therapeutic target for CCA regardless of the glucose condition.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Diabetes Mellitus , Hyperglycemia , Humans , beta Catenin/metabolism , Glycogen Synthase Kinase 3/pharmacology , Glycogen Synthase Kinase 3/therapeutic use , Baclofen/pharmacology , Baclofen/therapeutic use , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cell Proliferation , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/pathology , Glucose/pharmacology , Glucose/therapeutic use , Cell Line, Tumor
17.
Respir Physiol Neurobiol ; 315: 104115, 2023 09.
Article in English | MEDLINE | ID: mdl-37460080

ABSTRACT

Bicuculline and saclofen were microinjected into the rostral (rNTS) and caudal nucleus of the solitary tract (cNTS) in 17 anesthetized cats. Electromyograms (EMGs) of the diaphragm (DIA) and abdominal muscles (ABD), esophageal pressures (EP), and blood pressure were recorded and analyzed. Bilateral microinjections of 1 mM bicuculline in the rNTS significantly reduced the number of coughs (CN), amplitudes of DIA and ABD EMG, inspiratory and expiratory EP, and prolonged the duration of the cough expiratory phase (CTE) as well as the total cough cycle duration (CTtot). Bilateral microinjections of 2 mM saclofen reduced only cough expiratory efforts. Bilateral microinjection of bicuculline in the cNTS significantly reduced CN and amplitudes of ABD EMG and elongated CTE and CTtot. Bilateral microinjections of saclofen in cNTS had no significant effect on analyzed cough parameters. Our results confirm a different GABAergic inhibitory system in the rNTS and cNTS acting on mechanically induced cough in cats.


Subject(s)
Cough , Solitary Nucleus , Cats , Animals , Cough/drug therapy , Bicuculline/pharmacology , GABA-B Receptor Antagonists/pharmacology , GABA-B Receptor Antagonists/therapeutic use , Baclofen/pharmacology , Microinjections
18.
Eur J Pharmacol ; 955: 175910, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37479017

ABSTRACT

Previous studies have demonstrated the role of γ-aminobutyric acid type B (GABAB) receptors in skin-related conditions and pain. However, most studies have focused on the main effects of GABAB on the central nervous system. Therefore, this study has aimed to determine the potential topical anti-inflammatory and anti-proliferative effects of baclofen cream in an inflammatory skin disease model. The effects of the baclofen cream were evaluated using acute and chronic models of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mouse ears. Histological and immunohistochemical evaluations were performed using an ear oedema assay. The effect of baclofen on keratinocyte proliferation was assessed in PAM212, the murine keratinocyte cell line. The results demonstrate that a single topical application of 5% baclofen, 7.5% baclofen, and 1% dexamethasone each inhibited acute TPA-induced ear oedema (58.94 ± 6.14%, 47.73 ± 11.26%, and 87.33 ± 4.59%, respectively). These results were confirmed by histological analysis. In the chronic model, baclofen (5%) and dexamethasone (1%) each inhibited ear oedema and the maximum inhibitory effect was reached at the end of the experiment (9th day of TPA application) with a percentage inhibition of 54.60 ± 6.15% for baclofen and 71.68 ± 3.45% for dexamethasone, when compared to the vehicle. These results were confirmed by histological analysis. Baclofen and dexamethasone also reduced proliferating cell nuclear antigen expression by 62.01 ± 6.65% and 70.42 ± 6.11%, respectively. However, baclofen did not inhibit keratinocyte proliferation in PAM212 cells. In conclusion, these results demonstrate that baclofen exhibits notable topical antiproliferative and anti-inflammatory properties and could be a potential therapeutic alternative for treating inflammatory and proliferative skin diseases.


Subject(s)
Dermatitis , Skin Diseases , Animals , Mice , Baclofen/pharmacology , Baclofen/therapeutic use , GABA-B Receptor Agonists/pharmacology , GABA-B Receptor Agonists/therapeutic use , Skin Diseases/drug therapy , Anti-Inflammatory Agents/adverse effects , Inflammation/drug therapy , Dexamethasone/therapeutic use , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Tetradecanoylphorbol Acetate/therapeutic use
19.
Neuroscience ; 526: 97-106, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37352966

ABSTRACT

Brain injury is a major cause of death and disability after cardiac arrest (CA). Previous studies have shown that activating GABAB receptors significantly improves neurological function after CA, but the mechanism of this neuronal protection of damaged neurons remains unclear. Thus, the present study aimed to investigate whether GABAB receptor activation protects against neuronal injury and to reveal the underlying protective mechanisms. In this study, rats underwent 10 min of asphyxia to induce CA, and SH-SY5Y cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to establish in vivo and in vitro models of hypoxic neuronal injury. Differential gene expression between CA rats and sham-operated rats was identified using RNA-seq. TUNEL and Nissl staining were used to evaluate cortical neuron damage, while Western blotting, qRT-PCR, and immunofluorescence assays were conducted to measure pyroptosis-related indicators. Furthermore, cellular models with high expression of caspase-11 were established to reveal the novel molecular mechanisms by which GABAB receptor activation exerts neuroprotective effects. Intriguingly, our results showed that caspase-11 and GSDMD were highly expressed in rats experiencing cardiac arrest. Specifically, GSDMD was expressed in neurons in the M1 area of the cerebral cortex. Moreover, activation of the GABAB receptor exerted a protective effect on neurons both in vivo and in vitro. Baclofen attenuated caspase-11 activation and neuronal pyroptosis after CA, and the anti-neuronal pyroptosis effect of baclofen was abolished by overexpression of caspase-11 in neuronal cells. In conclusion, GABAB receptor activation may play a neuroprotective role by alleviating neuronal pyroptosis through a mechanism involving caspase-11.


Subject(s)
Brain Injuries , Neuroblastoma , Reperfusion Injury , Rats , Humans , Animals , Pyroptosis/physiology , Baclofen/pharmacology , Neuroblastoma/metabolism , Neurons/metabolism , Brain Injuries/metabolism , Caspases/metabolism , Reperfusion Injury/metabolism
20.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373105

ABSTRACT

Mephedrone is a psychoactive drug that increases dopamine, serotonin and noradrenaline levels in the central nervous system via interaction with transporters or monoamines. The aim of the presented study was to assess the role of the GABA-ergic system in the expression of mephedrone-induced reward. For this purpose, we conducted (a) a behavioral evaluation of the impact of baclofen (a GABAB receptors agonist) and GS39783 (a positive allosteric modulator of GABAB receptors) on the expression of mephedrone-induced conditioned place preference (CPP) in rats, (b) an ex vivo chromatographic determination of the GABA level in the hippocampi of rats subchronically treated with mephedrone and (c) an in vivo evaluation of GABA hippocampal concentration in rats subchronically administered with mephedrone using magnetic resonance spectroscopy (MRS). The results show that GS39783 (but not baclofen) blocked the expression of CPP induced by (20 mg/kg of) mephedrone. The behavioral effect was consistent with chromatographic analysis, which showed that mephedrone (5 and 20 mg/kg) led to a decrease in GABA hippocampal concentration. Altogether, the presented study provides a new insight into the involvement of the GABA-ergic system in the rewarding effects of mephedrone, implying that those effects are at least partially mediated through GABAB receptors, which suggests their potential role as new targets for the pharmacological management of mephedrone use disorder.


Subject(s)
GABA-B Receptor Agonists , Reward , Rats , Animals , GABA-B Receptor Agonists/pharmacology , Baclofen/pharmacology , Receptors, GABA-B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL