Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.057
1.
Molecules ; 29(11)2024 Jun 06.
Article En | MEDLINE | ID: mdl-38893576

Rare tautomeric forms of nucleobases can lead to Watson-Crick-like (WC-like) mispairs in DNA, but the process of proton transfer is fast and difficult to detect experimentally. NMR studies show evidence for the existence of short-time WC-like guanine-thymine (G-T) mispairs; however, the mechanism of proton transfer and the degree to which nuclear quantum effects play a role are unclear. We use a B-DNA helix exhibiting a wGT mispair as a model system to study tautomerization reactions. We perform ab initio (PBE0/6-31G*) quantum mechanical/molecular mechanical (QM/MM) simulations to examine the free energy surface for tautomerization. We demonstrate that while the ab initio QM/MM simulations are accurate, considerable sampling is required to achieve high precision in the free energy barriers. To address this problem, we develop a QM/MM machine learning potential correction (QM/MM-ΔMLP) that is able to improve the computational efficiency, greatly extend the accessible time scales of the simulations, and enable practical application of path integral molecular dynamics to examine nuclear quantum effects. We find that the inclusion of nuclear quantum effects has only a modest effect on the mechanistic pathway but leads to a considerable lowering of the free energy barrier for the GT*⇌G*T equilibrium. Our results enable a rationalization of observed experimental data and the prediction of populations of rare tautomeric forms of nucleobases and rates of their interconversion in B-DNA.


Base Pairing , Guanine , Machine Learning , Molecular Dynamics Simulation , Protons , Quantum Theory , Thymine , Guanine/chemistry , Thymine/chemistry , DNA/chemistry , Thermodynamics
2.
Chemphyschem ; 25(9): e202400391, 2024 May 02.
Article En | MEDLINE | ID: mdl-38712664

The front cover artwork is provided by Prof. Papadantonakis' group. The image shows a Watson-Crick Guanine-Cytosine pair, and the difference between vertical and adiabatic ionization potentials. Read the full text of the Research Article at 10.1002/cphc.202300946.


Base Pairing , Cytosine , Guanine , Cytosine/chemistry , Guanine/chemistry , DNA/chemistry
3.
Methods Mol Biol ; 2726: 143-168, 2024.
Article En | MEDLINE | ID: mdl-38780731

The 3D structures of many ribonucleic acid (RNA) loops are characterized by highly organized networks of non-canonical interactions. Multiple computational methods have been developed to annotate structures with those interactions or automatically identify recurrent interaction networks. By contrast, the reverse problem that aims to retrieve the geometry of a look from its sequence or ensemble of interactions remains much less explored. In this chapter, we will describe how to retrieve and build families of conserved structural motifs using their underlying network of non-canonical interactions. Then, we will show how to assign sequence alignments to those families and use the software BayesPairing to build statistical models of structural motifs with their associated sequence alignments. From this model, we will apply BayesPairing to identify in new sequences regions where those loop geometries can occur.


Base Pairing , Computational Biology , RNA , Software , Computational Biology/methods , RNA/chemistry , RNA/genetics , Nucleic Acid Conformation , Sequence Alignment/methods , Algorithms , Nucleotide Motifs , Bayes Theorem , Models, Molecular
4.
Methods Mol Biol ; 2726: 169-207, 2024.
Article En | MEDLINE | ID: mdl-38780732

Nucleotide modifications are occurrent in all types of RNA and play an important role in RNA structure formation and stability. Modified bases not only possess the ability to shift the RNA structure ensemble towards desired functional confirmations. By changes in the base pairing partner preference, they may even enlarge or reduce the conformational space, i.e., the number and types of structures the RNA molecule can adopt. However, most methods to predict RNA secondary structure do not provide the means to include the effect of modifications on the result. With the help of a heavily modified transfer RNA (tRNA) molecule, this chapter demonstrates how to include the effect of different base modifications into secondary structure prediction using the ViennaRNA Package. The constructive approach demonstrated here allows for the calculation of minimum free energy structure and suboptimal structures at different levels of modified base support. In particular we, show how to incorporate the isomerization of uridine to pseudouridine ( Ψ ) and the reduction of uridine to dihydrouridine (D).


Nucleic Acid Conformation , RNA , RNA/chemistry , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Nucleotides/chemistry , Base Pairing , Computational Biology/methods , Thermodynamics , Software , Uridine/chemistry , Models, Molecular , Pseudouridine/chemistry
5.
Sci Adv ; 10(21): eadl3214, 2024 May 24.
Article En | MEDLINE | ID: mdl-38787958

The replication accuracy of DNA polymerase gamma (Pol γ) is essential for mitochondrial genome integrity. Mutation of human Pol γ arginine-853 has been linked to neurological diseases. Although not a catalytic residue, Pol γ arginine-853 mutants are void of polymerase activity. To identify the structural basis for the disease, we determined a crystal structure of the Pol γ mutant ternary complex with correct incoming nucleotide 2'-deoxycytidine 5'-triphosphate (dCTP). Opposite to the wild type that undergoes open-to-closed conformational changes when bound to a correct nucleotide that is essential for forming a catalytically competent active site, the mutant complex failed to undergo the conformational change, and the dCTP did not base pair with its Watson-Crick complementary templating residue. Our studies revealed that arginine-853 coordinates an interaction network that aligns the 3'-end of primer and dCTP with the catalytic residues. Disruption of the network precludes the formation of Watson-Crick base pairing and closing of the active site, resulting in an inactive polymerase.


Base Pairing , Catalytic Domain , DNA Polymerase gamma , Humans , DNA Polymerase gamma/metabolism , DNA Polymerase gamma/genetics , DNA Polymerase gamma/chemistry , Models, Molecular , Mutation , Deoxycytosine Nucleotides/metabolism , Deoxycytosine Nucleotides/chemistry , Crystallography, X-Ray , Protein Binding
6.
J Am Chem Soc ; 146(23): 15897-15907, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38818863

In the RNA World before the emergence of an RNA polymerase, nonenzymatic template copying would have been essential for the transmission of genetic information. However, the products of chemical copying with the canonical nucleotides (A, U, C, and G) are heavily biased toward the incorporation of G and C, which form a more stable base pair than A and U. We therefore asked whether replacing adenine (A) with diaminopurine (D) might lead to more efficient and less biased nonenzymatic template copying by making a stronger version of the A:U pair. As expected, primer extension substrates containing D bound to U in the template more tightly than substrates containing A. However, primer extension with D exhibited elevated reaction rates on a C template, leading to concerns about fidelity. Our crystallographic studies revealed the nature of the D:C mismatch by showing that D can form a wobble-type base pair with C. We then asked whether competition with G would decrease the mismatched primer extension. We performed nonenzymatic primer extension with all four activated nucleotides on randomized RNA templates containing all four letters and used deep sequencing to analyze the products. We found that the DUCG genetic system exhibited a more even product distribution and a lower mismatch frequency than the canonical AUCG system. Furthermore, primer extension is greatly reduced following all mismatches, including the D:C mismatch. Our study suggests that D deserves further attention for its possible role in the RNA World and as a potentially useful component of artificial nonenzymatic RNA replication systems.


2-Aminopurine , RNA , RNA/chemistry , 2-Aminopurine/chemistry , 2-Aminopurine/analogs & derivatives , Base Pairing , Templates, Genetic , Nucleic Acid Conformation , Models, Molecular
7.
J Mol Model ; 30(6): 187, 2024 May 27.
Article En | MEDLINE | ID: mdl-38801468

CONTEXT: A systematic study of hydrogen bonds in base pairs and the interaction of cisplatin with DNA fragments was carried out. Structure, binding energies, and electron density were analyzed. xTB has proven to be an accurate method for obtaining structures and binding energies in DNA structures. Our xTB values for DNA base binding energy were in the same order and in some cases better than CAM-B3LYP values compared to experimental values. Double-stranded DNA-cisplatin structures have been calculated and the hydrogen bonds of water molecules are a decisive factor contributing to the preference for the cisplatin-Guanine interaction. Higher values of the water hydrogen bonding energies were obtained in cisplatin-Guanine structures. Furthermore, the electrostatic potential was used to investigate and improve the analysis of DNA-cisplatin structures. METHODS: We applied the xTB method and the CAM-B3LYP functional combined with def2-SVP basis set to perform and analyze of the bonding energies of the cisplatin interaction and the effects of the hydrogen bonds. Results were calculated employing the xTB and the ORCA software.


Cisplatin , DNA , Hydrogen Bonding , Cisplatin/chemistry , DNA/chemistry , Static Electricity , Density Functional Theory , Models, Molecular , Thermodynamics , Water/chemistry , Antineoplastic Agents/chemistry , Base Pairing
8.
Phys Chem Chem Phys ; 26(22): 16358-16368, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38805177

This study presents a comprehensive theoretical exploration of the fluorescent non-natural emissive nucleobases- mthA, mthG, mthC, and mthU derived from the methylthieno[3,4-d]pyrimidine heterocycle. Our calculations, aligning with experimental findings, reveal that these non-natural bases exert minimal influence on the geometry of classical Watson-Crick base pairs within an RNA duplex, maintaining H-bonding akin to natural bases. In terms of energy, the impact of the modified bases, but for mthG, is also found to be little significant. We delved into an in-depth analysis of the photophysical properties of these non-natural bases. This investigation unveiled a correlation between their absorption/emission peaks and the substantial impact of the modification on the energy levels of the highest unoccupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbital (LUMO). Notably, this alteration in energy levels resulted in a significant reduction of the HOMO-LUMO gap, from approximately 5.4-5.5 eV in the natural bases, to roughly 3.9-4.7 eV in the modified bases. This shift led to a consequential change in absorption and emission spectra towards longer wavelengths, elucidating their bathochromic shift.


Pyrimidines , RNA , RNA/chemistry , Pyrimidines/chemistry , Base Pairing , Hydrogen Bonding , Thermodynamics
9.
Anal Chem ; 96(22): 8868-8874, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38775341

Experimental methods to determine transition temperatures for individual base pair melting events in DNA duplexes are lacking despite intense interest in these thermodynamic parameters. Here, we determine the dimensions of the thymine (T) C2═O stretching vibration when it is within the DNA duplex via isotopic substitutions at other atomic positions in the structure. First, we determined that this stretching state was localized enough to specific atoms in the molecule to make submolecular scale measurements of local structure and stability in high molecular weight complexes. Next, we develop a new isotope-edited variable temperature infrared method to measure melting transitions at various locations in a DNA structure. As an initial test of this "sub-molecular scale thermometer", we applied our T13C2 difference infrared signal to measure location-dependent melting temperatures (TmL) in a DNA duplex via variable temperature attenuated total reflectance Fourier transform infrared (VT-ATR-FTIR) spectroscopy. We report that the TmL of a single Watson-Crick A-T base pair near the end of an A-T rich sequence (poly T) is ∼34.9 ± 0.7°C. This is slightly lower than the TmL of a single base pair near the middle position of the poly T sequence (TmL ∼35.6±0.2°C). In addition, we also report that the TmL of a single Watson-Crick A-T base pair near the end of a 50% G-C sequence (12-mer) is ∼52.5 ± 0.3°C, which is slightly lower than the global melting Tm of the 12-mer sequence (TmL ∼54.0±0.9°C). Our results provide direct physical evidence for end fraying in DNA sequences with our novel spectroscopic methods.


Base Pairing , DNA , Thymine , Transition Temperature , DNA/chemistry , Thymine/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrophotometry, Infrared/methods , Nucleic Acid Conformation , Temperature
10.
Nucleic Acids Res ; 52(11): 6687-6706, 2024 Jun 24.
Article En | MEDLINE | ID: mdl-38783391

The single-stranded RNA genome of SARS-CoV-2 is highly structured. Numerous helical stem-loop structures interrupted by mismatch motifs are present in the functionally important 5'- and 3'-UTRs. These mismatches modulate local helical geometries and feature unusual arrays of hydrogen bonding donor and acceptor groups. However, their conformational and dynamical properties cannot be directly inferred from chemical probing and are difficult to predict theoretically. A mismatch motif (SL1-motif) consisting of three consecutive U•U base pairs is located in stem-loop 1 of the 3'-UTR. We combined NMR-spectroscopy and MD-simulations to investigate its structure and dynamics. All three U•U base pairs feature two direct hydrogen bonds and are as stable as Watson-Crick A:U base pairs. Plasmodium falciparum 25S rRNA contains a triple U•U mismatch motif (Pf-motif) differing from SL1-motif only with respect to the orientation of the two closing base pairs. Interestingly, while the geometry of the outer two U•U mismatches was identical in both motifs the preferred orientation of the central U•U mismatch was different. MD simulations and potassium ion titrations revealed that the potassium ion-binding mode to the major groove is connected to the different preferred geometries of the central base pair in the two motifs.


3' Untranslated Regions , Base Pair Mismatch , Nucleotide Motifs , RNA, Viral , SARS-CoV-2 , Humans , Base Pairing , COVID-19/virology , Genome, Viral , Hydrogen Bonding , Molecular Dynamics Simulation , Nucleic Acid Conformation , Plasmodium falciparum/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/chemistry
11.
J Chem Inf Model ; 64(11): 4511-4517, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38767002

The A:8OG base pair (bp) is the outcome of DNA replication of the mismatched C:8OG bp. A high A:8OG bp population increases the C/G to A/T transversion mutation, which is responsible for various diseases. MutY is an important enzyme in the error-proof cycle and reverts A:8OG to C:8OG bp by cleaving adenine from the A:8OG bp. Several X-ray crystallography studies have determined the structure of MutY during the lesion scanning and lesion recognition stages. Interestingly, glycosidic bond (χ) angles of A:8OG bp in those two lesion recognition structures were found to differ, which implies that χ-torsion isomerization should occur during the lesion recognition process. In this study, as a first step to understanding this isomerization process, we characterized the intrinsic dynamic features of A:8OG in free DNAs by a free energy landscape simulation at the all-atom level. In this study, four isomerization states were assigned in the order of abundance: Aanti:8OGsyn > Aanti:8OGanti > Asyn:8OGanti ≈ Asyn:8OGsyn. Of these bp states, only 8OG in Asyn:8OGanti was located in the extrahelical space, whereas the purine bases (A and 8OG) in the other bp states remained inside the DNA helix. Also, free energy landscapes showed that the isomerization processes connecting these four bp states proceeded mostly in the intrahelical space via successive single glycosidic bond rotations of either A or 8OG.


Base Pair Mismatch , DNA , DNA/chemistry , DNA/metabolism , Isomerism , Nucleic Acid Conformation , Thermodynamics , Models, Molecular , Molecular Dynamics Simulation , Adenine/chemistry , Adenine/metabolism , Base Pairing
12.
Cancer Discov ; 14(4): 569-572, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38571420

SUMMARY: An increased understanding of the role of the social determinants of health in cancer prevention, cancer care, and outcomes can lead to their integration into genetics and genomics as well as informing interventions and clinical trials, creating a comprehensive precision oncology framework.


Neoplasms , Humans , Neoplasms/therapy , Neoplasms/drug therapy , Base Pairing , Precision Medicine , Medical Oncology , Genomics
13.
Curr Protoc ; 4(4): e1009, 2024 Apr.
Article En | MEDLINE | ID: mdl-38572677

Expanding the genetic alphabet enhances DNA recombinant technologies by introducing unnatural base pairs (UBPs) beyond the standard A-T and G-C pairs, leading to biomaterials with novel and increased functionalities. Recent developments include UBPs that effectively function as a third base pair in replication, transcription, and/or translation processes. One such UBP, Ds-Px, demonstrates extremely high specificity in replication. Chemically synthesized DNA fragments containing Ds bases are amplified by PCR with the 5'-triphosphates of Ds and Px deoxyribonucleosides (dDsTP and dPxTP). The Ds-Px pair system has applications in enhanced DNA data storage, generation of high-affinity DNA aptamers, and incorporation of functional elements into RNA through transcription. This protocol describes the synthesis of the amidite derivative of Ds (dDs amidite), the triphosphate dDsTP, and the diol-modified dPxTP (Diol-dPxTP) for PCR amplifications involving the Ds-Px pair. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of Ds deoxyribonucleoside (dDs) Basic Protocol 2: Synthesis of dDs amidite Basic Protocol 3: Synthesis of dDs triphosphate (dDsTP) Basic Protocol 4: Synthesis of Pn deoxyribonucleoside (4-iodo-dPn) Basic Protocol 5: Synthesis of acetyl-protected diol-modified Px deoxyribonucleoside (Diol-dPx) Basic Protocol 6: Synthesis of Diol-dPx triphosphate (Diol-dPxTP) Basic Protocol 7: Purification of triphosphates Support Protocol 1: Synthesis of Hoffer's chlorosugar Support Protocol 2: Preparation of 0.5 M pyrophosphate in DMF Support Protocol 3: Preparation of 2 M TEAB buffer.


Aptamers, Nucleotide , DNA , Polyphosphates , Pyrroles , Polymerase Chain Reaction/methods , Base Pairing , DNA/genetics , DNA/analysis , Pyridines , Aptamers, Nucleotide/genetics
14.
J Chem Phys ; 160(14)2024 Apr 14.
Article En | MEDLINE | ID: mdl-38591677

Coarse-grained models have emerged as valuable tools to simulate long DNA molecules while maintaining computational efficiency. These models aim at preserving interactions among coarse-grained variables in a manner that mirrors the underlying atomistic description. We explore here a method for testing coarse-grained vs all-atom models using stiffness matrices in Fourier space (q-stiffnesses), which are particularly suited to probe DNA elasticity at different length scales. We focus on a class of coarse-grained rigid base DNA models known as cgDNA and its most recent version, cgDNA+. Our analysis shows that while cgDNA+ closely follows the q-stiffnesses of the all-atom model, the original cgDNA shows some deviations for twist and bending variables, which are rather strong in the q → 0 (long length scale) limit. The consequence is that while both cgDNA and cgDNA+ give a suitable description of local elastic behavior, the former misses some effects that manifest themselves at longer length scales. In particular, cgDNA performs poorly on twist stiffness, with a value much lower than expected for long DNA molecules. Conversely, the all-atom and cgDNA+ twist are strongly length scale dependent: DNA is torsionally soft at a few base pair distances but becomes more rigid at distances of a few dozen base pairs. Our analysis shows that the bending persistence length in all-atom and cgDNA+ is somewhat overestimated.


DNA , Elasticity , Base Pairing
15.
J Phys Chem B ; 128(18): 4367-4376, 2024 May 09.
Article En | MEDLINE | ID: mdl-38686959

The migration of an electron-loss center (hole) in calf thymus DNA to bisbenzimidazole ligands bound in the minor groove is followed by pulse radiolysis combined with time-resolved spectrophotometry. The initially observed absorption spectrum upon oxidation of DNA by the selenite radical is consistent with spin on cytosine (C), as the GC• pair neutral radical, followed by the spectra of oxidized ligands. The rate of oxidation of bound ligands increased with an increase in the ratio (r) ligands per base pair from 0.005 to 0.04. Both the rate of ligand oxidation and the estimated range of hole transfer (up to 30 DNA base pairs) decrease with the decrease in one-electron reduction potential between the GC• pair neutral radical of ca. 1.54 V and that of the ligand radicals (E0', 0.90-0.99 V). Linear plots of log of the rate of hole transfer versus r give a common intercept at r = 0 and a free energy change of 12.2 ± 0.3 kcal mol-1, ascribed to the GC• pair neutral radical undergoing a structural change, which is in competition to the observed hole transfer along DNA. The rate of hole transfer to the ligands at distance, R, from the GC• pair radical, k2, is described by the relationship k2 = k0 exp(constant/R), where k0 includes the rate constant for surmounting a small barrier.


Base Pairing , DNA , DNA/chemistry , Free Radicals/chemistry , Oxidation-Reduction , Benzimidazoles/chemistry , Animals , Cattle , Ligands , Bisbenzimidazole/chemistry , DNA Repair , DNA Damage , Cytosine/chemistry
16.
PeerJ ; 12: e16962, 2024.
Article En | MEDLINE | ID: mdl-38666080

Introduction: The propensity of nucleotide bases to form pairs, causes folding and the formation of secondary structure in the RNA. Therefore, purine (R): pyrimidine (Y) base-pairing is vital to maintain uniform lateral dimension in RNA secondary structure. Transversions or base substitutions between R and Y bases, are more detrimental to the stability of RNA secondary structure, than transitions derived from substitutions between A and G or C and T. The study of transversion and transition base substitutions is important to understand evolutionary mechanisms of RNA secondary structure in the 5'  and 3'  untranslated (UTR) regions of SARS-CoV-2. In this work, we carried out comparative analysis of transition and transversion base substitutions in the stem and loop regions of RNA secondary structure of SARS-CoV-2. Methods: We have considered the experimentally determined and well documented stem and loop regions of 5' and 3' UTR regions of SARS-CoV-2 for base substitution analysis. The secondary structure comprising of stem and loop regions were visualized using the RNAfold web server. The GISAID repository was used to extract base sequence alignment of the UTR regions. Python scripts were developed for comparative analysis of transversion and transition frequencies in the stem and the loop regions. Results: The results of base substitution analysis revealed a higher transition (ti) to transversion (tv) ratio (ti/tv) in the stem region of UTR of RNA secondary structure of SARS-CoV-2 reported during the early stage of the pandemic. The higher ti/tv ratio in the stem region suggested the influence of secondary structure in selecting the pattern of base substitutions. This differential pattern of ti/tv values between stem and loop regions was not observed among the Delta and Omicron variants that dominated the later stage of the pandemic. It is noteworthy that the ti/tv values in the stem and loop regions were similar among the later dominant Delta and Omicron variant strains which is to be investigated to understand the rapid evolution and global adaptation of SARS-CoV-2. Conclusion: Our findings implicate the lower frequency of transversions than the transitions in the stem regions of UTRs of SARS-CoV-2. The RNA secondary structures are associated with replication, translation, and packaging, further investigations are needed to understand these base substitutions across different variants of SARS-CoV-2.


Nucleic Acid Conformation , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/chemistry , RNA, Viral/genetics , RNA, Viral/chemistry , 3' Untranslated Regions/genetics , Humans , 5' Untranslated Regions/genetics , COVID-19/virology , COVID-19/epidemiology , Base Pairing , Base Sequence
17.
Nucleic Acids Res ; 52(8): 4466-4482, 2024 May 08.
Article En | MEDLINE | ID: mdl-38567721

A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of Escherichia coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37°C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65°C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.


Base Pairing , Escherichia coli , Fluorides , Nucleic Acid Conformation , Riboswitch , Transcription, Genetic , Riboswitch/genetics , Fluorides/chemistry , Escherichia coli/genetics , Molecular Dynamics Simulation , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , RNA Folding , Magnesium/chemistry , Base Sequence , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Thermus/genetics , Thermus/enzymology
18.
Nucleic Acid Ther ; 34(3): 143-155, 2024.
Article En | MEDLINE | ID: mdl-38648015

Single-stranded oligonucleotides (SSOs) are a rapidly expanding class of therapeutics that comprises antisense oligonucleotides, microRNAs, and aptamers, with ten clinically approved molecules. Chemical modifications such as the phosphorothioate backbone and the 2'-O-methyl ribose can improve the stability and pharmacokinetic properties of therapeutic SSOs, but they can also lead to toxicity in vitro and in vivo through nonspecific interactions with cellular proteins, gene expression changes, disturbed RNA processing, and changes in nuclear structures and protein distribution. In this study, we screened a mini library of 277 phosphorothioate and 2'-O-methyl-modified SSOs, with or without mRNA complementarity, for cytotoxic properties in two cancer cell lines. Using circular dichroism, nucleic magnetic resonance, and molecular dynamics simulations, we show that phosphorothioate- and 2'-O-methyl-modified SSOs that form stable hairpin structures through Watson-Crick base pairing are more likely to be cytotoxic than those that exist in an extended conformation. In addition, moderate and highly cytotoxic SSOs in our dataset have a higher mean purine composition than pyrimidine. Overall, our study demonstrates a structure-cytotoxicity relationship and indicates that the formation of stable hairpins should be a consideration when designing SSOs toward optimal therapeutic profiles.


Molecular Dynamics Simulation , Nucleic Acid Conformation , Phosphorothioate Oligonucleotides , Humans , Phosphorothioate Oligonucleotides/chemistry , Phosphorothioate Oligonucleotides/pharmacology , Cell Line, Tumor , Base Pairing , Structure-Activity Relationship , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/genetics , Circular Dichroism
19.
RNA ; 30(7): 779-794, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38565242

The stem-loop 2 motif (s2m) in SARS-CoV-2 (SCoV-2) is located in the 3'-UTR. Although s2m has been reported to display characteristics of a mobile genomic element that might lead to an evolutionary advantage, its function has remained unknown. The secondary structure of the original SCoV-2 RNA sequence (Wuhan-Hu-1) was determined by NMR in late 2020, delineating the base-pairing pattern and revealing substantial differences in secondary structure compared to SARS-CoV-1 (SCoV-1). The existence of a single G29742-A29756 mismatch in the upper stem of s2m leads to its destabilization and impedes a complete NMR analysis. With Delta, a variant of concern has evolved with one mutation compared to the original sequence that replaces G29742 by U29742. We show here that this mutation results in a more defined structure at ambient temperature accompanied by a rise in melting temperature. Consequently, we were able to identify >90% of the relevant NMR resonances using a combination of selective RNA labeling and filtered 2D NOESY as well as 4D NMR experiments. We present a comprehensive NMR analysis of the secondary structure, (sub)nanosecond dynamics, and ribose conformation of s2m Delta based on heteronuclear 13C NOE and T 1 measurements and ribose carbon chemical shift-derived canonical coordinates. We further show that the G29742U mutation in Delta has no influence on the druggability of s2m compared to the Wuhan-Hu-1 sequence. With the assignment at hand, we identify the flexible regions of s2m as the primary site for small molecule binding.


Nucleic Acid Conformation , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , RNA, Viral/genetics , RNA, Viral/chemistry , RNA, Viral/metabolism , Binding Sites , Magnetic Resonance Spectroscopy/methods , 3' Untranslated Regions , Ligands , Humans , Mutation , COVID-19/virology , Base Pairing , Nucleotide Motifs
20.
Biophys J ; 123(9): 1129-1138, 2024 May 07.
Article En | MEDLINE | ID: mdl-38576161

G-quadruplexes (GQs) play key regulatory roles within the human genome and have also been identified to play similar roles in other eukaryotes, bacteria, archaea, and viruses. Human immunodeficiency virus 1, the etiological agent of acquired immunodeficiency syndrome, can form two GQs in its long terminal repeat (LTR) promoter region, each of which act to regulate viral gene expression in opposing manners. The major LTR GQ, called LTR-III, is a distinct hybrid GQ containing a 12-nucleotide duplex loop attached to the quadruplex motif. The resulting quadruplex:duplex junction (QDJ) has been hypothesized to serve as a selective drug targeting site. To better understand the dynamics of this QDJ, we performed conventional and enhanced-sampling molecular dynamics simulations using the Drude-2017 force field. We observed unbiased and reversible formation of additional base pairs in the QDJ, between Ade4:Thy14 and Gua3:Thy14. Both base pairs were electrostatically favored, but geometric constraints within the junction may drive the formation of, and preference for, the Ade4:Thy14 base pair. Finally, we demonstrated that the base pairs are separated only by small energy barriers that may enable transitions between both base-paired states. Together, these simulations provide new insights into the dynamics, electrostatics, and thermodynamics of the LTR-III QDJ.


Base Pairing , G-Quadruplexes , Molecular Dynamics Simulation , Static Electricity , Thermodynamics , HIV Long Terminal Repeat/genetics
...