Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.665
Filter
1.
Nat Commun ; 15(1): 5812, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987251

ABSTRACT

RagGTPases (Rags) play an essential role in the regulation of cell metabolism by controlling the activities of both mechanistic target of rapamycin complex 1 (mTORC1) and Transcription factor EB (TFEB). Several diseases, herein named ragopathies, are associated to Rags dysfunction. These diseases may be caused by mutations either in genes encoding the Rags, or in their upstream regulators. The resulting phenotypes may encompass a variety of clinical features such as cataract, kidney tubulopathy, dilated cardiomyopathy and several types of cancer. In this review, we focus on the key clinical, molecular and physio-pathological features of ragopathies, aiming to shed light on their underlying mechanisms.


Subject(s)
Mutation , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Animals , Cataract/genetics , Cardiomyopathy, Dilated/genetics
2.
Cell Mol Life Sci ; 81(1): 304, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009859

ABSTRACT

The autophagy-lysosomal pathway plays a critical role in the clearance of tau protein aggregates that deposit in the brain in tauopathies, and defects in this system are associated with disease pathogenesis. Here, we report that expression of Tau35, a tauopathy-associated carboxy-terminal fragment of tau, leads to lipid accumulation in cell lines and primary cortical neurons. Our findings suggest that this is likely due to a deleterious block of autophagic clearance and lysosomal degradative capacity by Tau35. Notably, upon induction of autophagy by Torin 1, Tau35 inhibited nuclear translocation of transcription factor EB (TFEB), a key regulator of lysosomal biogenesis. Both cell lines and primary cortical neurons expressing Tau35 also exhibited changes in endosomal protein expression. These findings implicate autophagic and endolysosomal dysfunction as key pathological mechanisms through which disease-associated tau fragments could lead to the development and progression of tauopathy.


Subject(s)
Autophagy , Endosomes , Lipid Metabolism , Lysosomes , Neurons , tau Proteins , tau Proteins/metabolism , tau Proteins/genetics , Lysosomes/metabolism , Humans , Neurons/metabolism , Animals , Endosomes/metabolism , Tauopathies/metabolism , Tauopathies/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Mice
3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000232

ABSTRACT

Various human diseases are triggered by molecular alterations influencing the fine-tuned expression and activity of transcription factors, usually due to imbalances in targets including protein-coding genes and non-coding RNAs, such as microRNAs (miRNAs). The transcription factor EB (TFEB) modulates human cellular networks, overseeing lysosomal biogenesis and function, plasma-membrane trafficking, autophagic flux, and cell cycle progression. In endothelial cells (ECs), TFEB is essential for the maintenance of endothelial integrity and function, ensuring vascular health. However, the comprehensive regulatory network orchestrated by TFEB remains poorly understood. Here, we provide novel mechanistic insights into how TFEB regulates the transcriptional landscape in primary human umbilical vein ECs (HUVECs), using an integrated approach combining high-throughput experimental data with dedicated bioinformatics analysis. By analyzing HUVECs ectopically expressing TFEB using ChIP-seq and examining both polyadenylated mRNA and small RNA sequencing data from TFEB-silenced HUVECs, we have developed a bioinformatics pipeline mapping the different gene regulatory interactions driven by TFEB. We show that TFEB directly regulates multiple miRNAs, which in turn post-transcriptionally modulate a broad network of target genes, significantly expanding the repertoire of gene programs influenced by this transcription factor. These insights may have significant implications for vascular biology and the development of novel therapeutics for vascular disease.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Computational Biology , Gene Regulatory Networks , Human Umbilical Vein Endothelial Cells , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Computational Biology/methods , Gene Expression Regulation , Endothelial Cells/metabolism
4.
Proc Natl Acad Sci U S A ; 121(28): e2404062121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968109

ABSTRACT

Nutrient sensing and adaptation in the placenta are essential for pregnancy viability and proper fetal growth. Our recent study demonstrated that the placenta adapts to nutrient insufficiency through mechanistic target of rapamycin (mTOR) inhibition-mediated trophoblast differentiation toward syncytiotrophoblasts (STBs), a highly specialized multinucleated trophoblast subtype mediating extensive maternal-fetal interactions. However, the underlying mechanism remains elusive. Here, we unravel the indispensable role of the mTORC1 downstream transcriptional factor TFEB in STB formation both in vitro and in vivo. TFEB deficiency significantly impaired STB differentiation in human trophoblasts and placenta organoids. Consistently, systemic or trophoblast-specific deletion of Tfeb compromised STB formation and placental vascular construction, leading to severe embryonic lethality. Mechanistically, TFEB conferred direct transcriptional activation of the fusogen ERVFRD-1 in human trophoblasts and thereby promoted STB formation, independent of its canonical function as a master regulator of the autophagy-lysosomal pathway. Moreover, we demonstrated that TFEB directed the trophoblast syncytialization response driven by mTOR complex 1 (mTORC1) signaling. TFEB expression positively correlated with the reinforced trophoblast syncytialization in human fetal growth-restricted placentas exhibiting suppressed mTORC1 activity. Our findings substantiate that the TFEB-fusogen axis ensures proper STB formation during placenta development and under nutrient stress, shedding light on TFEB as a mechanistic link between nutrient-sensing machinery and trophoblast differentiation.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cell Differentiation , Mechanistic Target of Rapamycin Complex 1 , Trophoblasts , Trophoblasts/metabolism , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Female , Pregnancy , Mice , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Placenta/metabolism , Signal Transduction , Autophagy/physiology
5.
J Agric Food Chem ; 72(25): 14349-14363, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869217

ABSTRACT

Deoxynivalenol (DON) is a common agricultural mycotoxin that is chemically stable and not easily removed from cereal foods. When organisms consume food made from contaminated crops, it can be hazardous to their health. Numerous studies in recent years have found that hesperidin (HDN) has hepatoprotective effects on a wide range of toxins. However, few scholars have explored the potential of HDN in attenuating DON-induced liver injury. In this study, we established a low-dose DON exposure model and intervened with three doses of HDN, acting on male C57 BL/6 mice and AML12 cells, which served as in vivo and in vitro models, respectively, to investigate the protective mechanism of HDN against DON exposure-induced liver injury. The results suggested that DON disrupted hepatic autophagic fluxes, thereby impairing liver structure and function, and HDN significantly attenuated these changes. Further studies revealed that HDN alleviated DON-induced excessive autophagy through the mTOR pathway and DON-induced lysosomal dysfunction through the AKT/GSK3ß/TFEB pathway. Overall, our study suggested that HDN could ameliorate DON-induced autophagy flux disorders via the mTOR pathway and the AKT/GSK3ß/TFEB pathway, thereby reducing liver injury.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Glycogen Synthase Kinase 3 beta , Hesperidin , Liver , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Trichothecenes , Animals , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Trichothecenes/toxicity , Male , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Mice , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Liver/drug effects , Liver/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Hesperidin/pharmacology , Autophagy/drug effects , Signal Transduction/drug effects , Humans , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Cell Line
6.
Sci Transl Med ; 16(750): eadk9811, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838134

ABSTRACT

Clinical evidence indicates a close association between muscle dysfunction and bone loss; however, the underlying mechanisms remain unclear. Here, we report that muscle dysfunction-related bone loss in humans with limb-girdle muscular dystrophy is associated with decreased expression of folliculin-interacting protein 1 (FNIP1) in muscle tissue. Supporting this finding, murine gain- and loss-of-function genetic models demonstrated that muscle-specific ablation of FNIP1 caused decreased bone mass, increased osteoclastic activity, and mechanical impairment that could be rescued by myofiber-specific expression of FNIP1. Myofiber-specific FNIP1 deficiency stimulated expression of nuclear translocation of transcription factor EB, thereby activating transcription of insulin-like growth factor 2 (Igf2) at a conserved promoter-binding site and subsequent IGF2 secretion. Muscle-derived IGF2 stimulated osteoclastogenesis through IGF2 receptor signaling. AAV9-mediated overexpression of IGF2 was sufficient to decrease bone volume and impair bone mechanical properties in mice. Further, we found that serum IGF2 concentration was negatively correlated with bone health in humans in the context of osteoporosis. Our findings elucidate a muscle-bone cross-talk mechanism bridging the gap between muscle dysfunction and bone loss. This cross-talk represents a potential target to treat musculoskeletal diseases and osteoporosis.


Subject(s)
Bone and Bones , Insulin-Like Growth Factor II , Animals , Female , Humans , Male , Mice , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Bone and Bones/metabolism , Insulin-Like Growth Factor II/metabolism , Muscle, Skeletal/metabolism , Muscles/metabolism , Osteoclasts/metabolism , Osteogenesis , Signal Transduction
7.
J Agric Food Chem ; 72(26): 14727-14746, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38907713

ABSTRACT

Background: Following spinal cord injury (SCI), autophagy plays a positive role in neuronal protection, whereas pyroptosis triggers an inflammatory response. Ginsenoside-Rh2 (GRh2), known for its neuroprotective effects, is considered a promising drug. However, the exact molecular mechanisms underlying these protective effects remain unclear. Aim of the Study: Explore the therapeutic value of GRh2 in SCI and its potential mechanisms of action. Materials and Methods: An SCI mouse model was established, followed by random grouping and drug treatments under different conditions. Subsequently, the functional recovery of SCI mice after GRh2 treatment was assessed using hematoxylin and eosin, Masson's trichrome, and Nissl staining, footprint analysis, Basso Mouse Scale scoring, and inclined plane tests. The expression levels of relevant indicators in the mice were detected using Western blotting, immunofluorescence, and a quantitative polymerase chain reaction. Network pharmacology analysis was used to identify the relevant signaling pathways through which GRh2 exerts its therapeutic effects. Results: GRh2 promoted functional recovery after SCI. GRh2 significantly inhibits pyroptosis by enhancing autophagy in SCI mice. Simultaneously, the neuroprotective effect of GRh2, achieved through the inhibition of pyroptosis, is partially reversed by 3-methyladenine, an autophagy inhibitor. Additionally, the increase in autophagy induced by GRh2 is mediated by the promotion of transcription factor EB (TFEB) nuclear translocation and dephosphorylation. Partial attenuation of the protective effects of GRh2 was observed after TFEB knockdown. Additionally, GRh2 can modulate the activity of TFEB in mice post-SCI through the EGFR-MAPK signaling pathway, and NSC228155 (an EGFR activator) can partially reverse the effect of GRh2 on the EGFR-MAPK signaling pathway. Conclusions: GRh2 improves functional recovery after SCI by upregulating TFEB-mediated autophagic flux and inhibiting pyroptosis, indicating its potential clinical applicability.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Ginsenosides , Recovery of Function , Spinal Cord Injuries , Animals , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/genetics , Ginsenosides/pharmacology , Ginsenosides/administration & dosage , Autophagy/drug effects , Mice , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Recovery of Function/drug effects , Humans , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Male , Disease Models, Animal
8.
Mol Cancer ; 23(1): 132, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926757

ABSTRACT

BACKGROUND: TFE3-rearranged renal cell carcinoma (TFE3-rRCC) is a rare but highly heterogeneous renal cell carcinoma (RCC) entity, of which the clinical treatment landscape is largely undefined. This study aims to evaluate and compare the efficacy of different systemic treatments and further explore the molecular correlates. METHODS: Thirty-eight patients with metastatic TFE3-rRCC were enrolled. Main outcomes included progression-free survival (PFS), overall survival, objective response rate (ORR) and disease control rate. RNA sequencing was performed on 32 tumors. RESULTS: Patients receiving first-line immune checkpoint inhibitor (ICI) based combination therapy achieved longer PFS than those treated without ICI (median PFS: 11.5 vs. 5.1 months, P = 0.098). After stratification of fusion partners, the superior efficacy of first-line ICI based combination therapy was predominantly observed in ASPSCR1-TFE3 rRCC (median PFS: not reached vs. 6.5 months, P = 0.01; ORR: 67.5% vs. 10.0%, P = 0.019), but almost not in non-ASPSCR1-TFE3 rRCC. Transcriptomic data revealed enrichment of ECM and collagen-related signaling in ASPSCR1-TFE3 rRCC, which might interfere with the potential efficacy of anti-angiogenic monotherapy. Whereas angiogenesis and immune activities were exclusively enriched in ASPSCR1-TFE3 rRCC and promised the better clinical outcomes with ICI plus tyrosine kinase inhibitor combination therapy. CONCLUSIONS: The current study represents the largest cohort comparing treatment outcomes and investigating molecular correlates of metastatic TFE3-rRCC based on fusion partner stratification. ICI based combination therapy could serve as an effective first-line treatment option for metastatic ASPSCR1-TFE3 rRCC patients. Regarding with other fusion subtypes, further investigations should be performed to explore the molecular mechanisms to propose pointed therapeutic strategy accordingly.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Oncogene Proteins, Fusion , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/mortality , Female , Male , Middle Aged , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/mortality , Aged , Immune Checkpoint Inhibitors/therapeutic use , Oncogene Proteins, Fusion/genetics , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Gene Rearrangement , Biomarkers, Tumor/genetics , Treatment Outcome , Prognosis , Intracellular Signaling Peptides and Proteins/genetics
9.
Sci Rep ; 14(1): 14552, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914593

ABSTRACT

We have reported that an environmental pollutant, cadmium, promotes cell death in the human renal tubular cells (RTCs) through hyperactivation of a serine/threonine kinase Akt. However, the molecular mechanisms downstream of Akt in this process have not been elucidated. Cadmium has a potential to accumulate misfolded proteins, and proteotoxicity is involved in cadmium toxicity. To clear the roles of Akt in cadmium exposure-induced RTCs death, we investigated the possibility that Akt could regulate proteotoxicity through autophagy in cadmium chloride (CdCl2)-exposed HK-2 human renal proximal tubular cells. CdCl2 exposure promoted the accumulation of misfolded or damaged proteins, the formation of aggresomes (pericentriolar cytoplasmic inclusions), and aggrephagy (selective autophagy to degrade aggresome). Pharmacological inhibition of Akt using MK2206 or Akti-1/2 enhanced aggrephagy by promoting dephosphorylation and nuclear translocation of transcription factor EB (TFEB)/transcription factor E3 (TFE3), lysosomal transcription factors. TFEB or TFE3 knockdown by siRNAs attenuated the protective effects of MK2206 against cadmium toxicity. These results suggested that aberrant activation of Akt attenuates aggrephagy via TFEB or TFE3 to facilitate CdCl2-induced cell death. Furthermore, these roles of Akt/TFEB/TFE3 were conserved in CdCl2-exposed primary human RTCs. The present study shows the molecular mechanisms underlying Akt activation that promotes cadmium-induced RTCs death.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cadmium , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Autophagy/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Line , Cadmium/toxicity , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Phosphorylation/drug effects , Cadmium Chloride/toxicity , Heterocyclic Compounds, 3-Ring/pharmacology , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Kidney Tubules/cytology , Kidney Tubules/pathology
10.
Life Sci ; 351: 122843, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880168

ABSTRACT

AIMS: Carbohydrate-responsive element-binding protein (ChREBP) is a transcription factor that regulates several metabolic genes, including the lipogenic enzymes necessary for the metabolic conversion of carbohydrates into lipids. Although the crucial role of ChREBP in the liver, the primary site of de novo lipogenesis, has been studied, its functional role in adipose tissues, particularly brown adipose tissue (BAT), remains unclear. In this study, we investigated the role of ChREBP in BAT under conditions of a high-carbohydrate diet (HCD) and ketogenic diet (KD), represented by extremely low carbohydrate intake. MAIN METHODS: Using an adeno-associated virus and Cas9 knock-in mice, we rapidly generated Chrebp brown adipocyte-specific knock-out (B-KO) mice, bypassing the necessity for prolonged breeding by using the Cre-Lox system. KEY FINDINGS: We demonstrated that ChREBP is essential for glucose metabolism and lipogenic gene expression in BAT under HCD conditions in Chrebp B-KO mice. After nutrient intake, Chrebp B-KO attenuated the KD-induced expression of several inflammatory genes in BAT. SIGNIFICANCE: Our results indicated that ChREBP, a nutrient-sensing regulator, is indispensable for expressing a diverse range of metabolic genes in BAT.


Subject(s)
Adipose Tissue, Brown , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Gene Expression Regulation , Lipogenesis , Mice, Knockout , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Adipose Tissue, Brown/metabolism , Mice , Lipogenesis/genetics , Male , Glucose/metabolism , Mice, Inbred C57BL , Diet, Ketogenic , Nutrients/metabolism
11.
Clin Nucl Med ; 49(7): 693-694, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38775942

ABSTRACT

ABSTRACT: A 23-year-old woman presenting with gross hematuria was found to have a left renal mass suspicious for renal cell carcinoma on abdominal contrast-enhanced CT. An 18 F-PSMA-1007 PET/CT scan was performed for evaluating the renal mass. 18 F-PSMA-1007 PET/CT showed focal activity of the renal mass, which was a transcription factor E3-rearranged renal cell carcinoma proved after nephrectomy. Surprisingly, diffuse heterogeneous intense activity of the bilateral breasts and moderate activity of the right accessory breast was observed. There was no morphological abnormality of the bilateral breasts and right accessory breast on CT images, indicating physiological PSMA uptake.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Breast , Carcinoma, Renal Cell , Kidney Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Female , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/metabolism , Breast/diagnostic imaging , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Young Adult , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Oligopeptides , Gene Rearrangement , Heterocyclic Compounds, 1-Ring , Niacinamide/analogs & derivatives
12.
Cytopathology ; 35(4): 481-487, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38751143

ABSTRACT

BACKGROUND: Clear cell papillary renal cell tumour (CCPRCT) was renamed from previous clear cell papillary renal cell carcinoma (CCPRCC) in the latest WHO Classification of Tumours. It is essential to differentiate RCC from CCPRCT in renal mass biopsies (RMB). DESIGN: RMB cases with subsequent resections were reviewed. The pathology reports and pertinent clinical information were recorded. RESULTS: Fifteen cases displaying either CCPRCT morphology (20% diffuse, 67% focal) or immunohistochemical patterns (cup-like CA9: 20% diffuse, 47% focal; CK7: 33% diffuse, 40% focal) were identified. One case was positive for TFE3. TSC mutation was identified in one case. Both cases exhibited both CCPRCT morphology and immunohistochemical patterns for CA9 and CK7, with focal high-grade nuclei. RMB diagnoses were as follows: 6 (40%) as CCRCC, 2 (13%) as CCPRCT, 2 (13%) as CCRCC versus CCPRCT, 2 (13%) as CCRCC versus PRCC, 1 (7%) as RCC with TSC mutation versus CCPRCT, 1 (7%) as TFE3-rearranged RCC versus PRCC, and 1 (7%) as cyst with low-grade atypia. 71% of patients underwent nephrectomy, 21% received systemic treatment for stage 4 RCCs, and 7% with ablation for small renal mass (1.6 cm) with low-grade CCRCC. CONCLUSIONS: Our study highlights that morphologic and immunochemical features of CCPRCT may be present in RCCs, including RCC-TFE3 expression and TSC-associated RCC, a critical pitfall to misdiagnose aggressive RCC as indolent CCPRCT and result in undertreatment. Careful examination of morphology and immunostains for CA9, CK7, and TFE3, as well as molecular tests, is crucial for distinguishing aggressive RCC from indolent CCPRCT.


Subject(s)
Carcinoma, Renal Cell , Immunohistochemistry , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/genetics , Female , Male , Middle Aged , Aged , Kidney Neoplasms/pathology , Kidney Neoplasms/diagnosis , Kidney Neoplasms/genetics , Immunohistochemistry/methods , Adult , Biomarkers, Tumor/genetics , Kidney/pathology , Biopsy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cytodiagnosis/methods , Diagnosis, Differential , Mutation/genetics , Cytology
13.
J Biotechnol ; 390: 39-49, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38740306

ABSTRACT

The TFE3 fusion gene, byproduct of Xp11.2 translocation, is the diagnostic marker for translocation renal cell carcinoma (tRCC). Absence of any clinically recognized therapy for tRCC, pressing a need to create novel and efficient therapeutic approaches. Previous studies shown that stabilization of the G-quadruplex structure in oncogenes suppresses their expression machinery. To combat the oncogenesis caused by fusion genes, our objective is to locate and stabilize the G-quadruplex structure within the PRCC-TFE3 fusion gene. Using the Quadruplex-forming G Rich Sequences (QGRS) mapper and the Non-B DNA motif search tool (nBMST) online server, we found putative G-quadruplex forming sequences (PQS) in the PRCC-TFE3 fusion gene. Circular dichroism demonstrating a parallel G-quadruplex in the targeted sequence. Fluorescence and UV-vis spectroscopy results suggest that pyridostatin binds to this newly discovered G-quadruplex. The PCR stop assay, as well as transcriptional or translational inhibition using real time PCR and Dual luciferase assay, revealed that stable G-quadruplex formation affects biological processes. Confocal microscopy of HEK293T cells transfected with the fusion transcript confirmed G-quadruplexes formation in cell. This investigation may shed light on G-quadruplex's functions in fusion genes and may help in the development of therapies specifically targeted against fusion oncogenes, which would enhance the capability of current tRCC therapy approach.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Carcinoma, Renal Cell , G-Quadruplexes , Kidney Neoplasms , Oncogene Proteins, Fusion , Translocation, Genetic , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/drug therapy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Kidney Neoplasms/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , HEK293 Cells , Circular Dichroism , Aminoquinolines , Neoplasm Proteins , Picolinic Acids , Cell Cycle Proteins
14.
Mol Metab ; 85: 101957, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740087

ABSTRACT

OBJECTIVES: Compromised hepatic fatty acid oxidation (FAO) has been observed in human MASH patients and animal models of MASLD/MASH. It remains poorly understood how and when the hepatic FAO pathway is suppressed during the progression of MASLD towards MASH. Hepatic ChREBP⍺ is a classical lipogenic transcription factor that responds to the intake of dietary sugars. METHODS: We examined its role in regulating hepatocyte fatty acid oxidation (FAO) and the impact of hepatic Chrebpa deficiency on sensitivity to diet-induced MASLD/MASH in mice. RESULTS: We discovered that hepatocyte ChREBP⍺ is both necessary and sufficient to maintain FAO in a cell-autonomous manner independently of its DNA-binding activity. Supplementation of synthetic PPAR⍺/δ agonist is sufficient to restore FAO in Chrebp-/- primary mouse hepatocytes. Hepatic ChREBP⍺ was decreased in mouse models of diet-induced MAFSLD/MASH and in patients with MASH. Hepatocyte-specific Chrebp⍺ knockout impaired FAO, aggravated liver steatosis and inflammation, leading to early-onset fibrosis in response to diet-induced MASH. Conversely, liver overexpression of ChREBP⍺-WT or its non-lipogenic mutant enhanced FAO, reduced lipid deposition, and alleviated liver injury, inflammation, and fibrosis. RNA-seq analysis identified the CYP450 epoxygenase (CYP2C50) pathway of arachidonic acid metabolism as a novel target of ChREBP⍺. Over-expression of CYP2C50 partially restores hepatic FAO in primary hepatocytes with Chrebp⍺ deficiency and attenuates preexisting MASH in the livers of hepatocyte-specific Chrebp⍺-deleted mice. CONCLUSIONS: Our findings support the protective role of hepatocyte ChREBPa against diet-induced MASLD/MASH in mouse models in part via promoting CYP2C50-driven FAO.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Fatty Acids , Hepatocytes , Liver , Mice, Inbred C57BL , Oxidation-Reduction , Animals , Female , Humans , Male , Mice , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cytochrome P-450 Enzyme System , Cytochrome P450 Family 2/metabolism , Cytochrome P450 Family 2/genetics , Diet/adverse effects , Disease Models, Animal , Fatty Acids/metabolism , Hepatocytes/metabolism , Lipid Metabolism , Liver/metabolism , Mice, Knockout
15.
Am J Physiol Cell Physiol ; 327(1): C113-C121, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38738312

ABSTRACT

During the process of decidualization, the stromal cells of the endometrium change dynamically to create a favorable environment for embryo implantation. Lysosome activity has often been associated with physiological changes in the endometrium during the preimplantation period and early pregnancy. In this study, the effect of para-nonylphenol (p-NP), an endocrine disruptor, on human immortalized endometrial stromal cells (tHESCs) was investigated. After exposure to p-NP (1 nM and 1 pM), the cells were examined for the decidualization markers connexin-43, insulin like growth factor binding protein 1 (IGFBP1), and prolactin. In addition, the effect of p-NP on lysosome biogenesis and exocytosis was investigated by examining the expression and localization of the transcription factor EB (TFEB) and that of the lysosomal-associated membrane protein 1 (LAMP-1). Finally, we evaluated the effect of p-NP on extracellular matrix (ECM) remodeling using a fibronectin assay. Our results showed that p-NP reduced the expression of prolactin protein, increased the nuclear localization of TFEB, and induced the increase and translocation of the lysosomal protein LAMP-1 to the membrane of tHESCs. The data indicate an impairment of decidualization and suggest an increase in lysosomal biogenesis and exocytosis, which is supported by the higher release of active cathepsin D by tHESCs. Given the importance of cathepsins in the processing and degradation of the ECM during trophoblast invasiveness and migration into the decidua, our results appear to be clear evidence of the negative effects of p-NP on endometrial processes that are fundamental to reproductive success and the establishment of pregnancy.NEW & NOTEWORTHY Endocrine disruptors, such as para-nonylphenol, affect the decidualization of human endometrial stromal cells with an impact on decidualization itself, lysosome biogenesis and exocytosis, and extracellular matrix remodeling. All these alterations may negatively impact embryo implantation with the success of reproduction and the establishment of pregnancy.


Subject(s)
Endometrium , Lysosomes , Phenols , Prolactin , Stromal Cells , Humans , Female , Lysosomes/metabolism , Lysosomes/drug effects , Stromal Cells/metabolism , Stromal Cells/drug effects , Phenols/pharmacology , Phenols/toxicity , Endometrium/metabolism , Endometrium/drug effects , Endometrium/cytology , Prolactin/metabolism , Decidua/metabolism , Decidua/drug effects , Decidua/cytology , Exocytosis/drug effects , Embryo Implantation/drug effects , Endocrine Disruptors/toxicity , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Insulin-Like Growth Factor Binding Protein 1/metabolism , Insulin-Like Growth Factor Binding Protein 1/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Pregnancy , Lysosomal-Associated Membrane Protein 1
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167238, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759815

ABSTRACT

Lymphatic dysfunction is a pivotal pathological mechanism underlying the development of early atherosclerotic plaques. Potential targets of lymphatic function must be identified to realize the early prevention and treatment of atherosclerosis (AS). The immunity-related GTPase Irgm1 is involved in orchestrating cellular autophagy and apoptosis. However, the effect of Irgm1 on early AS progression, particularly through alterations in lymphatic function, remains unclear. In this study, we confirmed the protective effect of lymphangiogenesis on early-AS in vivo. Subsequently, an in vivo model of early AS mice with Irgm1 knockdown shows that Irgm1 reduces early atherosclerotic plaque burden by promoting lymphangiogenesis. Given that lymphatic endothelial cell (LEC) autophagy significantly contributes to lymphangiogenesis, Irgm1 may enhance lymphatic circulation by promoting LEC autophagy. Moreover, Irgm1 orchestrates autophagy in LECs by inhibiting mTOR and facilitating nuclear translocation of Tfeb. Collectively, these processes lead to lymphangiogenesis. Thus, this study establishes a link between Irgm1 and early AS, thus revealing a novel mechanism by which Irgm1 exerts an early protective influence on AS within the context of lymphatic circulation. The insights gained from this study have the potential to revolutionize the approach and management of AS onset.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Endothelial Cells , Lymphangiogenesis , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Male , TOR Serine-Threonine Kinases/metabolism , Mice, Inbred C57BL , Humans , Protein Transport
17.
Diagn Pathol ; 19(1): 66, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730456

ABSTRACT

BACKGROUND: TFEB/6p21/VEGFA-amplified renal cell carcinoma (RCC) is rare and difficult to diagnose, with diverse histological patterns and immunohistochemical and poorly defined molecular genetic characteristics. CASE PRESENTATION: We report a case of a 63-year-old male admitted in 2017 with complex histomorphology, three morphological features of clear cell, eosinophilic and papillary RCC and resembling areas of glomerular and tubular formation. The immunophenotype also showed a mixture of CD10 and P504s. RCC with a high suspicion of collision tumors was indicated according to the 2014 WHO classification system; no precise diagnosis was possible. The patient was diagnosed at a different hospital with poorly differentiated lung squamous cell carcinoma one year after RCC surgery. We exploited molecular technology advances to retrospectively investigate the patient's molecular genetic alterations by whole-exome sequencing. The results revealed a 6p21 amplification in VEGFA and TFEB gene acquisition absent in other RCC subtypes. Clear cell, papillary, chromophobe, TFE3-translocation, eosinophilic solid and cystic RCC were excluded. Strong TFEB and Melan-A protein positivity prompted rediagnosis as TFEB/6p21/VEGFA-amplified RCC as per 2022 WHO classification. TMB-L (low tumor mutational load), CCND3 gene acquisition and MRE11A and ATM gene deletion mutations indicated sensitivity to PD-1/PD-L1 inhibitor combinations and the FDA-approved targeted agents Niraparib (Grade C), Olaparib (Grade C), Rucaparib (Grade C) and Talazoparib (Class C). GO (Gene Ontology) and KEGG enrichment analyses revealed major mutations and abnormal CNVs in genes involved in biological processes such as the TGF-ß, Hippo, E-cadherin, lysosomal biogenesis and autophagy signaling pathways, biofilm synthesis cell adhesion substance metabolism regulation and others. We compared TFEB/6p21/VEGFA-amplified with TFEB-translocated RCC; significant differences in disease onset age, histological patterns, pathological stages, clinical prognoses, and genetic characteristics were revealed. CONCLUSION: We clarified the patient's challenging diagnosis and discussed the clinicopathology, immunophenotype, differential diagnosis, and molecular genetic information regarding TFEB/6p21/VEGFA-amplified RCC via exome analysis and a literature review.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Carcinoma, Renal Cell , Exome Sequencing , Kidney Neoplasms , Humans , Male , Middle Aged , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Biomarkers, Tumor/genetics
18.
Commun Biol ; 7(1): 574, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750105

ABSTRACT

Metastases are the major cause of cancer-related death, yet, molecular weaknesses that could be exploited to prevent tumor cells spreading are poorly known. Here, we found that perturbing hydrolase transport to lysosomes by blocking either the expression of IGF2R, the main receptor responsible for their trafficking, or GNPT, a transferase involved in the addition of the specific tag recognized by IGF2R, reduces melanoma invasiveness potential. Mechanistically, we demonstrate that the perturbation of this traffic, leads to a compensatory lysosome neo-biogenesis devoided of degradative enzymes. This regulatory loop relies on the stimulation of TFEB transcription factor expression. Interestingly, the inhibition of this transcription factor playing a key role of lysosome production, restores melanomas' invasive potential in the absence of hydrolase transport. These data implicate that targeting hydrolase transport in melanoma could serve to develop new therapies aiming to prevent metastasis by triggering a physiological response stimulating TFEB expression in melanoma.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Hydrolases , Lysosomes , Melanoma , Humans , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Lysosomes/metabolism , Hydrolases/metabolism , Hydrolases/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Line, Tumor , Receptor, IGF Type 2/metabolism , Receptor, IGF Type 2/genetics , Neoplasm Metastasis , Protein Transport , Gene Expression Regulation, Neoplastic
19.
Diagn Pathol ; 19(1): 62, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643139

ABSTRACT

BACKGROUND: Alveolar soft part sarcoma is a rare tumour of soft tissues, mostly localized in muscles or deep soft tissues of the extremities. In rare occasions, this tumour develops in deep tissues of the abdomen or pelvis. CASE PRESENTATION: In this case report, we described the case of a 46 year old man who developed a primary splenic alveolar soft part sarcoma. The tumour displayed typical morphological alveolar aspect, as well as immunohistochemical profile notably TFE3 nuclear staining. Detection of ASPSCR1 Exon 7::TFE3 Exon 6 fusion transcript in molecular biology and TFE3 rearrangement in FISH confirmed the diagnosis. CONCLUSION: We described the first case of primary splenic alveolar soft part sarcoma, which questions once again the cell of origin of this rare tumour.


Subject(s)
Sarcoma, Alveolar Soft Part , Male , Humans , Middle Aged , Sarcoma, Alveolar Soft Part/diagnosis , Sarcoma, Alveolar Soft Part/genetics , Sarcoma, Alveolar Soft Part/pathology , Oncogene Proteins, Fusion/genetics , Transcription Factors , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Exons
20.
Am J Surg Pathol ; 48(7): 777-789, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38597260

ABSTRACT

Since their original description as a distinctive neoplastic entity, ~50 TFE3 -rearranged perivascular epithelioid cell tumors (PEComas) have been reported. We herein report 25 new TFE3 -rearranged PEComas and review the published literature to further investigate their clinicopathologic spectrum. Notably, 5 of the 25 cases were associated with a prior history of chemotherapy treatment for cancer. This is in keeping with prior reports, based mainly on small case series, with overall 11% of TFE3 -rearranged PEComas being diagnosed postchemotherapy. The median age of our cohort was 38 years. Most neoplasms demonstrated characteristic features such as nested architecture, epithelioid cytology, HMB45 positive, and muscle marker negative immunophenotype. SFPQ was the most common TFE3 fusion partner present in half of the cases, followed by ASPSCR1 and NONO genes. Four of 7 cases in our cohort with meaningful follow-up presented with or developed systemic metastasis, while over half of the reported cases either recurred locally, metastasized, or caused patient death. Follow-up for the remaining cases was limited (median 18.5 months), suggesting that the prognosis may be worse. Size, mitotic activity, and necrosis were correlated with aggressive behavior. There is little evidence that treatment with MTOR inhibitors, which are beneficial against TSC -mutated PEComas, is effective against TFE3 -rearranged PEComas: only one of 6 reported cases demonstrated disease stabilization. As co-expression of melanocytic and muscle markers, a hallmark of conventional TSC -mutated PEComa is uncommon in the spectrum of TFE3 -rearranged PEComa, an alternative terminology may be more appropriate, such as " TFE3 -rearranged PEComa-like neoplasms," highlighting their distinctive morphologic features and therapeutic implications.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Biomarkers, Tumor , Gene Rearrangement , Perivascular Epithelioid Cell Neoplasms , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Perivascular Epithelioid Cell Neoplasms/genetics , Perivascular Epithelioid Cell Neoplasms/pathology , Perivascular Epithelioid Cell Neoplasms/drug therapy , Female , Male , Adult , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Young Adult , Aged , Adolescent , Genetic Predisposition to Disease , Immunohistochemistry , Treatment Outcome , Phenotype , Antineoplastic Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...