Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.085
Filter
2.
ACS Chem Neurosci ; 15(12): 2420-2431, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38838000

ABSTRACT

Recently, the abuse of synthetic cathinones is increasing among young people. α-Pyrrolidinobutiothiophenone (α-PBT), a synthetic cathinone, is a designer drug that is freely traded online with no legal restrictions. Moreover, there is currently no scientific basis for legal regulation. Here, we examined the addictive properties of α-PBT using a drug discrimination (DD) task. We also investigated the role of α-PBT in brain stimulation reward (BSR) using an intracranial self-stimulation (ICSS) paradigm in rats. Initially, the rats were trained to discriminate between cocaine and saline. After the discrimination training criteria were met, we determined the dose-effect curves of cocaine and conducted generalization tests with α-PBT and α-pyrrolidinopentiothiophenone (α-PVT) using a cumulative dosing protocol. In a separate set of studies, we examined the dopaminergic mechanisms underlying the function of α-PBT as an interoceptive stimulus (17.8 mg/kg) by intraperitoneally injecting either the dopamine (DA) D1 antagonist SCH23390 (0.06 and 0.12 mg/kg) or the D2 antagonist eticlopride (0.05 and 0.1 mg/kg) 15 min before DD testing. Brain reward function was measured using an ICSS procedure to examine the effects of α-PBT on ICSS threshold under the frequency-rate procedure. Our results showed that α-PBT functioned as a discriminative cue similar to cocaine in rats. More importantly, SCH23390 abolished the effects of α-PBT as an interoceptive stimulus in a dose-dependent manner in rats trained to press a lever to receive cocaine. Similarly, eticlopride dose-dependently attenuated the effect of α-PBT used as a discriminative cue. Additionally, cumulative α-PBT administration dose-dependently lowered ICSS thresholds compared with those in saline-treated rats. Furthermore, α-PBT-induced potentiation of BSR was abolished by pretreatment with both SCH23390 and eticlopride. Taken together, our results suggest that α-PBT can function as a cocaine-like discriminative cue via the activation of D1 and D2 receptors. α-PBT also appears to influence BSR by reducing the brain reward threshold via changes in D1 and D2 receptors. The present study suggests that α-PBT could have addictive properties through DA D1 and D2 receptors and thus poses a threat to humans.


Subject(s)
Cocaine , Self Stimulation , Animals , Male , Self Stimulation/drug effects , Rats , Cocaine/pharmacology , Rats, Sprague-Dawley , Pyrrolidines/pharmacology , Reward , Dose-Response Relationship, Drug , Thiophenes/pharmacology , Benzazepines/pharmacology , Designer Drugs/pharmacology , Discrimination, Psychological/drug effects , Brain/drug effects , Brain/metabolism
3.
Behav Pharmacol ; 35(5): 253-262, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38869040

ABSTRACT

INTRODUCTION: Acute stress, as a protective mechanism to respond to an aversive stimulus, can often be accompanied by suppressing pain perception via promoting consistent burst firing of dopamine neurons. Besides, sensitive and advanced research techniques led to the recognition of the mesohippocampal dopaminergic terminals, particularly in the hippocampal dentate gyrus (DG). Moreover, previous studies have shown that dopamine receptors within the hippocampal DG play a critical role in induced antinociceptive responses by forced swim stress (FSS) in the presence of inflammatory pain. Since different pain states can trigger various mechanisms and transmitter systems, the present experiments aimed to investigate whether dopaminergic receptors within the DG have the same role in the presence of acute thermal pain. METHODS: Ninety-seven adult male albino Wistar rats underwent stereotaxic surgery, and a stainless steel guide cannula was unilaterally implanted 1 mm above the DG. Different doses of SCH23390 or sulpiride as D1- and D2-like dopamine receptor antagonists were microinjected into the DG 5-10 min before exposure to FSS, and 5 min after FSS exposure, the tail-flick test evaluated the effect of stress on the nociceptive response at the time-set intervals. RESULTS: The results demonstrated that exposure to FSS could significantly increase the acute pain perception threshold, while intra-DG administration of SCH23390 and sulpiride reduced the antinociceptive effect of FSS in the tail-flick test. DISCUSSION: Additionally, it seems the D2-like dopamine receptor within the DG plays a more prominent role in FSS-induced analgesia in the acute pain model.


Subject(s)
Benzazepines , Dentate Gyrus , Receptors, Dopamine D1 , Receptors, Dopamine D2 , Stress, Psychological , Sulpiride , Animals , Male , Rats , Analgesia/methods , Benzazepines/pharmacology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dopamine Antagonists/pharmacology , Dopamine D2 Receptor Antagonists/pharmacology , Pain/metabolism , Pain/drug therapy , Pain/physiopathology , Pain Measurement/methods , Pain Measurement/drug effects , Rats, Wistar , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Sulpiride/pharmacology
4.
Article in English | MEDLINE | ID: mdl-38909567

ABSTRACT

OPC-61815 is an intravenous formulation vasopressin antagonist designed to treat heart failure patients, especially who have difficulty in oral intake. Tolvaptan together with DM-4103 and DM-4107 are considered as the major metabolites of OPC-61815 biotransformed in the liver via cytochrome P450 (CYP) 3A. An efficient and robust ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for quantification of OPC-61815 and its three metabolites in human plasma was developed and fully validated. To our best knowledge, it was the first published method that simultaneously quantified all of these four analytes in only one run. Simple and rapid sample preparation procedure and very short UPLC-MS/MS run time (3.5 min) offered OPC-61815 and its metabolites relatively high throughput detection, which was greatly beneficial to further clinical bio-sample analysis. The method showed good linearity and sufficient sensitivity in the range of 2.00-1000 ng/mL with a low limit of quantitation (2.00 ng/mL) for each analyte. For samples with concentrations above 1000 ng/mL, 100-fold dilution with blank plasma before sample preparation was accepted. High precision and accuracy, high selectivity and satisfactory recovery of this method were demonstrated. For all of the four analytes, no significant matrix effect or carry-over was observed. The stability of analytes and internal standards under different conditions were evaluated to ensure they were stable during the whole period of storage, preparation and detection. Also, re-injection reproducibility was investigated. In addition, the conversion test showed that almost no OPC-61815 converted into DM-4103 and DM-4107 during sample processing, while attention should be paid to the concentration difference between OPC-61815 and tolvaptan in bioanalysis. The developed UPLC-MS/MS method was successfully applied to an open, single and multiple dose administration phase I trial for monitoring the pharmacokinetics of OPC-61815. This work provided a promising way for further pharmacokinetic study of OPC-61815.


Subject(s)
Tandem Mass Spectrometry , Tolvaptan , Tandem Mass Spectrometry/methods , Humans , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Tolvaptan/blood , Tolvaptan/chemistry , Linear Models , Limit of Detection , Benzazepines/blood , Benzazepines/pharmacokinetics , Benzazepines/chemistry , Liquid Chromatography-Mass Spectrometry
5.
Int Heart J ; 65(3): 427-432, 2024.
Article in English | MEDLINE | ID: mdl-38825491

ABSTRACT

The impact of tolvaptan and low-dose dopamine on heart failure (HF) patients with acute kidney injury (AKI) remains uncertain from a clinical standpoint.HF patients with AKI were selected and divided in a 1:1 fashion into the dopamine combined with the tolvaptan group (DTG), the tolvaptan group (TG), and the control group (CG). According to the standard of care, TG received tolvaptan 15 mg orally daily for a week. DTG received combination treatment, including 7 consecutive days of dopamine infusion (2 µg/kg・minutes) and oral tolvaptan 15 mg. Venous blood and urine samples were taken before and after therapy. The primary endpoint was the cardiorenal serological index after 7 days of treatment.Sixty-five patients were chosen randomly for the DTG (22 patients), TG (20 patients), and CG (23 patients), which were similar before the treatment. The serum indexes related to cardiac function (N-terminal probrain natriuretic peptide and cardiac troponin I) in DTG were decreased, compared with TG and CG (P < 0.05). Furthermore, the serological markers of renal function (serum cystatin C, serum creatinine, and neutrophil gelatinase-associated lipocalin) in DTG were lower than those in TG and CG (P < 0.05). There was no significant difference in the incidence of adverse reactions among groups.Low-dose dopamine combined with tolvaptan can markedly improve patients' cardiac and renal function. This may be considered a new therapeutic method for HF patients with AKI.


Subject(s)
Acute Kidney Injury , Antidiuretic Hormone Receptor Antagonists , Dopamine , Drug Therapy, Combination , Heart Failure , Tolvaptan , Humans , Tolvaptan/administration & dosage , Tolvaptan/therapeutic use , Heart Failure/drug therapy , Heart Failure/complications , Male , Female , Dopamine/administration & dosage , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Aged , Middle Aged , Antidiuretic Hormone Receptor Antagonists/administration & dosage , Antidiuretic Hormone Receptor Antagonists/therapeutic use , Natriuretic Peptide, Brain/blood , Treatment Outcome , Benzazepines/administration & dosage , Peptide Fragments/blood
6.
Wiad Lek ; 77(4): 800-810, 2024.
Article in English | MEDLINE | ID: mdl-38865640

ABSTRACT

OBJECTIVE: Aim: To investigate the effect of ivabradine on the hemodynamics and contractility of the myocardium and the features of NT-pro-BNP production in patients with stable ischemic heart disease after endovascular revascularization of the myocardium depending on the number of affected coronary arteries during 12 months of therapy. PATIENTS AND METHODS: Materials and Methods: The object of the study was 120 patients with stable coronary artery disease: angina pectoris of functional class III with heart failure IIA FC III with preserved and moderately reduced ejection fraction of the left ventricle, who underwent coronary artery stenting. The examined patients were randomized according to the number of affected coronary vessels and the method of treatment. RESULTS: Results: Ivabradine in patients with stable ischemic heart disease after 12 months of therapy had a significant beneficial effect on the structural and functional parameters of the myocardium (contributed to the reverse remodeling of the left ventricle), which did not depend on the number of stented coronary arteries (p<0.05). In patients with stented one coronary artery, all structural and functional indicators of the heart after 12 months of treatment reached the values of practically healthy individuals from the control group. The use of ivabradine in patients with stable ischemic heart disease with heart failure with preserved and intermediate ejection fraction of the left ventricle after coronary stenting made it possible to ensure the correction of a number of clinical and pathogenetic links of the disease, which generally contributed to the improvement of metric and volumetric parameters of the heart. CONCLUSION: Conclusions: Ivabradine made it possible to significantly increase the effectiveness of standard therapy, which was manifested by a faster recovery of the geometry and contractility of the left ventricle. Therefore, the use of ivabradine along with standard therapy was appropriate for such a contingent of patients. The management of patients with stable coronary heart disease should combine adequate (surgical and pharmacological) treatment of the underlying disease, further individual medication correction of symptoms and circulatory disorders inherent in coronary heart disease and heart failure.


Subject(s)
Ivabradine , Natriuretic Peptide, Brain , Peptide Fragments , Humans , Ivabradine/therapeutic use , Ivabradine/pharmacology , Male , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/metabolism , Female , Middle Aged , Myocardium/metabolism , Stents , Aged , Coronary Artery Disease/drug therapy , Treatment Outcome , Benzazepines/therapeutic use , Benzazepines/pharmacology , Cardiovascular Agents/therapeutic use , Cardiovascular Agents/pharmacology
8.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38815086

ABSTRACT

The serotonin 2C receptor (5-HT2CR)-melanocortin pathway plays well-established roles in the regulation of feeding behavior and body weight homeostasis. Dysfunctions in this system, such as loss-of-function mutations in the Htr2c gene, can lead to hyperphagia and obesity. In this study, we aimed to investigate the potential therapeutic strategies for ameliorating hyperphagia, hyperglycemia, and obesity associated with a loss-of-function mutation in the Htr2c gene (Htr2cF327L/Y). We demonstrated that reexpressing functional 5-HT2CR solely in hypothalamic pro-opiomelanocortin (POMC) neurons is sufficient to reduce food intake and body weight in Htr2cF327L/Y mice subjected to a high-fat diet (HFD). In addition, 5-HT2CR expression restores the responsiveness of POMC neurons to lorcaserin, a selective agonist for 5-HT2CR. Similarly, administration of melanotan II, an agonist of the melanocortin receptor 4 (MC4R), effectively suppresses feeding and weight gain in Htr2cF327L/Y mice. Strikingly, promoting wheel-running activity in Htr2cF327L/Y mice results in a decrease in HFD consumption and improved glucose homeostasis. Together, our findings underscore the crucial role of the melanocortin system in alleviating hyperphagia and obesity related to dysfunctions of the 5-HT2CR, and further suggest that MC4R agonists and lifestyle interventions might hold promise in counteracting hyperphagia, hyperglycemia, and obesity in individuals carrying rare variants of the Htr2c gene.


Subject(s)
Diet, High-Fat , Hyperphagia , Obesity , Pro-Opiomelanocortin , Receptor, Melanocortin, Type 4 , Receptor, Serotonin, 5-HT2C , Animals , Receptor, Serotonin, 5-HT2C/metabolism , Receptor, Serotonin, 5-HT2C/genetics , Male , Mice , Hyperphagia/metabolism , Hyperphagia/genetics , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Obesity/metabolism , Obesity/genetics , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Receptor, Melanocortin, Type 4/agonists , alpha-MSH/pharmacology , alpha-MSH/analogs & derivatives , Loss of Function Mutation , Hypothalamus/metabolism , Body Weight/drug effects , Eating/drug effects , Eating/physiology , Eating/genetics , Neurons/metabolism , Neurons/drug effects , Disease Models, Animal , Hyperglycemia/metabolism , Hyperglycemia/genetics , Mice, Inbred C57BL , Benzazepines , Peptides, Cyclic
9.
Am J Physiol Renal Physiol ; 326(6): F1091-F1100, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38695074

ABSTRACT

We have previously shown that kidney collecting ducts make vasopressin. However, the physiological role of collecting duct-derived vasopressin is uncertain. We hypothesized that collecting duct-derived vasopressin is required for the appropriate concentration of urine. We developed a vasopressin conditional knockout (KO) mouse model wherein Cre recombinase expression induces deletion of arginine vasopressin (Avp) exon 1 in the distal nephron. We then used age-matched 8- to 12-wk-old Avp fl/fl;Ksp-Cre(-) [wild type (WT)] and Avp fl/fl;Ksp-Cre(+) mice for all experiments. We collected urine, serum, and kidney lysates at baseline. We then challenged both WT and knockout (KO) mice with 24-h water restriction, water loading, and administration of the vasopressin type 2 receptor agonist desmopressin (1 µg/kg ip) followed by the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). We performed immunofluorescence and immunoblot analysis at baseline and confirmed vasopressin KO in the collecting duct. We found that urinary osmolality (UOsm), plasma Na+, K+, Cl-, blood urea nitrogen, and copeptin were similar in WT vs. KO mice at baseline. Immunoblots of the vasopressin-regulated proteins Na+-K+-2Cl- cotransporter, NaCl cotransporter, and water channel aquaporin-2 showed no difference in expression or phosphorylation at baseline. Following 24-h water restriction, WT and KO mice had no differences in UOsm, plasma Na+, K+, Cl-, blood urea nitrogen, or copeptin. In addition, there were no differences in the rate of urinary concentration or dilution as in WT and KO mice UOsm was nearly identical after desmopressin and OPC-31260 administration. We conclude that collecting duct-derived vasopressin is not essential to appropriately concentrate or dilute urine.NEW & NOTEWORTHY Hypothalamic vasopressin is required for appropriate urinary concentration. However, whether collecting duct-derived vasopressin is involved remains unknown. We developed a novel transgenic mouse model to induce tissue-specific deletion of vasopressin and showed that collecting duct-derived vasopressin is not required to concentrate or dilute urine.


Subject(s)
Deamino Arginine Vasopressin , Kidney Tubules, Collecting , Mice, Knockout , Animals , Kidney Tubules, Collecting/metabolism , Kidney Tubules, Collecting/drug effects , Deamino Arginine Vasopressin/pharmacology , Kidney Concentrating Ability/drug effects , Arginine Vasopressin/metabolism , Male , Antidiuretic Hormone Receptor Antagonists/pharmacology , Mice , Aquaporin 2/metabolism , Aquaporin 2/genetics , Antidiuretic Agents/pharmacology , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism , Mice, Inbred C57BL , Water Deprivation , Osmolar Concentration , Sodium/urine , Sodium/metabolism , Vasopressins/metabolism , Benzazepines
11.
Article in English | MEDLINE | ID: mdl-38729234

ABSTRACT

Methamphetamine (METH) is a major health problem without effective pharmacological treatment. Cannabidiol (CBD), a component of the Cannabis sativa plant, is believed to have the potential to inhibit drug-related behavior. However, the neurobiological mechanisms responsible for the effects of CBD remain unclear. Several studies have proposed that the suppressing effects of CBD on drug-seeking behaviors could be through the modulation of the dopamine system. The hippocampus (HIP) D1-like dopamine receptor (D1R) is essential for forming and retrieving drug-associated memory. Therefore, the present study aimed to investigate the role of D1R in the hippocampal CA1 region on the effects of CBD on the extinction and reinstatement of METH-conditioned place preference (CPP). For this purpose, different groups of rats over a 10-day extinction period were administered different doses of intra-CA1 SCH23390 (0.25, 1, or 4 µg/0.5 µl, Saline) as a D1R antagonist before ICV injection of CBD (10 µg/5 µl, DMSO12%). In addition, a different set of animals received intra-CA1 SCH23390 (0.25, 1, or 4 µg/0.5 µl) before CBD injection (50 µg/5 µl) on the reinstatement day. The results revealed that the highest dose of SCH23390 (4 µg) significantly reduced the accelerating effects of CBD on the extinction of METH-CPP (P < 0.01). Furthermore, SCH23390 (1 and 4 µg) in the reinstatement phase notably reversed the preventive effects of CBD on the reinstatement of drug-seeking behavior (P < 0.05 and P < 0.001, respectively). In conclusion, the current study revealed that CBD made a shorter extinction period and suppressed METH reinstatement in part by interacting with D1-like dopamine receptors in the CA1 area of HIP.


Subject(s)
Benzazepines , Cannabidiol , Extinction, Psychological , Methamphetamine , Rats, Wistar , Receptors, Dopamine D1 , Animals , Methamphetamine/pharmacology , Cannabidiol/pharmacology , Extinction, Psychological/drug effects , Male , Receptors, Dopamine D1/antagonists & inhibitors , Benzazepines/pharmacology , Rats , Dose-Response Relationship, Drug , Drug-Seeking Behavior/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Dopamine Antagonists/pharmacology , CA1 Region, Hippocampal/drug effects
12.
J Pharm Biomed Anal ; 245: 116194, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38704878

ABSTRACT

A miniature mass spectrometer (mMS) based point-of-care testing (POCT) method was evaluated for on-site detecting the hypertension drugs, amlodipine and benazepril. The instrument parameters, including voltage, ISO1, ISO2, and CID, were optimized, under which the target compounds could be well detected in MS2. When these two drugs were injected simultaneously, the mutual ionization inhibition and mutual reduction between amlodipine and benazepril were evaluated. This phenomenon was severe on the precursor ions but had a small impact on the product ions, thus making this POCT method suitable for analysis using product ions. Finally, the method was validated and applied. The blood samples from patients were tested one hour after oral administration of the drugs (20 mg), and the benazepril was quantitatively analyzed using a standard curve, with detected concentrations ranging from 190.6 to 210 µg L-1 and a relative standard deviation (RSD) of 8.6 %. In summary, amlodipine has low sensitivity and can only be detected at higher concentrations, while benazepril has high sensitivity, good linearity, and even meets semi-quantitative requirements. The research results of this study are of great clinical significance for monitoring blood drug concentrations during hypertension medication, predicting drug efficacy, and customizing individualized medication plans.


Subject(s)
Amlodipine , Antihypertensive Agents , Benzazepines , Amlodipine/blood , Humans , Benzazepines/blood , Antihypertensive Agents/blood , Antihypertensive Agents/administration & dosage , Mass Spectrometry/methods , Point-of-Care Testing , Reproducibility of Results , Limit of Detection , Point-of-Care Systems
13.
Behav Neurosci ; 138(2): 85-93, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661668

ABSTRACT

Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing representation in behavioral neuroscience. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Time Perception , Female , Male , Animals , Time Perception/physiology , Time Perception/drug effects , Humans , Sex Characteristics , Dopamine/metabolism , Rats , Receptors, Dopamine D2/metabolism , Sulpiride/pharmacology , Quinpirole/pharmacology , Dopamine Agonists/pharmacology , Dopamine Agonists/administration & dosage , Dopamine Antagonists/pharmacology , Dopamine Antagonists/administration & dosage , Adult , Reaction Time/drug effects , Reaction Time/physiology , Benzazepines/pharmacology , Young Adult , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Memory, Short-Term/physiology , Memory, Short-Term/drug effects
14.
Clin Nephrol ; 101(6): 308-316, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38577748

ABSTRACT

OBJECTIVE: Tolvaptan is a vasopressin V2 receptor antagonist that is commonly prescribed to alleviate edema associated with renal diseases. However, the clinical benefits of tolvaptan in chronic kidney disease (CKD) remain unclear. This study aimed to evaluate the effectiveness of tolvaptan in managing edema caused by CKD. MATERIALS AND METHODS: The efficacy and treatment regimen of tolvaptan were assessed in a cohort of 96 patients with renal edema and CKD. During the treatment, the patients' creatinine (CR), uric acid (UA), and estimated glomerular filtration rate (eGFR) were monitored as important indicators of kidney function. Coagulation-associated molecules including fibrinogen, D-dimer, and fibrin degradation products (FDPs) were measured. Electrolyte disorders and acute kidney injury were closely monitored. Tolvaptan was administered at a daily dose of 7.5 mg, and 30 mg of edoxaban was administered to manage deep vein thrombosis. RESULTS: During the course of tolvaptan therapy, the eGFR of the patients was not declined. Edema was eliminated in 82.18% of patients. Proteinuria was reduced in the patients (p < 0.05). There were no significant changes in serum sodium levels throughout treatment, and no significant difference was observed in blood volume between the end of treatment and baseline levels. Importantly, acute kidney injury did not occur, and renal edema and deep vein thrombosis were successfully treated. CONCLUSION: As long as a rational treatment regimen is followed, tolvaptan is a safe and effective diuretic for treating edema in CKD, even in the late stages of CKD without reducing residual renal function in the patients.


Subject(s)
Antidiuretic Hormone Receptor Antagonists , Edema , Glomerular Filtration Rate , Renal Insufficiency, Chronic , Tolvaptan , Humans , Tolvaptan/therapeutic use , Male , Female , Antidiuretic Hormone Receptor Antagonists/therapeutic use , Middle Aged , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Aged , Glomerular Filtration Rate/drug effects , Edema/drug therapy , Edema/etiology , Treatment Outcome , Adult , Creatinine/blood , Benzazepines/therapeutic use
15.
Behav Pharmacol ; 35(4): 193-200, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38567425

ABSTRACT

Prepulse inhibition (PPI) is a crucial indicator of sensorimotor gating that is often impaired in neuropsychiatric diseases. Although dopamine D1 receptor agonists have been found to disrupt PPI in mice, the underlying mechanisms are not fully understood. In this study, we aimed to identify the brain regions responsible for the PPI-disruptive effect of the D1 agonist in mice. Results demonstrated that intraperitoneal administration of the selective dopamine D1 receptor agonist SKF82958 dramatically inhibited PPI, while the dopamine D1 receptor antagonist SCH23390 enhanced PPI. Additionally, local infusion of SKF82958 into the nucleus accumbens and medial prefrontal cortex disrupted PPI, but not in the ventral hippocampus. Infusion of SCH23390 into these brain regions also failed to enhance PPI. Overall, the study suggests that the nucleus accumbens and medial prefrontal cortex are responsible for the PPI-disruptive effect of dopamine D1 receptor agonists. These findings provide essential insights into the cellular and neural circuit mechanisms underlying the disruptive effects of dopamine D1 receptor agonists on PPI and may contribute to the development of novel treatments for neuropsychiatric diseases.


Subject(s)
Benzazepines , Dopamine Agonists , Nucleus Accumbens , Prefrontal Cortex , Prepulse Inhibition , Receptors, Dopamine D1 , Animals , Male , Mice , Benzazepines/pharmacology , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Mice, Inbred C57BL , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/metabolism
16.
Nat Commun ; 15(1): 1992, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443388

ABSTRACT

I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C. Our findings show that iMFPS displaying pHT < 7 under reference in vitro conditions occur predominantly in unfolded states in cells, while those with pHT > 7 appear as a mix of folded and unfolded states depending on the cell cycle phase. Comparing these results with previous data obtained using an iM-specific antibody (iMab) reveals that cell cycle-dependent iM formation has a dual origin, and iM formation concerns only a tiny fraction (possibly 1%) of genomic sites with iM formation propensity. We propose a comprehensive model aligning observations from iMab and in-cell NMR and enabling the identification of iMFPS capable of adopting iM structures under physiological conditions in living human cells. Our results suggest that many iMFPS may have biological roles linked to their unfolded states.


Subject(s)
Azides , Benzazepines , Magnetic Resonance Imaging , Humans , HeLa Cells , DNA , Antibodies
17.
Zhen Ci Yan Jiu ; 49(3): 231-237, 2024 Mar 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500319

ABSTRACT

OBJECTIVES: To observe the effect of moxibustion at "Xinshu"(BL15) and "Feishu"(BL13) combined with intraperitoneal injection of benazepril on cardiac function and phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK) and eukaryotic initiation factor 2α (elF2α) proteins in myocardium of rats with chronic heart failure (CHF), so as to explore its potential mechanism underlying improvement of CHF. METHODS: A total of 42 male SD rats were randomly assigned to blank control (n=10), CHF model (n=7), medication (benazepril, n=8), moxibustion (n=8) and moxibustion+benazepril (n=9) groups, after cardiac ultrasound model identification and elimination of the dead. The CHF model was established by intraperitoneal injection of doxorubicin hydrochloride (DOX), once every week for 6 weeks. Mild moxibustion was applied to bilateral BL15 and BL13 regions for 20 min, once daily for 3 weeks. The rats of the medication group and moxibustion+benazepril group (benazepril was given first, followed by moxibustion) received intraperitoneal injection of benazepril (0.86 mg/kg) solution once daily for 3 weeks . The cardiac ejection fraction (EF) and left ventricular fractional shortening (FS) were measured using echocardiography. Histopathological changes of the cardiac muscle tissue were observed under light microscope after hematoxylin-eosin (H.E.) staining. Serum contents of B-type brain natriuretic peptide (BNP) and angiotensin Ⅱ (AngⅡ) were measured by enzyme-linked immunosorbent assay (ELISA). The expressions of phospho-PERK (p-PERK) and phospho-elF2α (p-elF2α) in the myocardium were detected by Western blot. RESULTS: Compared with the blank control group, the EF and FS of the left cardiac ventricle were significantly decreased (P<0.01), while the contents of serum BNP and AngⅡ, and expression levels of p-PERK and p-eIF2α significantly increased in the model group (P<0.01). In comparison with the model group, both the decreased EF and FS and the increased BNP and AngⅡ contents as well as p-PERK and p-elF2α expression levels were reversed by moxibustion, medication and moxibustion+benazepril (P<0.01). The effects of moxibustion+benazepril were markedly superior to those of simple moxibustion and simple medication in raising the levels of EF and FS rate and in down-regulating the contents of BNP, Ang Ⅱ, levels of p-PERK and p-elF2α (P<0.01, P<0.05). Outcomes of H.E. staining showed irregular arrangement of cardiomyocytes, cell swelling, vacuole and inflammatory infiltration in the model group, which was relatively milder in the 3 treatment groups. The effects of moxibustion+benazepril were superior to those of moxibustion or benazepril. CONCLUSIONS: Moxibustion combined with Benazepril can improve the cardiac function in CHF rats, which may be related to its functions in down-regulating the expression levels of myocardial p-PERK and p-elF2α to inhibit endoplasmic reticulum stress response.


Subject(s)
Benzazepines , Heart Failure , Moxibustion , Rats , Male , Animals , Rats, Sprague-Dawley , Injections, Intraperitoneal , Phosphorylation , Heart Failure/drug therapy , Chronic Disease , Endoplasmic Reticulum Stress
18.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396765

ABSTRACT

Tolvaptan, an oral vasopressin V2 receptor antagonist, reduces renal volume expansion and loss of renal function in patients with autosomal dominant polycystic kidney disease (ADPKD). Data for predictive factors indicating patients more likely to benefit from long-term tolvaptan are lacking. Data were retrospectively collected from 55 patients on tolvaptan for 6 years. Changes in renal function, progression of renal dysfunction (estimated glomerular filtration rate [eGFR], 1-year change in eGFR [ΔeGFR/year]), and renal volume (total kidney volume [TKV], percentage 1-year change in TKV [ΔTKV%/year]) were evaluated at 3-years pre-tolvaptan, at baseline, and at 6 years. In 76.4% of patients, ΔeGFR/year improved at 6 years. The average 6-year ΔeGFR/year (range) minus baseline ΔeGFR/year: 3.024 (-8.77-20.58 mL/min/1.73 m2). The increase in TKV was reduced for the first 3 years. A higher BMI was associated with less of an improvement in ΔeGFR (p = 0.027), and family history was associated with more of an improvement in ΔeGFR (p = 0.044). Hypernatremia was generally mild; 3 patients had moderate-to-severe hyponatremia due to prolonged, excessive water intake in response to water diuresis-a side effect of tolvaptan. Family history of ADPKD and baseline BMI were contributing factors for ΔeGFR/year improvement on tolvaptan. Hyponatremia should be monitored with long-term tolvaptan administration.


Subject(s)
Hyponatremia , Polycystic Kidney, Autosomal Dominant , Humans , Tolvaptan/therapeutic use , Tolvaptan/pharmacology , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/complications , Antidiuretic Hormone Receptor Antagonists/adverse effects , Retrospective Studies , Benzazepines/adverse effects , Kidney , Glomerular Filtration Rate
19.
Invest Ophthalmol Vis Sci ; 65(2): 34, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38393716

ABSTRACT

Purpose: The purpose of this study was to investigate the antitumor effects of GSK-J4 on retinoblastoma, as well as its related biological functions and molecular mechanisms. Methods: The antitumor effect of GSK-J4 on retinoblastoma was evaluated by in vitro and in vivo assays. CCK-8, EdU incorporation, and soft agar colony formation assays were performed to examine the effect of GSK-J4 on cell proliferation. Flow cytometry was used to evaluate the effect of GSK-J4 on the cell cycle and apoptosis. RNA-seq and Western blotting were conducted to explore the molecular mechanisms of GSK-J4. An orthotopic xenograft model was established to determine the effect of GSK-J4 on tumor growth. Results: GSK-J4 significantly inhibited retinoblastoma cell proliferation both in vitro and in vivo, arrested the cell cycle at G2/M phase, and induced apoptosis. Mechanistically, GSK-J4 may suppress retinoblastoma cell growth by regulating the PI3K/AKT/NF-κB signaling pathway. Conclusions: The antitumor effects of GSK-J4 were noticeable in retinoblastoma and were at least partially mediated by PI3K/AKT/NF-κB pathway suppression. Our study provides a novel strategy for the treatment of retinoblastoma.


Subject(s)
Benzazepines , Pyrimidines , Retinal Neoplasms , Retinoblastoma , Humans , Histone Demethylases/metabolism , NF-kappa B , Retinoblastoma/drug therapy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Cell Proliferation , Retinal Neoplasms/drug therapy , Cell Line, Tumor , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...