Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.866
Filter
1.
Anal Chim Acta ; 1316: 342821, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969423

ABSTRACT

The monitoring of biomarkers in wound exudate is of great importance for wound care and treatment, and electrochemical biosensors with high sensitivity are potentially useful for this purpose. However, conventional electrochemical biosensors always suffer from severe biofouling when performed in the complex wound exudate. Herein, an antifouling electrochemical biosensor for the detection of involucrin in wound exudate was developed based on a wound dressing, oxidized bacterial cellulose (OxBC) and quaternized chitosan (QCS) composite hydrogel. The OxBC/QCS hydrogel was prepared using an in-situ chemical oxidation and physical blending method, and the proportion of OxBC and QCS was optimized to achieve electrical neutrality and enhanced hydrophilicity, therefore endowing the hydrogel with exceptional antifouling and antimicrobial properties. The involucrin antibody SY5 was covalently bound to the OxBC/QCS hydrogel to construct the biosensor, and it demonstrated a low limit of detection down to 0.45 pg mL-1 and a linear detection range from 1.0 pg mL-1 to 1.0 µg mL-1, and it was capable of detecting targets in wound exudate. Crucially, the unique antifouling and antimicrobial capability of the OxBC/QCS hydrogel not only extends its effective lifespan but also guarantees the sensing performance of the biosensor. The successful application of this wound dressing, OxBC/QCS hydrogel for involucrin detection in wound exudate demonstrates its promising potential in wound healing monitoring.


Subject(s)
Biosensing Techniques , Cellulose , Chitosan , Electrochemical Techniques , Oxidation-Reduction , Chitosan/chemistry , Cellulose/chemistry , Biofouling/prevention & control , Humans , Hydrogels/chemistry , Exudates and Transudates/chemistry , Limit of Detection
2.
Biofouling ; 40(5-6): 348-365, 2024.
Article in English | MEDLINE | ID: mdl-38836472

ABSTRACT

Our research focuses on developing environmentally friendly biodegradable ultrafiltration (UF) membranes for small-scale water purification in areas lacking infrastructure or during emergencies. To address biofouling challenges without resorting to harmful chemicals, we incorporate bio-based extracts, such as methyl gallate from A. occidentale leaves, a Malaysian ulam herb, known for its quorum sensing inhibition (QSI) properties. The methyl gallate enriched extract was purified by solvent partitioning and integrated into cellulose-based UF membranes (0 to 7.5% w w-1) through phase inversion technique. The resulting membranes exhibited enhanced anti-organic fouling and anti-biofouling properties, with flux recovery ratio (FRR) of 87.84 ± 2.00% against bovine serum albumin and FRRs of 76.67 ± 1.89% and 69.57 ± 1.77% against E. coli and S. aureus, respectively. The CA/MG-5 membrane showed a 224% improvement in pure water flux (PWF) compared to the neat CA membrane. Our innovative approach significantly improves PWF, presenting an environmentally friendly method for biofouling prevention in UF membrane applications.


Subject(s)
Anacardium , Biofouling , Escherichia coli , Membranes, Artificial , Plant Extracts , Ultrafiltration , Water Purification , Biofouling/prevention & control , Ultrafiltration/methods , Plant Extracts/pharmacology , Plant Extracts/chemistry , Escherichia coli/drug effects , Anacardium/chemistry , Water Purification/methods , Staphylococcus aureus/drug effects , Gallic Acid/analogs & derivatives , Gallic Acid/pharmacology , Gallic Acid/chemistry , Serum Albumin, Bovine/chemistry
3.
Biofouling ; 40(5-6): 333-347, 2024.
Article in English | MEDLINE | ID: mdl-38836545

ABSTRACT

The corrosion behaviors of four pure metals (Fe, Ni, Mo and Cr) in the presence of sulfate reducing bacteria (SRB) were investigated in enriched artificial seawater (EASW) after 14-day incubation. Metal Fe and metal Ni experienced weight losses of 1.96 mg cm-2 and 1.26 mg cm-2, respectively. In contrast, metal Mo and metal Cr exhibited minimal weight losses, with values of only 0.05 mg cm-2 and 0.03 mg cm-2, respectively. In comparison to Mo (2.2 × 106 cells cm-2) or Cr (1.4 × 106 cells cm-2) surface, the sessile cell counts on Fe (4.0 × 107 cells cm-2) or Ni (3.1 × 107 cells cm-2) surface was higher.


Subject(s)
Bacterial Adhesion , Sulfates , Corrosion , Sulfates/chemistry , Metals/chemistry , Seawater/microbiology , Seawater/chemistry , Biofilms/drug effects , Biofilms/growth & development , Bacteria/drug effects , Biofouling/prevention & control
4.
Biofouling ; 40(5-6): 366-376, 2024.
Article in English | MEDLINE | ID: mdl-38855912

ABSTRACT

This research introduces an Artificial Intelligence (AI) based model designed to concurrently optimize energy supply management, biocide dosing, and maintenance scheduling for heat exchangers. This optimization considers energetic, technical, economic, and environmental considerations. The impact of biofilm on heat exchangers is assessed, revealing a 41% reduction in thermal efficiency and a 113% increase in flow frictional resistance of the fluid compared to the initial state. Consequently, the pump's power consumption, required to maintain hydraulic conditions, rises by 9%. The newly developed AI model detects the point at which the heat exchanger's performance begins to decline due to accumulating dirt, marking day 44 of experimentation as the threshold to commence the antifouling biocide dosing. Leveraging this AI model to monitor heat exchanger efficiency represents an innovative approach to optimizing antifouling biocide dosing and reduce the environmental impact stemming from industrial plants.


Subject(s)
Artificial Intelligence , Biofilms , Biofouling , Disinfectants , Seawater , Seawater/chemistry , Biofilms/drug effects , Biofouling/prevention & control , Models, Theoretical
5.
Biomed Mater ; 19(5)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38917812

ABSTRACT

Stopping postoperative soft tissue adhesions is one of the most challenging clinical problems that needs to be addressed urgently to avoid secondary injury and pain to patients. Currently, membrane materials with anti-protein adsorption and antibacterial activity are recognized as an effective and promising anti-adhesion barrier to prevent postoperative adhesion and the recurrent adhesion after adhesiolysis. Herein, poly(amino acid) (PAA), which is structurally similar to collagen, is selected as the membrane base material to successfully synthesize PAA-5 membranes with excellent mechanical and degradation properties by in-situ melt polymerization and hot-melt film-forming technology. Subsequently, the co-deposition of polydopamine/polysulfobetaine methacrylate (PDA/PSBMA) coatings induced by CuSO4/H2O2on PAA-5 membranes results in the formation of PDC-5S and PDC-10S, which exhibit excellent hemocompatibility, protein antifouling properties, and cytocompatibility. Additionally, PDC-5S and PDC-10S demonstrated significant antibacterial activity againstEscherichia coliandStaphylococcus aureus, with an inhibition rate of more than 90%. As a result, this study sheds light on newly discovered PAA membranes with anti-protein adsorption and antibacterial activity can sever as one of the promising candidates for the prevention of postoperative peritoneum adhesions.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Hydrogen Peroxide , Indoles , Membranes, Artificial , Methacrylates , Polymers , Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Polymers/chemistry , Adsorption , Indoles/chemistry , Indoles/pharmacology , Methacrylates/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Humans , Hydrogen Peroxide/chemistry , Animals , Materials Testing , Amino Acids/chemistry , Biofouling/prevention & control , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Betaine/chemistry , Betaine/analogs & derivatives , Tissue Adhesions/prevention & control
6.
ACS Appl Mater Interfaces ; 16(24): 31610-31623, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38853366

ABSTRACT

Affinity-based electrochemical (AEC) biosensors have gained more attention in the field of point-of-care management. However, AEC sensing is hampered by biofouling of the electrode surface and degradation of the antifouling material. Therefore, a breakthrough in antifouling nanomaterials is crucial for the fabrication of reliable AEC biosensors. Herein, for the first time, we propose 1-pyrenebutyric acid-functionalized MXene to develop an antifouling nanocomposite to resist biofouling in the immunosensors. The nanocomposite consisted of a 3D porous network of bovine serum albumin cross-linked with glutaraldehyde with functionalized MXene as conductive nanofillers, where the inherited oxidation resistance property of functionalized MXene improved the electrochemical lifetime of the nanocomposite. On the other hand, the size-extruded porous structure of the nanocomposite inhibited the biofouling activity on the electrode surface for up to 90 days in real samples. As a proof of concept, the antifouling nanocomposite was utilized to fabricate a multiplexed immunosensor for the detection of C-reactive protein (CRP) and ferritin biomarkers. The fabricated sensor showed good selectivity over time and an excellent limit of detection for CRP and ferritin of 6.2 and 4.2 pg/mL, respectively. This research successfully demonstrated that functionalized MXene-based antifouling nanocomposites have great potential to develop high-performance and low-cost immunosensors.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Nanocomposites , Serum Albumin, Bovine , Nanocomposites/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Porosity , Serum Albumin, Bovine/chemistry , Biofouling/prevention & control , C-Reactive Protein/analysis , Immunoassay/methods , Humans , Pyrenes/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Animals , Limit of Detection , Electrodes , Cattle
7.
Mikrochim Acta ; 191(7): 380, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858258

ABSTRACT

A sensing interface co-constructed from the two-dimensional conductive material (Ag@MXene) and an antifouling cyclic multifunctional peptide (CP) is described. While the large surface area of Ag@MXene loads more CP probes, CP binds to Ag@MXene to form a fouling barrier and ensure the structural rigidity of the targeting sequence. This strategy synergistically enhances the biosensor's sensitivity and resistance to contamination. The SPR results showed that the binding affinity of the CP to the target was 6.23 times higher than that of the antifouling straight-chain multifunctional peptide (SP) to the target. In the 10 mg/mL BSA electrochemical fouling test, the fouling resistance of Ag@MXene + CP (composite sensing interface of CP combined with Ag@MXene) was 30 times higher than that of the bare electrode. The designed electrochemical sensor exhibited good selectivity and wide dynamic response range at PD-L1 concentrations from 0.1 to 50 ng/mL. The lowest detection limit was 24.54 pg/mL (S/N = 3). Antifouling 2D materials with a substantial specific surface area, coupled with non-straight chain antifouling multifunctional peptides, offer a wide scope for investigating the sensitivity and antifouling properties of electrochemical sensors.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Limit of Detection , Peptides, Cyclic , Silver , Silver/chemistry , Electrochemical Techniques/methods , Peptides, Cyclic/chemistry , Peptides, Cyclic/blood , Biosensing Techniques/methods , Humans , Biofouling/prevention & control , Electrodes
8.
Ecotoxicol Environ Saf ; 280: 116560, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38865941

ABSTRACT

Marine biofouling remains a huge concern for maritime industries and for environmental health. Although the current biocide-based antifouling coatings can prevent marine biofouling, their use has been associated with toxicity for the marine environment, being urgent to find sustainable alternatives. Previously, our research group has identified a prenylated chalcone (1) with promising antifouling activity against the settlement of larvae of the macrofouling species Mytilus galloprovincialis (EC50 = 16.48 µM and LC50 > 200 µM) and lower ecotoxicity when compared to Econea®, a commercial antifouling agent in use. Herein, a series of chalcone 1 analogues were designed and synthesized in order to obtain optimized antifouling compounds with improved potency while maintaining low ecotoxicity. Compounds 8, 15, 24, and 27 showed promising antifouling activity against the settlement of M. galloprovincialis larvae, being dihydrochalcone 27 the most potent. The effect of compound 24 was associated with the inhibition of acetylcholinesterase activity. Among the synthesized compounds, compound 24 also showed potent complementary activity against Navicula sp. (EC50 = 4.86 µM), similarly to the lead chalcone 1 (EC50 = 6.75 µM). Regarding the structure-activity relationship, the overall results demonstrate that the substitution of the chalcone of the lead compound 1 by a dihydrochalcone scaffold resulted in an optimized potency against the settlement of mussel larvae. Marine polyurethane (PU)-based coatings containing the best performed compound concerning anti-settlement activity (dihydrochalcone 27) were prepared, and mussel larvae adherence was reduced compared to control PU coatings.


Subject(s)
Biofouling , Larva , Mytilus , Animals , Biofouling/prevention & control , Larva/drug effects , Mytilus/drug effects , Chalcones/pharmacology , Chalcones/chemistry , Structure-Activity Relationship , Chalcone/pharmacology , Chalcone/analogs & derivatives , Chalcone/chemistry , Disinfectants/toxicity , Disinfectants/pharmacology
9.
Nanoscale ; 16(23): 11318-11326, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38804270

ABSTRACT

The escalating global threat of infectious diseases, including monkeypox virus (MPXV), necessitates advancements in point-of-care diagnostics, moving beyond the constraints of conventional methods tethered to centralized laboratories. Here, we introduce multiple CRISPR RNA (crRNA)-based biosensors that can directly detect MPXV within 35 minutes without pre-amplification, leveraging the enhanced sensitivity and antifouling attributes of the BSA-based nanocomposite. Multiple crRNAs, strategically targeting diverse regions of the F3L gene of MPXV, are designed and combined to amplify Cas12a activation and its collateral cleavage of reporter probes. Notably, our electrochemical sensors exhibit the detection limit of 669 fM F3L gene without amplification, which is approximately a 15-fold improvement compared to fluorescence detection. This sensor also shows negligible changes in peak current after exposure to complex biological fluids, such as whole blood and serum, maintaining its sensitivity at 682 fM. This sensitivity is nearly identical to the conditions when only the F3L gene was present in PBS. In summary, our CRISPR-based electrochemical biosensors can be utilized as a high-performance diagnostic tool in resource-limited settings, representing a transformative leap forward in point-of-care testing. Beyond infectious diseases, the implications of this technology extend to various molecular diagnostics, establishing itself as a rapid, accurate, and versatile platform for detection of target analytes.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Electrochemical Techniques , Nanocomposites , Biosensing Techniques/methods , Nanocomposites/chemistry , Electrochemical Techniques/methods , Humans , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Limit of Detection , Bacterial Proteins/genetics , Animals , Endodeoxyribonucleases/metabolism , Biofouling/prevention & control
10.
ACS Sens ; 9(6): 2956-2963, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38776243

ABSTRACT

Overcoming the influence of interfering substances in the environment and achieving superior sensing performance are significant challenges in biomarker detection within complex matrices. Herein, an integrated electrochemical sensing platform for sensitive detection of biomarkers in complex biofluids was developed based on a newly designed PEGylated multifunctional peptide (PEG-MPEP). The designed PEG-MPEP contains a poly(serine) sequence (-ssssss-) as the antifouling part and recognition peptide sequence (-avwgrwh) specific for the target human immunoglobulin G (IgG). To improve the peptide stability to protease hydrolysis, d-amino acids were adopted to synthesize the whole peptide. Additionally, the PEGylation can further enhance the stability of the peptide, and the PEG itself was also antifouling, ensuring superstrong antifouling capability of the PEG-MPEP. The designed PEG-MPEP-based biosensor possessed a high sensitivity for the detection of IgG in the range of 1.0 pg mL-1 to 1.0 µg mL-1, with a low limit of detection (0.41 pg mL-1), and it was capable of assaying targets accurately in real serum samples. Compared with conventional peptide-modified biosensors, the PEG-MPEP-modified biosensor exhibited superior antifouling and antihydrolysis properties in complex biofluid, showcasing promising potential for practical assay applications.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Immunoglobulin G , Peptides , Polyethylene Glycols , Biosensing Techniques/methods , Polyethylene Glycols/chemistry , Humans , Peptides/chemistry , Electrochemical Techniques/methods , Immunoglobulin G/blood , Limit of Detection , Biofouling/prevention & control
11.
Int J Biol Macromol ; 269(Pt 1): 132075, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705317

ABSTRACT

Carbonic anhydrase (CA) has a promising application as a green and efficient biocatalyst for CO2 capture, and many successful cases of immobilizing CA have been reported. However, CA antifouling coatings on metal for CO2 sequestration have rarely been reported. Herein, dimeric CA from Sulfurihydrogenibium azorense (SazCA) with a ferritin tag, which was prepared by low-speed centrifugation with high yield, was adopted as a free enzyme and encapsulated in the sol-gel silica. The silica-immobilized CAs were dispersed into the commercialized metal-antifouling epoxy resin paint to obtain CA coated nickel foams, which had excellent stability, with 90 % and 67 % residual activity after 28 days of incubation at 30 °C and 60 °C, respectively. The CA coated nickel foams remained 60 % original activity after 6 cycles of use within 28 days. Then, a CA-microalgae carbon capture device was constructed using the CA coated nickel foams and Chlorella. The growth rate of Chlorella was significantly increased and the biomass of Chlorella increased by 29 % compared with control after 7 days of incubation. Due to the simple and cost-effective preparation process, sustainable and efficient CO2 absorption, this easy-to-scale up CA coated nickel foam has great potential in CA assisted microalgae-based CO2 capture and carbon neutrality.


Subject(s)
Carbon Dioxide , Carbonic Anhydrases , Enzymes, Immobilized , Microalgae , Silicon Dioxide , Carbon Dioxide/chemistry , Silicon Dioxide/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/chemistry , Nickel/chemistry , Epoxy Resins/chemistry , Biofouling/prevention & control
12.
Colloids Surf B Biointerfaces ; 239: 113939, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744077

ABSTRACT

Chronic infections caused by the pathogenic biofilms on implantable medical devices pose an increasing challenge. To combat long-term biofilm-associated infections, we developed a novel dual-functional polymer coating with antibacterial and antifouling properties. The coating consists of N-vinylpyrrolidone (NVP) and 3-(acrylamido)phenylboronic acid (APBA) copolymer brushes, which bind to curcumin (Cur) as antibacterial molecules through acid-responsive boronate ester bonds. In this surface design, the hydrophilic poly (N-vinylpyrrolidone) (PVP) component improved antifouling performance and effectively prevented bacterial adhesion and aggregation during the initial phases. The poly (3-(acrylamido) phenylboronic acid) (PAPBA, abbreviated PB) component provided binding sites for Cur by forming acid-responsive boronate ester bonds. When fewer bacteria overcame the anti-adhesion barrier and colonized, the surface responded to the decreased microenvironmental pH by breaking the boronate ester bonds and releasing curcumin. This responsive mechanism enabled Cur to interfere with biofilm formation and provide a multilayer anti-biofilm protection system. The coating showed excellent antibacterial properties against Escherichia coli and Staphylococcus aureus, preventing biofilm formation for up to 7 days. The coating also inhibited protein adsorption and platelet adhesion significantly. This coating also exhibited high biocompatibility with animal erythrocytes and pre-osteoblasts. This research offers a promising approach for developing novel smart anti-biofilm coating materials.


Subject(s)
Anti-Bacterial Agents , Biofilms , Curcumin , Escherichia coli , Polymers , Staphylococcus aureus , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Polymers/chemistry , Polymers/pharmacology , Curcumin/pharmacology , Curcumin/chemistry , Bacterial Adhesion/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Animals , Microbial Sensitivity Tests , Boronic Acids/chemistry , Boronic Acids/pharmacology , Surface Properties , Humans , Biofouling/prevention & control , Hydrogen-Ion Concentration
13.
J Mater Chem B ; 12(22): 5535-5550, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38747002

ABSTRACT

Invasive neural implants allow for high-resolution bidirectional communication with the nervous tissue and have demonstrated the ability to record neural activity, stimulate neurons, and sense neurochemical species with high spatial selectivity and resolution. However, upon implantation, they are exposed to a foreign body response which can disrupt the seamless integration of the device with the native tissue and lead to deterioration in device functionality for chronic implantation. Modifying the device surface by incorporating bioactive coatings has been a promising approach to camouflage the device and improve integration while maintaining device performance. In this work, we explored the novel application of a chondroitin sulfate (CS) based hydrophilic coating, with anti-fouling and neurite-growth promoting properties for neural recording electrodes. CS-coated samples exhibited significantly reduced protein-fouling in vitro which was maintained for up to 4-weeks. Cell culture studies revealed a significant increase in neurite attachment and outgrowth and a significant decrease in microglia attachment and activation for the CS group as compared to the control. After 1-week of in vivo implantation in the mouse cortex, the coated probes demonstrated significantly lower biofouling as compared to uncoated controls. Like the in vitro results, increased neuronal population (neuronal nuclei and neurofilament) and decreased microglial activation were observed. To assess the coating's effect on the recording performance of silicon microelectrodes, we implanted coated and uncoated electrodes in the mouse striatum for 1 week and performed impedance and recording measurements. We observed significantly lower impedance in the coated group, likely due to the increased wettability of the coated surface. The peak-to-peak amplitude and the noise floor levels were both lower in the CS group compared to the controls, which led to a comparable signal-to-noise ratio between the two groups. The overall single unit yield (% channels recording a single unit) was 74% for the CS and 67% for the control group on day 1. Taken together, this study demonstrates the effectiveness of the polysaccharide-based coating in reducing biofouling and improving biocompatibility for neural electrode devices.


Subject(s)
Chondroitin Sulfates , Coated Materials, Biocompatible , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Animals , Mice , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Surface Properties , Neurons/drug effects , Biofouling/prevention & control , Electrodes, Implanted
14.
Chemosphere ; 359: 142254, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714253

ABSTRACT

Anaerobic fluidized membrane bioreactors (AFMBR) has attracted growing interest as an emerging wastewater treatment technology towards energy recovery from wastewater. AFMBR combines the advantages of anaerobic digestion and membrane bioreactors and shows great potential in overcoming limiting factors such as membrane fouling and low efficiency in treating low-strength wastewater such as domestic sewage. In AFMBR, the fluidized media performs significant role in reducing the membrane fouling, as well as improving the anaerobic microbial activity of AFMBRs. Despite extensive research aimed at mitigating membrane fouling in AFMBR, there has yet to emerge a comprehensive review focusing on strategies for controlling membrane fouling with an emphasis on low energy consumption. Thus, this work overviews the recent progress of AFMBR by summarizing the factors of membrane fouling and energy consumption in AFMBR, and provides targeted in-depth analysis of energy consumption related to membrane fouling control. Additionally, future development directions for AFMBR are also outlooked, and further promotion of AFMBR engineering application is expected. By shedding light on the relationship between energy consumption and membrane fouling control, this review offers a useful information for developing new AFMBR processes with an improved efficiency, low membrane fouling and low energy consumption, and encourages more research efforts and technological advancements in the domain of AFMBR.


Subject(s)
Bioreactors , Membranes, Artificial , Waste Disposal, Fluid , Wastewater , Anaerobiosis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Sewage/microbiology , Biofouling/prevention & control , Water Purification/methods
15.
Anal Chim Acta ; 1307: 342645, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719410

ABSTRACT

Electrochemical biosensors with high sensitivity can detect low concentrations of biomarkers, but their practical detection applications in complex biological environments such as human serum and sweat are severely limited by the biofouling. Herein, a conductive hydrogel based on bovine serum albumin (BSA) and conductive carbon black (CCB) was prepared for the construction of an antifouling biosensor. The BSA hydrogel (BSAG) was doped with CCB, and the prepared composite hydrogel exhibited good conductivity originated from the CCB and antifouling capability owing to the BSA hydrogel. An antifouling biosensor for the sensitive detection of cortisol was fabricated by drop-coating the conductive hydrogel onto a poly(3,4-ethylenedioxythiophene) (PEDOT) modified electrode and further immobilizing the cortisol aptamer. The constructed biosensor showed a linear range of 100 pg mL-1 - 10 µg mL-1 and a limit of detection of 26.0 pg mL-1 for the detection of cortisol, and it was capable of assaying cortisol accurately in complex human serum. This strategy of preparing antifouling and conductive hydrogels provides an effective way to develop robust electrochemical biosensors for biomarker detection in complex biological media.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Hydrocortisone , Hydrogels , Serum Albumin, Bovine , Soot , Humans , Biosensing Techniques/methods , Serum Albumin, Bovine/chemistry , Hydrocortisone/blood , Hydrocortisone/analysis , Soot/chemistry , Electrochemical Techniques/methods , Hydrogels/chemistry , Cattle , Biofouling/prevention & control , Limit of Detection , Animals , Electrodes , Aptamers, Nucleotide/chemistry , Polymers , Bridged Bicyclo Compounds, Heterocyclic
16.
ACS Appl Mater Interfaces ; 16(23): 30117-30127, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38820308

ABSTRACT

Ceria (CeO2) nanoparticles with haloperoxidase (HPO)-like activity have gained attention as a biologically benign antifoulant. 3,4-Dihydroxy-l-phenylalanine (DOPA), a main composition in mussel foot proteins, plays a crucial role in the biofouling process. However, the impact on the HPO-like activity and antifouling performance of CeO2 nanoparticles when DOPA molecules adsorb on them remains unexplored. This interesting question warrants investigation, particularly considering that it may occur in an actual marine environment. Herein, the interaction between DOPA and CeO2 is explored. Despite the higher Ce3+ fractions and the lower band gap energies due to the electron transfer from DOPA to the CeO2 surface, DOPA still had a slightly negative effect on the HPO-like activity of CeO2 since they decreased the exposed Ce3+ sites. The DOPA-CeO2 nanocomposites with HPO-like activities could kill bacteria and trigger quorum-sensing signaling quenching, achieving a biofilm inhibition performance. Amazingly, 0.1% DOPA-CeO2 nanocomposite exhibited higher antibacterial activity and better biofilm suppression activities due to its HPO-like activity and positive zeta potential. The remarkable results demonstrated that DOPA, as a participant in the biofouling process, could enhance the antibacterial activity and antifouling performance of CeO2 nanoparticles at an appropriate concentration.


Subject(s)
Anti-Bacterial Agents , Biofilms , Cerium , Cerium/chemistry , Cerium/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Peroxidases/metabolism , Peroxidases/chemistry , Dihydroxyphenylalanine/chemistry , Dihydroxyphenylalanine/pharmacology , Staphylococcus aureus/drug effects , Biofouling/prevention & control , Microbial Sensitivity Tests , Escherichia coli/drug effects , Nanocomposites/chemistry , Quorum Sensing/drug effects
17.
J Mater Chem B ; 12(23): 5711-5721, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38758163

ABSTRACT

The presence of a variety of bacteria is an inevitable/indispensable part of human life. In particular, for patients, the existence and spreading of bacteria lead to prolonged treatment period with many more complications. The widespread use of urinary catheters is one of the main causes for the prevalence of infections. The necessity of long-term use of indwelling catheters is unavoidable in terms of the development of bacteriuria and blockage. As is known, since a permanent solution to this problem has not yet been found, research and development activities continue actively. Herein, polyethylene glycol (PEG)-like thin films were synthesized by a custom designed plasma enhanced chemical vapor deposition (PE-CVD) method and the long-term effect of antifouling properties of PEG-like coated catheters was investigated against Escherichia coli and Proteus mirabilis. The contact angle measurements have revealed the increase of wettability with the increase of plasma exposure time. The antifouling activity of surface-coated catheters was analyzed against the Gram-negative/positive bacteria over a long-term period (up to 30 days). The results revealed that PE-CVD coated PEG-like thin films are highly capable of eliminating bacterial attachment on surfaces with relatively reduced protein attachment without having any toxic effect. Previous statements were supported with SEM, XPS, FTIR spectroscopy, and contact angle analysis.


Subject(s)
Escherichia coli , Polyethylene Glycols , Proteus mirabilis , Surface Properties , Urinary Catheters , Urinary Catheters/microbiology , Escherichia coli/drug effects , Proteus mirabilis/drug effects , Polyethylene Glycols/chemistry , Bacterial Adhesion/drug effects , Biofouling/prevention & control , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology
18.
Bioresour Technol ; 403: 130848, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761868

ABSTRACT

This study addresses membrane biofouling in membrane bioreactors (MBRs) by exploring fungal-to-bacterial quorum quenching (QQ) strategies. While most research has been focused on bacterial-to-bacterial QQ tactics, this study identified fungal strain Vanrija sp. MS1, which is capable of degrading N-acyl-homoserine lactones (signaling molecules of Gram-negative bacteria). To determine the benefits of fungal over bacterial strains, after immobilization on fluidizing spherical beads in an MBR, MS1 significantly reduced the fouling rate by 1.8-fold compared to control MBR, decreased extracellular polymeric substance levels in the biofilm during MBR operation, and favorably changed microbial community and bacterial network, resulting in biofouling mitigation. It is noteworthy that, unlike Rhodococcus sp. BH4, MS1 enhanced QQ activity when switching from neutral to acidic conditions. These results suggest that MS1 has the potential for the effective treatment of acidic industrial wastewater sources such as semiconductor and secondary battery wastewater using MBRs.


Subject(s)
Biofouling , Bioreactors , Membranes, Artificial , Quorum Sensing , Wastewater , Water Purification , Biofouling/prevention & control , Bioreactors/microbiology , Wastewater/chemistry , Wastewater/microbiology , Water Purification/methods , Biofilms , Bacteria/metabolism
19.
Bioresour Technol ; 403: 130860, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763205

ABSTRACT

Low-maintenance membrane cleaning is essential for the stable operation of membrane bioreactors. This work proposes an in-situ electrical-cleaning method using an electro-MBR. When the applied bias was transiently increased, the membrane flux recovered rapidly because of the scouring effect from gas evolution reactions. The exfoliation of the cake layer induced by gas scouring played a major role in mitigating membrane fouling, recovering the transmembrane pressure (TMP) by 88.6 % under optimal conditions. Membrane modules did not require replacement during the operation period due to the efficacy of electrical cleaning, with the TMP varying between 37.5 % and 62.5 % of the ultimate pressure requiring change of the membrane modules. Despite the increase in power consumption of 0.66 Wh·m-3 due to the additional applied bias, there was no need for chemical additives or manual maintenance. Therefore, the electrical cleaning method enhanced the service life and reduced the maintenance costs of the electro-MBR.


Subject(s)
Bioreactors , Electrodes , Membranes, Artificial , Gases , Biofouling/prevention & control , Pressure
20.
Biofouling ; 40(3-4): 290-304, 2024.
Article in English | MEDLINE | ID: mdl-38785127

ABSTRACT

Thermal bubble-driven micro-pumps are an upcoming micro-actuator technology that can be directly integrated into micro/mesofluidic channels, have no moving parts, and leverage existing mass production fabrication approaches. These micro-pumps consist of a high-power micro-resistor that boils fluid in microseconds to create a high-pressure vapor bubble which performs mechanical work. As such, these micro-pumps hold great promise for micro/mesofluidic systems such as lab-on-a-chip technologies. However, to date, no current work has studied the interaction of these micro-pumps with biofluids such as blood and protein-rich fluids. In this study, the effects of organic fouling due to egg albumin and bovine whole blood are characterized using stroboscopic high-speed imaging and a custom deep learning neural network based on transfer learning of RESNET-18. It was found that the growth of a fouling film inhibited vapor bubble formation. A new metric to quantify the extent of fouling was proposed using the decrease in vapor bubble area as a function of the number of micro-pump firing events. Fouling due to egg albumin and bovine whole blood was found to significantly degrade pump performance as well as the lifetime of thermal bubble-driven micro-pumps to less than 104 firings, which may necessitate the use of protective thin film coatings to prevent the buildup of a fouling layer.


Subject(s)
Biofouling , Biofouling/prevention & control , Animals , Cattle , Albumins , Lab-On-A-Chip Devices , Serum Albumin, Bovine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...